靳增彩 郝淑蘭 劉麗坤
【摘要】 結(jié)直腸癌是世界上第三大常見(jiàn)癌癥,發(fā)病率和死亡率在全球范圍內(nèi)不斷增加。結(jié)直腸癌的標(biāo)準(zhǔn)治療一直是手術(shù)、放射治療和化學(xué)療法。然而,這些治療具有非特異性,對(duì)正常細(xì)胞具有細(xì)胞毒性。此外,許多患者經(jīng)一系列治療后仍會(huì)復(fù)發(fā)。因此,治療結(jié)直腸癌更有效的替代療法的出現(xiàn)至關(guān)重要。免疫療法是癌癥治療的新選擇之一,該策略利用患者自身的免疫系統(tǒng)對(duì)抗癌細(xì)胞。免疫療法具有特異性,正常細(xì)胞不受影響。在某些情況下,免疫療法的結(jié)果令人驚訝,但有些依賴于患者自身免疫系統(tǒng)狀態(tài)的效果不佳。對(duì)免疫療法反應(yīng)好的患者具有更好的預(yù)后和生活質(zhì)量。
【關(guān)鍵詞】 結(jié)直腸癌 免疫療法 T細(xì)胞 抗體 細(xì)胞因子
Advances in Immunotherapy of Colorectal Cancer/JIN Zengcai, HAO Shulan, LIU Likun. //Medical Innovation of China, 2021, 18(36): -179
[Abstract] Colorectal cancer is the third most common cancer in the world, and the incidence rate and mortality rate increase worldwide. The standard treatment for colorectal cancer has been surgery, radiotherapy and chemotherapy. However, these treatments are nonspecific and cytotoxic to normal cells. In addition, many patients will relapse after a series of treatment. Therefore, the emergence of more effective alternative therapies for colorectal cancer is crucial. Immunotherapy is one of the new options for cancer treatment, the strategy uses the patient’s own immune system to fight against cancer cells. Immunotherapy is specific and normal cells are not affected. In some cases, the results of immunotherapy are surprising, but some depend on the state of the patient’s autoimmune system. Patients who respond well to immunotherapy have better prognosis and quality of life.
[Key words] Colorectal cancer Immunotherapy T cells Antibody Cytokines
First-author’s address: Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province, Taiyuan 030012, China
doi:10.3969/j.issn.1674-4985.2021.36.042
結(jié)直腸癌(colorectal cancer,CRC)是世界上第三大常見(jiàn)癌癥,發(fā)病率為10.2%,死亡率為9.2%[1-2]。CRC的標(biāo)準(zhǔn)常規(guī)治療方法是手術(shù)、放療和化療。根據(jù)疾病的定位和進(jìn)展,這些治療可以組合使用[3]。這些治療具有許多副作用,其對(duì)任何正在生長(zhǎng)和分裂的細(xì)胞都具有非特異性的細(xì)胞毒性[4]。此外,即使在新輔助治療后,仍有54%的患者復(fù)發(fā)。因此,亟待更有效的替代療法出現(xiàn)。免疫療法是癌癥治療的新選擇之一。先天和適應(yīng)性免疫應(yīng)答可識(shí)別和清除潛在的癌細(xì)胞[5-6]。免疫療法治療癌癥已有許多成功報(bào)道,特別是在血液系統(tǒng)惡性腫瘤和實(shí)體瘤方面[7-8]。癌癥免疫療法專門(mén)針對(duì)惡性細(xì)胞上的抗原,提醒免疫系統(tǒng)注意外來(lái)物質(zhì)的存在,并通過(guò)免疫反應(yīng)的協(xié)同作用根除癌癥,沒(méi)有癌抗原的正常細(xì)胞不受影響。近二十年后,免疫療法以在小鼠模型中發(fā)現(xiàn)的腫瘤特異性抗原的新概念再次引起了科學(xué)家的注意。1957年,第一個(gè)癌癥疫苗出現(xiàn),114名婦科癌癥患者中有25名(22%)在接受輔助腫瘤裂解物治療后得到緩解[9]。在隨后的幾年中,關(guān)于T細(xì)胞在癌癥免疫中的重要性的新發(fā)現(xiàn)使癌癥免疫療法更加令人興奮[10]。隨后單克隆抗體、免疫檢查點(diǎn)抑制劑、癌癥疫苗、溶瘤病毒療法[11-12]。嵌合抗原受體(chimeric antigen receptor,CAR)T細(xì)胞療法等免疫治療方法層出不窮,并顯現(xiàn)出驚人的治療效果[13]。目前,隨著單一和聯(lián)合免疫治療藥物越來(lái)越多,癌癥免疫治療領(lǐng)域在治療各種類(lèi)型的惡性腫瘤方面不斷顯現(xiàn)出潛力。
癌癥免疫療法根據(jù)免疫機(jī)制進(jìn)行分類(lèi),涉及被動(dòng)、主動(dòng)機(jī)制和/或基于抗原特異性[14]。被動(dòng)免疫療法包括腫瘤靶向單克隆抗體(monoclonal antibodies,mAb)、過(guò)繼細(xì)胞轉(zhuǎn)移(adoptive cell transfer,ACT)和溶瘤病毒療法,而主動(dòng)免疫療法包含免疫調(diào)節(jié)單克隆抗體、抗癌疫苗、免疫刺激細(xì)胞因子、免疫抑制代謝抑制劑、模式識(shí)別受體(pattern recognition receptor,PRR)激動(dòng)劑、免疫原性細(xì)胞死亡誘導(dǎo)劑和其他非特異性免疫治療劑。
1 mAb
mAb是免疫球蛋白分子,由抗原結(jié)合片段組成,這些片段通過(guò)兩條相同的輕鏈和重鏈連接到恒定區(qū)。輕鏈由一個(gè)可變域和一個(gè)恒定域組成,而重鏈由一個(gè)可變域和三個(gè)恒定域組成[15]。可變域內(nèi)還有一個(gè)特殊區(qū)域,帶有3個(gè)環(huán),稱為互補(bǔ)決定區(qū)(complementary determining region,CDR)[15]。美國(guó)食品藥品管理局(United States Food and Drugs Administration,F(xiàn)DA)批準(zhǔn)的嵌合mAb的例子是用于治療非霍奇金淋巴瘤的利妥昔單抗、用于治療結(jié)直腸癌的西妥昔單抗和用于神經(jīng)母細(xì)胞瘤患者的Dinutuximab[16]。
與結(jié)合多個(gè)表位的多克隆抗體不同,mAb具有單價(jià)親和力,這使它們能與抗原表位結(jié)合[17]。mAb可以識(shí)別并特異性結(jié)合存在于癌細(xì)胞表面的腫瘤特異性抗原(tumor-specific antigen,TSA)或腫瘤相關(guān)抗原(tumor-associated antigen,TAA)[18-19]。TSA是一組由于體細(xì)胞突變引起的突變蛋白,相對(duì)限于腫瘤細(xì)胞。它們?cè)谀[瘤細(xì)胞中的特異性使它們成為免疫療法的良好候選者。TSA的典型代表是p53突變蛋白,它存在于許多癌細(xì)胞中,包括結(jié)直腸癌。因此,p53合成長(zhǎng)肽疫苗被設(shè)計(jì)用于治療轉(zhuǎn)移性CRC患者,結(jié)果表明,大約90%的接受該疫苗治療的受訪者產(chǎn)生了p53特異性T細(xì)胞反應(yīng),具有低級(jí)毒性,表明p53確實(shí)是癌癥免疫治療中有吸引力的TSA之一[20]。
相比之下,TAA具有差異表達(dá)的蛋白質(zhì),這些蛋白質(zhì)存在于惡性和非惡性細(xì)胞中。盡管TAA在正常細(xì)胞上表達(dá),但它們?cè)趷盒约?xì)胞上的表達(dá)具有獨(dú)特的特征,導(dǎo)致特定的免疫原性。然而,由于抗原也在正常細(xì)胞上表達(dá),它們可能會(huì)在宿主中誘導(dǎo)自身免疫[21]。mAb與TSA或TAA的結(jié)合會(huì)向免疫細(xì)胞產(chǎn)生分子信號(hào)。這進(jìn)一步啟動(dòng)和激活導(dǎo)致細(xì)胞凋亡和腫瘤殺傷的受體活性[22]。兩種主要類(lèi)型的mAb是腫瘤靶向mAb和免疫調(diào)節(jié)mAb。
1.1 腫瘤靶向mAb 被動(dòng)免疫療法之一是腫瘤靶向單克隆抗體,它是最常用于治療血液系統(tǒng)惡性腫瘤和其他實(shí)體瘤的單克隆抗體。2017年,已有76種mAb被歐洲醫(yī)療機(jī)構(gòu)和FDA批準(zhǔn)用于治療用途。
1.2 免疫調(diào)節(jié)mAb 常見(jiàn)的免疫調(diào)節(jié)mAb之一是免疫檢查點(diǎn)抑制劑(immune checkpoint inhibitors,ICIs)。ICI用于靶向和/或阻斷T細(xì)胞表面或其他免疫細(xì)胞亞群上的免疫檢查點(diǎn)蛋白配體,以恢復(fù)免疫功能。免疫檢查點(diǎn)作為關(guān)鍵調(diào)節(jié)器,當(dāng)有足夠的免疫反應(yīng)時(shí)充當(dāng)免疫制動(dòng)器。然而,在癌癥中,免疫檢查點(diǎn)的高度激活和過(guò)度表達(dá)導(dǎo)致抑制有利于惡性細(xì)胞增殖和擴(kuò)散的抗腫瘤免疫反應(yīng)[23]。
研究最廣泛的免疫檢查點(diǎn)靶標(biāo)是程序性細(xì)胞死亡受體1(programmed cell death receptor-1,PD-1)和細(xì)胞毒性T淋巴細(xì)胞抗原4(cytotoxic T-lymphocyte antigen-4,CTLA4),因?yàn)樗鼈冊(cè)诟鞣N實(shí)體瘤和血液系統(tǒng)惡性腫瘤中的過(guò)度表達(dá)和豐度[24]。盡管如此,目前正在研究其他檢查點(diǎn)在腫瘤免疫調(diào)節(jié)中的潛在作用,如淋巴細(xì)胞激活基因3、T細(xì)胞免疫球蛋白-3以及T細(xì)胞免疫球蛋白和ITIM結(jié)構(gòu)域[25]。
1.3 CTLA-4 CTLA-4是T細(xì)胞表面共抑制受體的免疫檢查點(diǎn)之一。CTLA-4在癌癥免疫治療中的作用是通過(guò)產(chǎn)生特異性靶向CTLA-4糖蛋白的抗體發(fā)現(xiàn)的。在正常情況下,T細(xì)胞抗原受體刺激受CD28共刺激和CTLA-4共抑制信號(hào)的調(diào)節(jié)[26]。當(dāng)受到外來(lái)物質(zhì)攻擊時(shí),CD28共刺激信號(hào)增加以刺激T細(xì)胞抗原受體,從而進(jìn)一步激活下游免疫信號(hào)。當(dāng)異物被清除時(shí),CTLA-4共抑制信號(hào)被激活以停止免疫信號(hào),從而防止過(guò)度的免疫反應(yīng)或自身免疫。與CD28不同,CTLA-4在T細(xì)胞刺激中充當(dāng)負(fù)調(diào)節(jié)反饋。它在啟動(dòng)過(guò)程中關(guān)閉T細(xì)胞活性,從而抑制T細(xì)胞活化并導(dǎo)致抗原耐受。因此,CD28共刺激和CTLA-4共抑制信號(hào)對(duì)于維持T細(xì)胞穩(wěn)態(tài)和自我耐受性至關(guān)重要。然而,在某些情況下,CTLA-4共抑制信號(hào)組成性很高,這可以阻止T細(xì)胞活化[27]。在許多癌癥和抑制性T細(xì)胞病例中都可以看到這種情況,這表明了癌癥患者缺乏免疫反應(yīng)的原因[28]。許多免疫檢查點(diǎn)抑制劑藥物靶向CTLA-4,CTLA-4旨在結(jié)合和阻斷該蛋白質(zhì),從而允許CD28與MHC結(jié)合并刺激T細(xì)胞免疫反應(yīng),激活下游免疫信號(hào)并破壞惡性細(xì)胞[29]。
1.4 程序性死亡受體-1及其配體(PD-1/PD-
L1) PD-1是免疫球蛋白基因超家族新成員,在小鼠胸腺中的表達(dá)受限[30]。在人類(lèi)中,PD-1基因位于2q37.3,編碼PD-1蛋白[31]。這種蛋白質(zhì)是一種Ⅰ型跨膜糖蛋白,大小為50~55 kDa[32]。PD-1在各種免疫細(xì)胞中表達(dá),如CD4和CD8T細(xì)胞、B細(xì)胞、巨噬細(xì)胞、樹(shù)突細(xì)胞和腫瘤浸潤(rùn)淋巴細(xì)胞(TIL)。它起到免疫檢查點(diǎn)的作用,在正常條件下平衡外周耐受性并調(diào)節(jié)T細(xì)胞反應(yīng)[33]。程序性死亡受體1與兩種配體結(jié)合,PD-L1和PD-L2,兩者具有差異表達(dá)。PD-L1/L2通路激活,介導(dǎo)有效的抑制信號(hào),阻礙T效應(yīng)細(xì)胞的增殖和功能,并對(duì)抗病毒和抗腫瘤免疫產(chǎn)生不利影響[34]。
與CTLA-4類(lèi)似,PD-1/PD-L1相互作用在正常條件下的主要作用是作為免疫反應(yīng)的剎車(chē),限制T細(xì)胞效應(yīng)反應(yīng)。這種免疫穩(wěn)態(tài)對(duì)于保護(hù)我們免受自身免疫和嚴(yán)重炎癥的影響很重要。然而,在癌癥中情況并非總是如此。腫瘤中淋巴細(xì)胞上PD-1過(guò)度表達(dá),其與癌細(xì)胞配體PD-L1結(jié)合,抑制T細(xì)胞的活化并引起抗原耐受,從而允許癌細(xì)胞逃避免疫細(xì)胞[35]。針對(duì)PD1/PD-L1通路的治療策略產(chǎn)生了許多檢查點(diǎn)抑制劑,它們的作用是通過(guò)競(jìng)爭(zhēng)性結(jié)合干擾PD-1/PD-L1的結(jié)合,并導(dǎo)致恢復(fù)癌癥患者的效應(yīng)T細(xì)胞活性。迄今為止,有五個(gè)FDA批準(zhǔn)PD-1抑制劑藥物用于各種癌癥[36]。FDA批準(zhǔn)的第一個(gè)PD-1抑制劑藥物是Pembrolizumab。在結(jié)直腸癌患者中,Pembrolizumab對(duì)錯(cuò)配修復(fù)缺陷或微衛(wèi)星不穩(wěn)定性高的結(jié)直腸癌患者顯示出顯著益處。
2 ACT
過(guò)繼細(xì)胞轉(zhuǎn)移是一種基于細(xì)胞的療法,它使用來(lái)自患者或其他供體的細(xì)胞來(lái)改善免疫功能。ACT有3種方法:應(yīng)用腫瘤浸潤(rùn)淋巴細(xì)胞(tumor-infiltrating lymphocytes,TIL)、嵌合抗原受體(chimeric antigen receptor,CAR)和T細(xì)胞受體(T cell receptors,TCR)修飾。
CAR-T細(xì)胞由對(duì)目標(biāo)抗原特異的抗體可變片段組成,這些片段與分離的患者或供體的T細(xì)胞融合。在CAR方法中,從患者(自體)或HLA匹配的供體(同種異體)中分離出T細(xì)胞,通過(guò)離體培養(yǎng)并通過(guò)將嵌合抗原受體(CAR)作為CAR-T插入T細(xì)胞進(jìn)行基因改造細(xì)胞[37]。改良的離體CAR-T細(xì)胞被重新注入患者體內(nèi)并進(jìn)行監(jiān)測(cè)。這些修飾對(duì)于增強(qiáng)T細(xì)胞識(shí)別目標(biāo)抗原的能力和避免主要組織相容性復(fù)合體限制性識(shí)別的能力是必要的。這導(dǎo)致高度靶向的抗原識(shí)別,并允許主動(dòng)運(yùn)輸?shù)侥[瘤部位、體內(nèi)增殖和持久性。CAR-T細(xì)胞的優(yōu)勢(shì)在于它們以不依賴主要組織相容性復(fù)合體的方式靶向細(xì)胞表面TAA。這允許更多的患者在不需要主要組織相容性復(fù)合體特異性治療的情況下接受治療。此外,可以加入共刺激結(jié)構(gòu)域,如CD28或4-1BB,以改善CAR-T細(xì)胞在體內(nèi)的增殖和存活率,從而提高CAR-T細(xì)胞的抗腫瘤活性[38]。此外,T細(xì)胞應(yīng)答產(chǎn)生記憶細(xì)胞以保持多年的免疫治療效果[39]。
在CRC,CAR-T細(xì)胞靶向癌胚抗原和鳥(niǎo)苷酸環(huán)化酶C與腫瘤相關(guān)的糖蛋白[40-41],上皮細(xì)胞黏附分子,NK細(xì)胞表面受體配體,如主要組織相容性復(fù)合體Ⅰ類(lèi)相關(guān)鏈A和B和六種獨(dú)特的長(zhǎng)16結(jié)合蛋白[42]。只有當(dāng)這些靶點(diǎn)在大腸癌組織中高表達(dá)而在其他正常組織中低表達(dá)時(shí),CAR-T細(xì)胞療法才能有效發(fā)揮作用。
然而,CAR-T細(xì)胞在有效靶向?qū)嶓w瘤方面遇到了一些限制。挑戰(zhàn)之一是實(shí)體瘤的有效運(yùn)輸和浸潤(rùn)。實(shí)體瘤的微環(huán)境中含有豐富的纖維基質(zhì)和免疫抑制細(xì)胞,具有保護(hù)腫瘤組織和抵抗免疫細(xì)胞攻擊的作用。這包括某些趨化因子如CXCL1,CXCL12,和CXCL5由腫瘤細(xì)胞分泌的抑制有效遞送CAR-T細(xì)胞[43]。因此,通過(guò)工程化趨化因子受體極大地推動(dòng)了CAR-T細(xì)胞向分泌趨化因子的腫瘤細(xì)胞遷移[44]。然而,擁有CXCL1受體工程化的T細(xì)胞并不是最終的解決方案。即使CAR-T細(xì)胞成功轉(zhuǎn)移并浸潤(rùn)癌細(xì)胞,腫瘤的性質(zhì)和環(huán)境本身也會(huì)進(jìn)一步抑制CAR-T細(xì)胞的作用。腫瘤中存在廣泛的血管滲漏、組織結(jié)構(gòu)的完整性差、缺氧和低pH值。在缺氧條件下,酸性腫瘤微環(huán)境缺乏必要的必需氨基酸。因此,T細(xì)胞很可能會(huì)經(jīng)歷無(wú)能、衰竭、衰老和干性,這使得實(shí)現(xiàn)所需的CAR-T細(xì)胞腫瘤殺傷成為一項(xiàng)挑戰(zhàn)[45]。此外,其他免疫抑制細(xì)胞,如調(diào)節(jié)性T細(xì)胞、髓源性抑制細(xì)胞和腫瘤相關(guān)巨噬細(xì)胞存在于腫瘤微環(huán)境中,進(jìn)一步抑制CAR-T細(xì)胞被激活并產(chǎn)生對(duì)癌癥的反應(yīng)細(xì)胞。此外,腫瘤細(xì)胞或免疫抑制細(xì)胞上的免疫檢查點(diǎn)受體能夠通過(guò)與T細(xì)胞上的負(fù)調(diào)節(jié)配體結(jié)合來(lái)抑制T細(xì)胞。
T細(xì)胞受體(TCR)的修飾是ACT的另一種方法,它被稱為T(mén)CR轉(zhuǎn)導(dǎo)療法。它與CAR-T細(xì)胞非常相似,但它們識(shí)別抗原的機(jī)制卻大不相同。在CAR-T細(xì)胞中,抗體片段被用來(lái)結(jié)合癌細(xì)胞表面的特定抗原。相比之下,TCR由α和β肽鏈組成的異二聚體來(lái)識(shí)別主要組織相容性復(fù)合體分子呈遞的多肽片段[45-46]。這允許識(shí)別細(xì)胞內(nèi)、細(xì)胞表面抗原或突變后腫瘤細(xì)胞產(chǎn)生的新抗原。TCR-T細(xì)胞療法通過(guò)基因工程技術(shù)直接修飾TCR與腫瘤抗原的高親和力結(jié)合。因此,它需要識(shí)別癌細(xì)胞上的特定靶標(biāo),以確保將其他細(xì)胞中的脫靶效應(yīng)和交叉反應(yīng)性降至最低。T細(xì)胞受體療法雖然是一種非常有前景的方法,但也面臨許多挑戰(zhàn),包括良好的靶標(biāo)選擇、特定TCR搜索、最佳TCR親和力篩選、安全性評(píng)估、時(shí)間和成本。此外,由于TCR治療高度依賴主要組織相容性復(fù)合體進(jìn)行肽呈遞,因此可能會(huì)因腫瘤環(huán)境中主要組織相容性復(fù)合體分子的下調(diào)或突變而逃避免疫監(jiān)視,從而導(dǎo)致臨床局限性。此外,外源鏈和內(nèi)源鏈之間可能發(fā)生雜交(錯(cuò)配)并誘導(dǎo)有害識(shí)別自身抗原,導(dǎo)致移植物抗宿主病。簡(jiǎn)而言之,TCR-T細(xì)胞療法已顯示出一定的治療潛力,但仍有許多限制需要仔細(xì)考慮。
3 癌癥疫苗
癌細(xì)胞表達(dá)改變的自身抗原會(huì)引起較弱的反應(yīng)。通常,免疫刺激劑和佐劑與癌癥疫苗一起加入以增強(qiáng)效果。癌癥疫苗包括源自患者的自體免疫細(xì)胞疫苗、表達(dá)腫瘤抗原的重組病毒疫苗、肽疫苗、DNA疫苗和源自已建立的人類(lèi)腫瘤細(xì)胞系的異源細(xì)胞疫苗[47]。預(yù)防性癌癥疫苗旨在減少癌癥發(fā)病率、發(fā)病率和死亡率[48],而治療性疫苗旨在治療當(dāng)前的惡性腫瘤并可能預(yù)防復(fù)發(fā)[49]。迄今為止,還沒(méi)有獲得FDA批準(zhǔn)的CRC癌癥疫苗。它們中的大多數(shù)仍在進(jìn)行臨床試驗(yàn)。
4 細(xì)胞因子
細(xì)胞因子是一組分子量小于30 kDa的小細(xì)胞信號(hào)多肽[50]。它們由各種細(xì)胞分泌,主要是免疫細(xì)胞、內(nèi)皮細(xì)胞、成纖維細(xì)胞和其他基質(zhì)細(xì)胞。有超過(guò)130種具有不同作用的細(xì)胞因子。然而,它們的主要功能是相似的,即刺激和調(diào)節(jié)針對(duì)炎癥和感染的強(qiáng)大免疫反應(yīng)[51]。此外,這些糖蛋白可以作用于產(chǎn)生它們的細(xì)胞、相鄰細(xì)胞或遠(yuǎn)處細(xì)胞。
細(xì)胞因子是免疫治療中潛在的多肽之一,因?yàn)樗鼈兛梢院芎玫卦鰪?qiáng)患者的免疫反應(yīng)。對(duì)細(xì)胞因子抗腫瘤特性的重新關(guān)注導(dǎo)致探索基于細(xì)胞因子的藥物的安全性和有效性的臨床試驗(yàn)數(shù)量呈指數(shù)增長(zhǎng),不僅作為單一藥物,而且還與其他免疫調(diào)節(jié)藥物聯(lián)合使用。這些正在臨床開(kāi)發(fā)的第二代藥物包括具有新作用機(jī)制的已知分子、新靶點(diǎn)和融合蛋白,這些融合蛋白可增加半衰期并將細(xì)胞因子活性靶向腫瘤微環(huán)境或所需的效應(yīng)免疫細(xì)胞。
在這篇綜述中,概述了免疫治療領(lǐng)域的新趨勢(shì),這些趨勢(shì)對(duì)CRC患者產(chǎn)生了治療益處,總結(jié)了每種免疫療法的優(yōu)缺點(diǎn)。免疫療法的未來(lái)是廣闊的,存在多種不同的方法。未來(lái)需要的是克服癌細(xì)胞逃避免疫識(shí)別的有效策略。
參考文獻(xiàn)
[1] Bray E,F(xiàn)erlay J,Soerjomaaram L,et al.Gobal cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer Clin,2018,68(6):394-424.
[2] Siegel R L,Miller K D,Jemal A.Cancer statistics,2018[J].CA:A Cancer Journal for Clinicians,2018,68:7-30.
[3] Marcus A,Gowen B G,Thompson T W,et al.Recognition of tumors by the innate immune system and natural killer cells[J].Adv Immunol,2014,122:91-128.
[4] Yoshino T,Arnold D,Taniguchi H,et al.Pan-Asian adapted ESMO consensus guidelines for the management of patients with metastatic colorectal cancer:A JSMO-ESMO initiative endorsed by CSCO,KACO,MOS,SSO and TOS[J].Ann Oncol,2018,29:44-70.
[5] Gajewski T F,Schreiber H,F(xiàn)u Y X.Innate and adaptive immune cells in the tumor microenvironment[J].Nat Immunol,2013,14:1014-1022.
[6] Vesely M D,Kershaw M H,Schreiber R D,et al.Natural innate and adaptive immunity to cancer[J].Annu Rev Immunol,2011,29:235-271.
[7] Im A,Pavletic S Z.Immunotherapy in hematologic malignancies:past,present,and future[J].J Hematol Oncol,2017,10(1):94.
[8] Nixon N A,Blais N,Ernst S,et al.Current landscape of immunotherapy in the treatment of solid tumours,with future opportunities and challenges[J/OL].Curr Oncol,2018,25(5):e373-e384.
[9] Cheever M A,Higano C S.PROVENGE(Sipuleucel-T) in prostate cancer:the first FDA-approved therapeutic cancer vaccine[J].Clin Cancer Res,2011,17(11):3520-3526.
[10] Andtbacka R H,Kaufman H L,Collichio F,et al.Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma[J].J Clin Oncol,2015,33(25):2780-2788.
[11] Schuster S J,Bishop M R,Tam C S,et al.Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma[J].N Engl J Med,2019,380(1):45-56.
[12] Galluzzi L,Vacchelli E,Bravo-San Pedro J M,et al.
Classification of current anticancer immunotherapies[J].Oncotarget,2014,5:12472-12508.
[13] Brekke O H,Sandlie I.Therapeutic antibodies for human diseases at the dawn of the twenty-first century[J].Nat Rev Drug Discov,2003,2:52-62.
[14] Lu R M,Hwang Y C,Liu I J,et al.Development of therapeutic antibodies for the treatment of diseases[J].J Biomed Sci,2020,27(1):1-30.
[15] Lipman N S,Jackson L R,Trudel L J,et al.Monoclonal versus polyclonal antibodies:distinguishing characteristics,applications,and information resources[J].ILAR J,2005,46(3):258-268.
[16] Bubenik J,Baresova M,Viklicky V,et al.Established cell line of urinary bladder carcinoma(T24) containing tumour-specific antigen[J].Int J Cancer,1973,11(3):765-773.
[17] Hollinshead A,Elias E G,Arlen M,et al.Specific active immunotherapy in patients with adenocarcinoma of the colon utilizing tumor-associated antigens(TAA).A phase I clinical trial[J].Cancer,1985,56(3):480-489.
[18] Speetjens F M,Kuppen P J,Welters M J,et al.Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer[J].Clin Cancer Res,2009,15(3):1086-1095.
[19] Cloosen S,Arnold J,Thio M,et al.Expression of tumor-associated differentiation antigens,MUC1 glycoforms and CEA,in human thymic epithelial cells:implications for self-tolerance and tumor therapy[J].Cancer Res,2007,67(8):3919-3926.
[20] Michaud H A,Eliaou J F,Lafont V,et al.Tumor antigen-targeting monoclonal antibody-based immunotherapy:Orchestrating combined strategies for the development of long-term antitumor immunity[J/OL].Oncoimmunology,2014,3(9):e955684.
[21] Gonzalez H,Hagerling C,Werb Z.Roles of the immune system in cancer:from tumor initiation to metastatic progression[J].Genes Dev,2018,32(19-20):1267-1284.
[22] Seidel J A,Otsuka A,Kabashima K.Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer:Mechanisms of Action,Efficacy,and Limitations[J].Front Oncol,2018,8:86.
[23] Joller N,Kuchroo V K.Tim-3,Lag-3,and TIGIT[J].Curr Top Microbiol Immunol,2017,410:127-156.
[24] Sanchez-Lockhart M,Rojas A V,F(xiàn)ettis M M,et al.T cell receptor signaling can directly enhance the avidity of CD28 ligand binding[J/OL].PLoS One,2014,9(2):e89263.
[25] Intlekofer A M,Thompson C B.At the bench:preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy[J].J Leukoc Biol,2013,94(1):25-39.
[26] Jorgensen N,Persson G,Hviid T V F.The Tolerogenic Function of Regulatory T Cells in Pregnancy and Cancer[J].Front Immunol,2019,10:911.
[27] Lee H T,Lee S H,Heo Y S.Molecular interactions of antibody drugs targeting PD-1,PD-L1,and CTLA-4 in immuno-oncology[J].Molecules,2019,4:1-16
[28] Ishida T,Ishii T,Inagaki A,et al.Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege[J].Cancer Res,2006,66(11):5716-5722.
[29] Shinohara T,Taniwaki M,Ishida Y,et al.Structure and chromosomal localization of the human PD-1 gene(PDCD1)[J].Genomics,1994,23(3):704-706.
[30] Agata Y,Kawasaki A,Nishimura H,et al.Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes[J].Int Immunol,1996,8(5):765-772.
[31] Pardoll D M.The blockade of immune checkpoints in cancer immunotherapy[J].Nat Rev Cancer,2012,12(4):252-264.
[32] Terawaki S,Chikuma S,Shibayama S,et al.IFN-a directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity[J].J Immunol,2011,186(5):2772-2779.
[33] DONG Y,SUN Q,ZHANG X.PD-1 and its ligands are important immune checkpoints in cancer[J].Oncotarget,2017,8(2):2171-2186.
[34] GONG J,Chehrazi-Raffle A,Reddi S,et al.Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy:a comprehensive review of registration trials and future considerations[J].J Immunother Cancer,2018,6(1):8.
[35] WANG X,Riviere I.Clinical manufacturing of CAR T cells:foundation of a promising therapy[J].Mol Ther Oncolytics,2016,3:16015.
[36] TANG X Y,SUN Y,ZHANG A,et al.Third-generation CD28/4-1BB chimeric antigen receptor T cells for chemotherapy relapsed or refractory acute lymphoblastic leukaemia:a non-randomised,open-label phase Ⅰ trial protocol[J/OL].BMJ Open,2016,6(12):e013904.
[37] Ali S A,Shi V,Maric I,et al.T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma[J].Blood,2016,128(13):1688-1700.
[38] Magee M S,Abraham T S,Baybutt T R,et al.Human GUCY2C-Targeted Chimeric Antigen Receptor(CAR)-Expressing T Cells Eliminate Colorectal Cancer Metastases[J].Cancer Immunol Res,2018,6(5):509-516.
[39] Hege K M,Bergsland E K,F(xiàn)isher G A,et al.Safety,tumor trafficking and immunogenicity of chimeric antigen receptor(CAR)-T cells specific for TAG-72 in colorectal cancer[J].
J Immunother Cancer,2017,5:22.
[40] DENG X,GAO F,LI N,et al.Antitumor activity of NKG2D CAR-T cells against human colorectal cancer cells in vitro and in vivo[J].Am J Cancer Res,2019,9(5):945-958.
[41] WANG G,LU X,Dey P,et al.Targeting YAP-Dependent MDSC Infiltration Impairs Tumor Progression[J].Cancer Discov,2016,6(1):80-95.
[42] Kershaw M H,WANG G,Westwood J A,et al.Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2[J].Hum Gene Ther,2002,13(16):1971-1980.
[43] Crespo J,Sun H,Welling T H,et al.T cell anergy,exhaustion,senescence,and stemness in the tumor microenvironment[J].Curr Opin Immunol,2013,25(2):214-221.
[44]李永強(qiáng),姚崧源,李延勝,等.靶向HER2的CAR-T細(xì)胞構(gòu)建與抗腫瘤活性的體外分析[J].生物工程學(xué)報(bào),2018,34(5):731-742.
[45] Rapoport A P,Stadtmauer E A,Binder-Scholl G K,et al.NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma[J].Nat Med,2015,21:914-921.
[46] Pituch K C,Miska J,Krenciute G,et al. Adoptive transfer of IL13Rα2-specific chimeric antigen receptor T cells creates a pro-inflammatory environment in glioblastoma[J].Mol Ther,2018,26:986-995.
[47] Thomas S,Prendergast G C.Cancer vaccines:a brief overview[J].Methods Mol Biol,2016,1403:755-761.
[48] Lollini P L,Cavallo F,Nanni P,et al.The promise of preventive cancer vaccines[J].Vaccines,2015,3:467-489.
[49] Schlom J,Hodge J W,Palena C,et al.Therapeutic cancer vaccines[J].Adv Cancer Res,2014,121:67-124.
[50] Berraondo P,Sanmamed M F,Ochoa M C,et al.Cytokines in clinical cancer immunotherapy[J].Br J Cancer,2019,120:6-15.
[51] CHEN L,DENG H,CUI H,et al.Inflammatory responses and inflammation-associated diseases inorgans[J].Oncotarget,2018,9(6):7204-7218.
(收稿日期:2021-08-10) (本文編輯:程旭然)