国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一道教材習(xí)題演變,讓課堂更自然

2021-03-11 21:47羅秀麗
天府?dāng)?shù)學(xué) 2021年9期
關(guān)鍵詞:實(shí)際問題

羅秀麗

摘 要:七年級(jí)學(xué)生對(duì)于用二元一次方程組和一元一次不等式組解決實(shí)際問題,感到困難,因此,教師要精心選擇和安排習(xí)題,讓題目的過度自然,學(xué)生學(xué)習(xí)時(shí)思維自然順暢,學(xué)生學(xué)習(xí)的積極性得到提高,學(xué)習(xí)能力得到升華。

關(guān)鍵詞:二元一次方程組;一元一次不等式組;實(shí)際問題

一、教材習(xí)題

人教版教材七年級(jí)下冊(cè)第八章復(fù)習(xí)題8第112頁,拓廣探索習(xí)題中的第10題,題目如下:某公司有A型、B型、C型三種型號(hào)的電腦,其中A型每臺(tái)6000元,B型每臺(tái)4000元,C型每臺(tái)2500元。某中學(xué)現(xiàn)有資金100500元,計(jì)劃全部用于從這家電腦公司購進(jìn)36臺(tái)兩種型號(hào)的電腦。請(qǐng)你設(shè)計(jì)幾種不同的購買方案供這個(gè)學(xué)校選擇,并說明理由。

這道題目給了三種型號(hào)電腦,但是題目要求買兩種型號(hào)的,學(xué)生不知道去怎么選擇,我們不妨先把此題目進(jìn)行分解,讓學(xué)生根據(jù)教師設(shè)計(jì)的題目,一步一個(gè)臺(tái)階,學(xué)生的思維會(huì)更加自然順暢,學(xué)生在發(fā)現(xiàn)問題,提出問題,解決問題的過程中更容易獲得成就感。

二、題目分解和解析

熱身一:某公司有A型、C型兩種型號(hào)的電腦,其中A型每臺(tái)6000元,C型每臺(tái)2500元.某中學(xué)現(xiàn)有資金100500元,計(jì)劃全部用于從這家電腦公司購進(jìn)36臺(tái)這兩種型號(hào)的電腦,請(qǐng)問可夠買A型、C型的電腦各多少臺(tái)?

分析:設(shè)A型購買x臺(tái),C型的購買y臺(tái),

答:A型購買3臺(tái),C型的購買33臺(tái)。

這道題目給出了兩種型號(hào),大部分學(xué)生能獨(dú)立解決此問題,因此,他們會(huì)覺得通過建立二元一次方程組模型解決實(shí)際問題可以獨(dú)立完成,學(xué)生獲得成就感,增強(qiáng)了自信心,學(xué)生的積極性最大限度的調(diào)動(dòng)起來。

熱身一變一變:某公司有A型、C型兩種型號(hào)的電腦,其中A型每臺(tái)6000元,C型每臺(tái)2500元。某中學(xué)計(jì)劃從這家電腦公司購進(jìn)36臺(tái)這兩種型號(hào)的電腦,總費(fèi)用不超過100500元,你設(shè)計(jì)幾種不同的方案供這個(gè)學(xué)校選擇,并說明理由。

分析:此題目與上一題目的區(qū)別是把“全部用于”改為“總費(fèi)用不超過”,因此,此題需要建立一元一次不等式模型。

設(shè)A型購買x臺(tái),C型的購買(36-x)臺(tái),

解:設(shè)A型購買x臺(tái),則C型的購買(36-x)臺(tái),

6000x+2500(36-x)≤100500,

解這個(gè)不等式得:x≤3.

因?yàn)閤為正整數(shù),所以有三種方案,即:方案1:A型3臺(tái),C型33臺(tái);方案2:A型2臺(tái),C型34臺(tái);方案3:A型1臺(tái),C型35臺(tái)。

這道題目對(duì)在上一題的基礎(chǔ)上進(jìn)行了簡(jiǎn)單的變式,學(xué)生通過變式可以體會(huì)出題目之間的聯(lián)系和區(qū)別,同時(shí)也可以懂得在什么情況下建立二用一次方程組模型解決實(shí)際問題,在什么情況下建立一元一次不等式模型解決實(shí)際問題。

三、教材習(xí)題解析

某公司有A型、B型、C型三種型號(hào)的電腦,其中A型每臺(tái)6000元,B型每臺(tái)4000元,C型每臺(tái)2500元。某中學(xué)現(xiàn)有資金100500元,計(jì)劃全部用于從這家電腦公司購進(jìn)36臺(tái)兩種型號(hào)的電腦。你設(shè)計(jì)幾種不同的購買方案供這個(gè)學(xué)校選擇,并說明理由。

分析:

問題一:對(duì)比熱身一,此題目給了幾種型號(hào)的電腦?需要幾型號(hào)的電腦?有那幾種選擇?

問題二:每一種選擇都可能嗎?如何判斷?

問題三:對(duì)于可能的方案,通過建立什么模型來解決?

對(duì)于問題一,學(xué)生通過分析和小組討論,可以得出有三種選擇,分別是:方案一:A型和B型;方案二:A型和C型;方案三:B型和C型。對(duì)于問題二,通過小組討論,部分學(xué)生從看資金的總數(shù)100500元,尾數(shù)為500,而A型和B型的單價(jià)都是整千的,只有C型的單價(jià)的尾數(shù)500,因此在選擇的方案中必須有C型次可以,所以只有方案二和放散三有可能。也有部分學(xué)生說可以看平均數(shù)100500÷36≈2792,也即是用100500元買36臺(tái)電腦,平均每臺(tái)的價(jià)格約是2792元,方案一,A型的單價(jià)是6000元,B型的單價(jià)是4000元,買這兩種的平均單價(jià)在4000元到6000元之間,而2792不在4000~6000之間,因此方案一不可能,同理可知,方案二和方案三有可能。

解:若按照方案二購買:設(shè)購進(jìn)A型電腦x臺(tái),C型電腦y臺(tái),

,

解這個(gè)方程組得:.

若按照方案三購買:設(shè)購進(jìn)B型電腦 m臺(tái),C型電腦n臺(tái),

,

解這個(gè)方程組得:.

答:有兩種購買方案,分別是:購進(jìn)A型3臺(tái),B型33臺(tái);購進(jìn)B型7臺(tái),C型29臺(tái)。

此題是實(shí)際問題中的方案問題,對(duì)于此類題目,學(xué)生有困難,如果把此題直接呈現(xiàn)給學(xué)生,很多學(xué)生會(huì)無從下手,導(dǎo)致學(xué)生害怕此類問題,不愿意動(dòng)手去做。有前面的熱身作為鋪墊,學(xué)生會(huì)順著前面題目的思路,引發(fā)更深層次的思考,再結(jié)合小組討論交流,問題就可以用迎刃而解了。

根據(jù)《新課程標(biāo)準(zhǔn)2012》數(shù)學(xué)要重視建立學(xué)生的數(shù)感,數(shù)感對(duì)于學(xué)生學(xué)習(xí)代數(shù)非常重要,在平時(shí)的教學(xué)中要幫助學(xué)生建立數(shù)感。在對(duì)問題二的思考和討論的過程中,學(xué)生通過對(duì)各個(gè)數(shù)據(jù)的分析,在此過程中也建立了學(xué)生的數(shù)感。

四、教材習(xí)題再變式

某公司有A型、B型、C型三種型號(hào)的電腦,其中A型每臺(tái)6000元,B型每臺(tái)4000元,C型每臺(tái)2500元。某中學(xué)從這家電腦公司購進(jìn)36臺(tái)兩種型號(hào)的電腦,總費(fèi)用不超過100500元,請(qǐng)你設(shè)計(jì)幾種不同的購買方案供這個(gè)學(xué)校選擇,并說明理由。

分析:此題目與上一題目的區(qū)別在于,把“資金100500元全部用于”改為“總費(fèi)用不超過100500元”。此題目也是有三種選擇方案,類似于上題目的分析過程,可以知道,只有方案二:A型和C型和方案三:B型和C型有可能。從“總費(fèi)用不超過100500元”可知,通過建立一元一次不等式模型來解決。

解:若按照方案二購買:設(shè)購進(jìn)A型電腦x臺(tái),C型電腦(36-x)臺(tái),

6000x+2500(36-x)≤100500,

解這個(gè)不等式得:x≤3.

因?yàn)閤表示的是臺(tái)數(shù),故x只能是正整數(shù),所以x取3,2,1.

此時(shí),購買A型和C型的方案如下:方案1:A型3臺(tái),C型33臺(tái);方案2:A型2臺(tái),C型34臺(tái);方案3:A型1臺(tái),C型35臺(tái)。

若按照方案三購買:設(shè)購進(jìn)B型電腦y臺(tái),C型電腦(36- y )臺(tái),

4000y+2500(36-y)≤100500,

解這個(gè)不等式得:y≤7.

因?yàn)閥表示的是臺(tái)數(shù),故y只能是正整數(shù),所以y取7,6,,5,4,3,2,1.

此時(shí),購買B 型和C型的方案如下:方案4:B型7臺(tái),C型29臺(tái);方案5:B型6臺(tái),C型30臺(tái);方案6:B型5臺(tái),C型31臺(tái);方案7:B型4臺(tái),C型32臺(tái);方案8:B型3臺(tái),C型33臺(tái);方案9:B型2臺(tái),C型34臺(tái);方案10:B型1臺(tái),C型35臺(tái)。

綜上所述,有以上10種購買方案。

此題目是在上題目的基礎(chǔ)上,難度的梯度又大了一些,學(xué)生有前面的三題作為鋪墊,對(duì)于此題目,可以沿著前面題目的思路去解決,經(jīng)過小組的合作交流、討論,學(xué)生可以合作解決。對(duì)于建立一元一次不等式模型來解決實(shí)際問題,學(xué)生感到更加困難,讓學(xué)生通過題目之間的聯(lián)系和區(qū)別,掌握在何種情況下建立一元一次不等式模型解決問題,通過上述幾道題目的對(duì)比,提高了學(xué)生解決此類問題能力。學(xué)生的分析實(shí)際問題和解決實(shí)際問題的能力再一次得到升華。

五、教材習(xí)題再升華

某公司有A型、B型、C型三種型號(hào)的電腦,其中A型每臺(tái)6000元,B型每臺(tái)4000元,C型每臺(tái)2500元。某中學(xué)現(xiàn)有資金99500元,計(jì)劃全部用于從這家電腦公司購進(jìn)三種型號(hào)的36臺(tái)電腦。請(qǐng)你設(shè)計(jì)幾種不同的購買方案供這個(gè)學(xué)校選擇,并說明理由。

問題一:對(duì)比上一題目,此題需要買幾種型號(hào)的電腦?資金99500元需要用完嗎?

問題二:你找到了幾個(gè)等量關(guān)系?

問題三:通過建立何種模型來解決此題目?問題中隱含的對(duì)數(shù)字要求是什么?

本題需要三種型號(hào)的電腦都要買,并且資金99500元要全部用完,在此我們能找到的等量關(guān)系有兩個(gè),一個(gè)是:三種類型的電腦一共買了36臺(tái),另一個(gè)是:買電腦一共用去資金99500元,既然找到的是等量關(guān)系,此題目要通過建立二元一次方程模型來解決,并且在此題目中,所買電腦的臺(tái)數(shù)都要是正整數(shù)。

解:設(shè)購買A型x臺(tái),B型y臺(tái),則購買C型(36-x-y)臺(tái),

6000x+4000y+2500(36-x-y)=99500,

此二元一次方程可以化簡(jiǎn)為:7x+3y=19,

根據(jù)題目的要求,x,y都必須是正整數(shù),所以方程7x+3y=19的正整數(shù)解為,此時(shí)C型的臺(tái)數(shù)為:36-x-y=36-134=31.

答:只有一種購買方案,即購買A型1臺(tái),B型4臺(tái),則購買C型31臺(tái)。

對(duì)于此題目,大部分學(xué)生能找出等量關(guān)系并列出二元一次方程,學(xué)生的困惑是,有兩個(gè)未知數(shù),但是只列出了一個(gè)方程,沒有辦法接出方程的解。學(xué)生比較難想到此實(shí)際問題的隱含條件,每一種類型電腦的數(shù)量必須是正整數(shù),也即是說,是求上述二元一次方程的正整數(shù)解,通過小組合作討論,再結(jié)合教師適當(dāng)?shù)囊龑?dǎo),學(xué)生可以完美完成此題目。通過此題目分析和解答,學(xué)生學(xué)會(huì)在以后實(shí)際問題中挖掘題目的隱含信息。

對(duì)于方案問題的解決,學(xué)生要根據(jù)題目提供的信息,找到等量關(guān)系或者是不等關(guān)系,建立二元一次方程組或者一元一次不等式的模型,再根據(jù)實(shí)際問題隱含的對(duì)解的特殊要求條件,找到相應(yīng)的方案,還可以再延伸到最優(yōu)的方案。

當(dāng)前的教育倡導(dǎo)素質(zhì)教育,素質(zhì)教育的要求學(xué)生全面發(fā)展,注重?cái)?shù)學(xué)核心素養(yǎng)的培養(yǎng)。在課堂的教學(xué)中,要充分發(fā)揮學(xué)生的主觀能動(dòng)性,讓學(xué)生主動(dòng)地去學(xué)習(xí),在活動(dòng)中養(yǎng)成習(xí)慣,在活動(dòng)中獲得知識(shí)和技能。根據(jù)前蘇聯(lián)教育家維果茨基的最近發(fā)展區(qū)理論,教學(xué)應(yīng)著眼于學(xué)生的最近發(fā)展區(qū),為學(xué)生在原有的基礎(chǔ)上提供帶有梯度的更難的內(nèi)容,把學(xué)生的積極性和主動(dòng)性調(diào)動(dòng)起來,讓學(xué)生的潛力得到發(fā)揮,超越現(xiàn)在的水平而達(dá)到下一階段的水平。因此,教師在課堂的設(shè)計(jì)上,要有臺(tái)階,讓學(xué)生一個(gè)臺(tái)階一個(gè)臺(tái)階的上,難度一點(diǎn)一點(diǎn)增加。通過對(duì)課本習(xí)題的變式,學(xué)生通過熱身訓(xùn)練,結(jié)合題目一系列的變式,在這樣的活動(dòng)中,課堂更自然,學(xué)生的思維更順暢。根據(jù)教師提供的一系列的問題,學(xué)生不僅進(jìn)行的深層次的思考,又可以讓自己的的潛能得到激發(fā),能力得到提升。

教學(xué)中根據(jù)具體的教學(xué)內(nèi)容,設(shè)計(jì)有效的數(shù)學(xué)探究合作活動(dòng),使學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的發(fā)生發(fā)展過程,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),及合作交流的經(jīng)驗(yàn)。在解決建立二元一次方程組或者是建立一元一次不等式解決方案問題中,從基礎(chǔ)出發(fā),步步提升,注重啟發(fā)學(xué)生積極思考,發(fā)揚(yáng)小組合作、交流。教師做好學(xué)生教學(xué)活動(dòng)的組織者、引導(dǎo)者、合作者,激發(fā)學(xué)生的潛能,鼓勵(lì)學(xué)生大膽的思考、大膽創(chuàng)新。學(xué)生合作、交流尋找問題答案,學(xué)生是數(shù)學(xué)學(xué)習(xí)的主體,學(xué)生獲得數(shù)學(xué)知識(shí),是在學(xué)生積極主動(dòng)思考的基礎(chǔ)上,通過自主探索和接受學(xué)習(xí)的方式獲得。學(xué)生只有積極的參與教學(xué)活動(dòng),才能在數(shù)學(xué)思維、發(fā)現(xiàn)問題、提出問題、解決問題方面得到發(fā)展,進(jìn)而提升學(xué)生的邏輯思維、建立模型和數(shù)感的數(shù)學(xué)素養(yǎng)。

參考文獻(xiàn):

[1]章建躍. 數(shù)學(xué)教育隨想錄[M]. 杭州. 浙江教育出版社,2017.

[2]劉華為. 基于深度學(xué)習(xí)的初中數(shù)學(xué)課堂教學(xué)[M]. 上海:華東師范大學(xué)出版社,2020.

[3]曹才翰,章建躍. 中學(xué)數(shù)學(xué)教學(xué)概論[M]. 北京:北京師范大學(xué)出版社,2012.

2883501705240

猜你喜歡
實(shí)際問題
電氣工程及其自動(dòng)化的發(fā)展趨勢(shì)分析
如何讓學(xué)生在實(shí)際問題中靈活地學(xué)習(xí)小學(xué)數(shù)學(xué)
建構(gòu)主義在數(shù)學(xué)教學(xué)中的實(shí)踐
讓數(shù)學(xué)教學(xué)更好地走進(jìn)生活
淺析運(yùn)用函數(shù)思想解決實(shí)際問題
四川卷與全國卷試題對(duì)比之“解三角形”
讓小學(xué)數(shù)學(xué)課堂教學(xué)充滿生活氣息
管理會(huì)計(jì)在我國企業(yè)應(yīng)用存在的問題及對(duì)策
數(shù)學(xué)生活化生活數(shù)學(xué)化
例談列方程解決實(shí)際問題
鲁甸县| 合肥市| 台东县| 塔城市| 鄯善县| 彭山县| 福建省| 保山市| 图片| 江门市| 乌海市| 扶沟县| 凤冈县| 牟定县| 乌鲁木齐市| 驻马店市| 益阳市| 建始县| 绥芬河市| 天台县| 建平县| 张北县| 内丘县| 定边县| 南昌市| 伊金霍洛旗| 松桃| 博白县| 肥城市| 志丹县| 吉林市| 谷城县| 东城区| 松滋市| 绥德县| 布尔津县| 定边县| 隆尧县| 灵寿县| 类乌齐县| 六盘水市|