章滬淦 卜仁祥 于鎵銘
摘要:為解決船舶運(yùn)動(dòng)過程中舵角增益不確定、運(yùn)動(dòng)模型參數(shù)不確定及有外界干擾的路徑跟蹤問題,提出一種利用徑向基函數(shù)(radial basis function,RBF)神經(jīng)網(wǎng)絡(luò)逼近總未知項(xiàng)和舵角增益的滑??刂扑惴?。根據(jù)反推法設(shè)計(jì)參考艏向,采用雙曲正切函數(shù)設(shè)計(jì)滑??刂破?,對(duì)艏向進(jìn)行控制。通過MMG模型進(jìn)行仿真,驗(yàn)證算法的有效性。仿真結(jié)果表明,所設(shè)計(jì)的控制器能夠很好地跟蹤參考路徑,且利用RBF神經(jīng)網(wǎng)絡(luò)能夠較好地逼近總未知項(xiàng)和舵角增益,故基于RBF神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)的滑模控制器對(duì)船舶路徑跟蹤具有很好的魯棒性。
關(guān)鍵詞: 船舶運(yùn)動(dòng)控制; 徑向基函數(shù)(RBF)神經(jīng)網(wǎng)絡(luò); 滑??刂? 反推法; 舵角增益估計(jì)
中圖分類號(hào): U664.82 ? ?文獻(xiàn)標(biāo)志碼: A
Abstract: In order to solve the path following problem of rudder angle gain uncertainty, uncertainty of parameters in the motion model and external disturbance, a sliding mode control algorithm using the radial basis function (RBF) neural network to approximate the total unknown term and the rudder angle gain is proposed. The reference course is designed according to the backstepping algorithm, and the hyperbolic tangent function is used to design the sliding mode controller to control the course. The MMG model simulation is used to verify the effectiveness of the algorithm. Simulation results show that, the designed controller can follow the reference path well, and the total unknown term and the rudder angle gain can be well approximated by RBF neural network, so the sliding mode controller based on RBF neural network is of well robustness for ship path following.
Key words: ship motion control; radial basis function (RBF) neural network; sliding mode control; backstepping algorithm; rudder angle gain estimation
由圖3和4可知:y可以很好地跟蹤上給定的路徑y(tǒng)d;由于時(shí)變風(fēng)、浪、流干擾的影響和舵角δ的不斷變化,艏向角φ也不斷變化;對(duì)f有較好的逼近效果;b ^與b出現(xiàn)了一定的偏差。由于b不是真實(shí)值,且舵角增益在船舶拐彎處大,這符合船舶拐彎時(shí)需要更大的舵力的實(shí)際情況,所以這個(gè)偏差是合理的。
4 結(jié) 論
本文為解決船舶舵角增益不確定、模型參數(shù)不確定以及有外界干擾的路徑跟蹤問題,提出了一種基于徑向基函數(shù)(RBF)神經(jīng)網(wǎng)絡(luò)逼近總未知項(xiàng)和舵角增益的滑??刂扑惴?。根據(jù)反推法設(shè)計(jì)參考艏向,采用雙曲正切函數(shù)設(shè)計(jì)滑??刂破?,對(duì)艏向角進(jìn)行控制。為驗(yàn)證算法的有效性,通過MMG模型進(jìn)行仿真。結(jié)果表明,所設(shè)計(jì)的控制器能夠很好地跟蹤參考路徑,且通過RBF神經(jīng)網(wǎng)絡(luò)能夠較好地逼近總未知項(xiàng)和舵角增益,因此基于RBF神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)的滑??刂破鲗?duì)船舶路徑跟蹤具有很好的魯棒性。本文只考慮了舵角輸入,沒有考慮螺旋槳轉(zhuǎn)速輸入,因此下一步工作是考慮螺旋槳轉(zhuǎn)速和舵角雙輸入系統(tǒng),進(jìn)行船舶路徑跟蹤控制仿真。
參考文獻(xiàn):
[1] 楊瑩, 夏國清, 趙為光. 基于海流觀測(cè)器對(duì)欠驅(qū)動(dòng)水下機(jī)器人進(jìn)行三維路徑跟隨[J]. 控制理論與應(yīng)用, 2013, 30(8): 974-980. DOI: 10.7641/CTA.2013.21222.
[2] 張國慶, 張顯庫, 關(guān)巍. 欠驅(qū)動(dòng)船舶簡(jiǎn)捷魯棒自適應(yīng)路徑跟蹤控制[J]. 哈爾濱工程大學(xué)學(xué)報(bào), 2014, 35(9): 1053-1059. DOI: 10.3969 /j.issn.1006-7043.201303006.
[3] LIU Yong, BU Renxiang, GAO Xiaori. Ship trajectory tracking control system design based on sliding model control algorithm[J]. Polish Maritime Research, 2018, 25(3): 26-34.
[4] 秦梓荷, 林壯, 李平, 等. 基于LOS導(dǎo)航的欠驅(qū)動(dòng)船舶滑??刂芠J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016, 47(10): 3605-3611. DOI: 10.1187/j.issn.1672-7207.2016.10.043.
[5] 陳海力, 任鴻翔, 楊柏丞, 等. 基于迭代滑模的船舶動(dòng)力定位非線性控制[J]. 上海海事大學(xué)學(xué)報(bào), 2020, 41(3): 31-35. DOI: 10.13340/j.jsmu.2020.03.006.
[6] 劉金琨. RBF神經(jīng)網(wǎng)絡(luò)自適應(yīng)控制及MATLAB仿真[M]. 2版. 北京: 清華大學(xué)出版社, 2018.
[7] LI Cunhe, ZHAO Yongsheng, WANG Guofeng, et al. Adaptive RBF neural network control for unmanned surface vessel course tracking[C]//2016 Sixth International Conference on Information Science and Technology. IEEE, 2016: 285-290. DOI: 10.1109/ICIST.2016.7483425.
[8] 沈智鵬, 王茹. 基于DSC和MLP的欠驅(qū)動(dòng)船舶自適應(yīng)滑模軌跡跟蹤控制[J]. 系統(tǒng)工程與電子技術(shù), 2018, 40(3): 643-651. DOI: 10.3969/j.issn.1001-506X.2018.03.24.
[9] 李榮輝, 陳志娟, 李宗宣, 等. 基于歐拉迭代模型預(yù)測(cè)的欠驅(qū)動(dòng)水面船舶路徑跟蹤控制[J]. 廣東海洋大學(xué)學(xué)報(bào), 2020, 40(1): 104-110. DOI: 10.3969/j.issn.1673-9159.2020.01.014.
[10] 楊迪, 郭晨, 朱玉華, 等. 欠驅(qū)動(dòng)船舶神經(jīng)網(wǎng)絡(luò)自適應(yīng)路徑跟蹤控制[J]. 智能系統(tǒng)學(xué)報(bào), 2018, 13(2): 254-260. DOI: 10.11992/tis.201611011.
[11] 李榮輝. 欠驅(qū)動(dòng)水面船舶航跡自抗擾控制研究[D]. 大連: 大連海事大學(xué), 2013.
[12] 沈智鵬, 代昌盛, 張寧. 欠驅(qū)動(dòng)船舶自適應(yīng)迭代滑模軌跡跟蹤控制[J]. 交通運(yùn)輸工程學(xué)報(bào), 2017, 17(6): 125-134.
[13] ZHANG Wei, ZOU Zaojian, DENG Deheng. A study on prediction of ship maneuvering in regular waves[J]. Ocean Engineering, 2017, 137: 367-381. DOI: 10.1016/j.oceaneng.2017.03.046.
[14] 錢小斌, 尹勇, 神和龍, 等. 船舶動(dòng)力定位控制算法測(cè)試仿真系統(tǒng)[J]. 系統(tǒng)仿真學(xué)報(bào), 2016, 28(9): 2028-2034. DOI: 10.16182/j.cnki.joss.2016.09.016.
[15] 章滬淦, 卜仁祥, 李宗宣. 帶狀態(tài)觀測(cè)器的船舶路徑跟蹤預(yù)測(cè)滑??刂芠J]. 計(jì)算機(jī)仿真, 2021, 38(9): 262-266, 271.
(編輯 趙勉)