白一鳴 劉磊 韓新潔
摘要:為提高無人水面艇(unmanned surface vehicle, USV)對(duì)復(fù)雜海況的適應(yīng)性,針對(duì)欠驅(qū)動(dòng)USV的路徑跟蹤控制問題,設(shè)計(jì)基于改進(jìn)的自適應(yīng)積分視線(improved adaptive integral line-of-sight, IAILOS)制導(dǎo)方法和徑向基神經(jīng)網(wǎng)絡(luò)(radial basis function neural network, RBFNN)的積分滑模路徑跟蹤控制器。在IAILOS制導(dǎo)方法中,引入降階的擴(kuò)張狀態(tài)觀測(cè)器估計(jì)未知時(shí)變洋流速度,從而使得該制導(dǎo)方法不僅可以估計(jì)時(shí)變漂角,而且可以補(bǔ)償未知時(shí)變洋流的擾動(dòng)。利用RBFNN的無限逼近特性來估計(jì)USV動(dòng)力學(xué)模型中的不確定項(xiàng)和未知的外部環(huán)境干擾。通過穩(wěn)定性分析和仿真對(duì)比實(shí)驗(yàn),驗(yàn)證了本文所設(shè)計(jì)的控制器的準(zhǔn)確性和魯棒性。
關(guān)鍵詞: 無人水面艇(USV); 路徑跟蹤控制; 改進(jìn)的自適應(yīng)積分視線(IAILOS)制導(dǎo)方法; 徑向基神經(jīng)網(wǎng)絡(luò)(RBFNN); 滑模控制
中圖分類號(hào): U664.82 ? ?文獻(xiàn)標(biāo)志碼: A
Abstract: To improve the adaptability of unmanned surface vehicles (USVs) to complex sea conditions, aiming at the path following control of underactuated USVs, an integral sliding-mode path following controller is designed based on the improved adaptive integral line-of-sight (IAILOS) guidance law and the radial basis neural network (RBFNN). The reduced-order extended state observer is introduced to estimate the unknown time-varying ocean current velocity in the IAILOS guidance law, so that the guidance law can not only estimate the time-varying drift angle, but also compensate the disturbances of unknown time-varying ocean currents. The infinite approximation property of RBFNN is used to estimate the uncertain terms in the USV dynamic model and the unknown external environment disturbances. The accuracy and robustness of the controller are verified through the stability analysis and simulation comparison experiments.
Key words: unmanned surface vehicle (USV); path following control; improved adaptive integral line-of-sight (IAILOS) guidance law; radial basis function neural network (RBFNN); sliding-mode control
0 引 言
無人水面艇(unmanned surface vehicle, USV)的路徑跟蹤控制目標(biāo)是控制USV跟蹤幾何平面內(nèi)的一條理想的參數(shù)化路徑,并且沒有時(shí)間限制[1]。針對(duì)USV的路徑跟蹤控制問題,國(guó)內(nèi)外學(xué)者提出的主要控制方法有:比例積分微分(proportional-integral-derivative, PID)控制、反饋線性化、反步法、預(yù)測(cè)控制、滑??刂频萚2-4]。在USV的控制系統(tǒng)中,通過將控制算法與制導(dǎo)方法相結(jié)合,可以大大提高USV操縱的安全性[1]。視線(line-of-sight, LOS)制導(dǎo)方法由于具有簡(jiǎn)單高效、易于實(shí)現(xiàn)等優(yōu)點(diǎn),被廣泛應(yīng)用到USV的路徑跟蹤控制器設(shè)計(jì)中。
LOS制導(dǎo)方法通過模仿熟練的操舵人員的操縱行為,利用超前視距跟蹤理想路徑上的前方一點(diǎn),以實(shí)現(xiàn)路徑跟蹤的目的[5]。文獻(xiàn)[6-7]提出比例LOS制導(dǎo)方法,并且證明了該制導(dǎo)方法的一致半全局指數(shù)穩(wěn)定性。然而,USV由于體積小,在實(shí)際的航行過程中極易受到外界環(huán)境的干擾,進(jìn)而產(chǎn)生漂移,因此比例LOS制導(dǎo)方法具有一定的局限性。漂移產(chǎn)生的角度(即漂角), 可以通過傳感器進(jìn)行測(cè)量,但是當(dāng)傳感器存在噪聲時(shí),難以測(cè)得精確的漂角。針對(duì)未知漂角的問題,文獻(xiàn)[8]通過引入積分方法來消除環(huán)境干擾所導(dǎo)致的漂移,文獻(xiàn)[9-11]通過設(shè)計(jì)基于預(yù)估器的LOS制導(dǎo)方法估計(jì)常值漂角,文獻(xiàn)[12-13]則通過在LOS制導(dǎo)方法中引入有限時(shí)間觀測(cè)器來估計(jì)時(shí)變漂角。然而,文獻(xiàn)[8-13]均假設(shè)環(huán)境干擾為USV動(dòng)力學(xué)層面的干擾力或力矩,未考慮洋流在運(yùn)動(dòng)學(xué)層面上對(duì)USV位置和速度的影響。為此,文獻(xiàn)[14]設(shè)計(jì)了干擾觀測(cè)器來估計(jì)和補(bǔ)償未知洋流速度,文獻(xiàn)[15]通過自適應(yīng)的方式抵消洋流的影響,但這兩篇文獻(xiàn)均假設(shè)USV的漂角已知。綜上所述,基于LOS制導(dǎo)方法的路徑跟蹤策略需要解決3個(gè)方面的問題:一是未知的時(shí)變漂角;二是未知的時(shí)變洋流速度;三是未知的干擾力和力矩。
針對(duì)漂角和洋流速度均未知的情況下USV的路徑跟蹤問題,本文首先借鑒文獻(xiàn)[16]對(duì)未知漂角的自適應(yīng)律,改進(jìn)文獻(xiàn)[15]提出的LOS制導(dǎo)方法,并且引入降階擴(kuò)張狀態(tài)觀測(cè)器(extended state observer, ESO)來估計(jì)未知的時(shí)變洋流速度,從而提出一種改進(jìn)的自適應(yīng)積分視線(improved adaptive integral line-of-sight, IAILOS)制導(dǎo)方法。IAILOS制導(dǎo)方法不僅能通過積分項(xiàng)來估計(jì)時(shí)變漂角,而且能精確地估計(jì)時(shí)變洋流速度,從而抵消未知時(shí)變洋流在運(yùn)動(dòng)學(xué)層面對(duì)USV的影響。相較于文獻(xiàn)[5]和文獻(xiàn)[16]提出的自適應(yīng)律,降階ESO對(duì)未知時(shí)變洋流速度的估計(jì)更加精確。然后,應(yīng)用滑??刂评碚撛O(shè)計(jì)速度和姿態(tài)控制器,并且引入徑向基神經(jīng)網(wǎng)絡(luò)(radial basis function neural network, RBFNN)算法,利用其良好的逼近特性來估計(jì)未知的干擾力和力矩以及USV動(dòng)力學(xué)模型中的不確定項(xiàng)。最后,通過穩(wěn)定性證明和仿真對(duì)比實(shí)驗(yàn)驗(yàn)證該控制算法的可靠性和魯棒性。
1 控制問題描述
1.1 USV數(shù)學(xué)模型
由于本文考慮了無旋且時(shí)變洋流速度在運(yùn)動(dòng)學(xué)層面對(duì)USV路徑跟蹤的影響,所以洋流速度的估計(jì)結(jié)果對(duì)該LOS制導(dǎo)方法的有效性也是至關(guān)重要的。由圖6可知,降階ESO可以準(zhǔn)確地估計(jì)時(shí)變洋流速度,這也證明本文通過降階ESO對(duì)AILOS的改進(jìn)是有效的。圖7、8、9分別展示了USV的相對(duì)前進(jìn)速度、艏向角、艏搖角速度的跟蹤曲線,圖中的urd、Ψd和ωd分別表示其理想值。從圖中可以看出,實(shí)際值可以在合理的時(shí)間內(nèi)跟蹤上理想值,這充分證明了本文所設(shè)計(jì)的積分滑??刂破魇怯行У?。由于外部環(huán)境的干擾不僅會(huì)在運(yùn)動(dòng)學(xué)層面使USV產(chǎn)生漂移作用,還會(huì)在動(dòng)力學(xué)模型中產(chǎn)生未知的干擾力和力矩,而且USV的模型參數(shù)也很難確定,所以本文將未知時(shí)變干擾和模型不確定項(xiàng)合并成一項(xiàng)(fu,fω),通過引入RBFNN對(duì)其進(jìn)行估計(jì)。圖10展示了fu、fω及其估計(jì)值f ^u、f ^ω的曲線,結(jié)果顯示RBFNN可以有效地逼近模型中的不確定項(xiàng)和外部環(huán)境干擾,從而證明RBFNN的引入提高了該控制器的魯棒性。
由圖11可知,控制器輸出的推力和轉(zhuǎn)艏力矩最終的穩(wěn)定范圍也符合實(shí)際情況。綜上所述,本文提出的基于IAILOS制導(dǎo)方法和RBFNN的積分滑??刂破魇怯行У摹?/p>
6 結(jié) 論
本文針對(duì)復(fù)雜海洋環(huán)境下欠驅(qū)動(dòng)水面無人艇(USV)的路徑跟蹤問題,設(shè)計(jì)了基于改進(jìn)自適應(yīng)積分視線(IAILOS)制導(dǎo)方法的積分滑模路徑跟蹤控制器。該視線(LOS)制導(dǎo)方法引入了文獻(xiàn)[16]的漂角自適應(yīng)律和降階擴(kuò)張狀態(tài)觀測(cè)器,對(duì)文獻(xiàn)[16]提出的制導(dǎo)方法進(jìn)行了改進(jìn),不僅能夠估計(jì)未知時(shí)變洋流速度而且消除了時(shí)變漂角所產(chǎn)生的影響。此外,在控制器設(shè)計(jì)部分,引入了徑向基神經(jīng)網(wǎng)絡(luò),利用其逼近特性對(duì)模型不確定項(xiàng)和未知環(huán)境干擾進(jìn)行估計(jì),并與積分滑??刂扑惴ㄏ嘟Y(jié)合,設(shè)計(jì)了路徑跟蹤控制律。通過穩(wěn)定性分析,證明路徑跟蹤誤差是最終一致有界的,驗(yàn)證了該算法的理論可行性。最后的仿真對(duì)比實(shí)驗(yàn)也證明了本文所提出的控制方法的準(zhǔn)確性和魯棒性。
參考文獻(xiàn):
[1] 劉陸. 欠驅(qū)動(dòng)無人船的路徑跟蹤與協(xié)同控制[D]. 大連: 大連海事大學(xué), 2018.
[2] ASHRAFIUON H, MUSKE K R, MCNINCH L C. Review of nonlinear tracking and setpoint control approaches for autonomous underactuated marine vehicles[C]//Proceedings of the 2010 American Control Conference. IEEE, 2010: 5203-5211. DOI: 10.1109/ACC.2010.5530450.
[3] LIU Zhixiang, ZHANG Youmin, YU Xiang, et al. Unmanned surface vehicles: an overview of developments and challenges[J]. Annual Reviews in Control, 2016, 41: 71-93. DOI: 10.1016/j.arcontrol.2016.04.018.
[4] 廖煜雷, 張銘鈞, 董早鵬, 等. 無人艇運(yùn)動(dòng)控制方法的回顧與展望[J]. 中國(guó)造船, 2014, 55(4): 206-216. DOI: 10.3969/j.issn.1000-4882.2014.04.025.
[5] NIE Jun, LIN Xiaogong. Improved adaptive integral line-of-sight guidance law and adaptive fuzzy path following control for underactuated MSV[J]. ISA Transactions, 2019, 94: 151-163. DOI: 10.1016/j.isatra.2019.04.010.
[6] FOSSEN T I, BREIVIK M, SKJETNE R. Line-of-sight path following of underactuated marine craft[J]. IFAC Proceedings Volumes, 2003, 36(21): 211-216. DOI: 10.1016/S1474-6670(17)37809-6.
[7] FOSSEN T I, PETTERSEN K Y. On uniform semiglobal exponential stability (USGES) of proportional line-of-sight guidance laws[J]. Automatica, 2014, 50(11): 2912-2917. DOI: 10.1016/j.automatica.2014.10.018.
[8] BORHAUG E, PAVLOV A, PETTERSEN K Y. Integral LOS control for path following of underactuated marine surface vessels in the presence of constant ocean currents[C]//2008 47th IEEE Conference on Decision and Control. IEEE, 2008: 4984-4991. DOI: 10.1109/CDC.2008.4739352.
[9] YU Yalei, GUO Chen, YU Haomiao. Finite-time PLOS-based integral sliding-mode adaptive neural path following for unmanned surface vessels with unknown dynamics and disturbances[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(4): 1500-1511. DOI: 10.1109/TASE.2019.2925657.
[10] YU Yalei, GUO Chen, YU Haomiao. Finite-time predictor line-of-sight-based adaptive neural network path following for unmanned surface vessels with unknown dynamics and input saturation[J]. International Journal of Advanced Robotic Systems, 2018, 15(6): 1-14. DOI: 10.1177/1729881418814699.
[11] LIU Lu, WANG Dan, PENG Zhouhua, et al. Predictor-based LOS guidance law for path following of underactuated marine surface vehicles with sideslip compensation[J]. Ocean Engineering, 2016, 124: 340-348. DOI: 10.1016/j.oceaneng.2016.07.057.
[12] WANG Ning, SUN Zhuo, YIN Jianchuan, et al. Finite-time observer based guidance and control of underactuated surface vehicles with unknown sideslip angles and disturbances[J]. IEEE Access, 2018, 99: 1. DOI: 10.1109/ACCESS.2018.2797084.
[13] WANG Ning, SUN Zhuo, ZHENG Zhongjiu, et al. Finite-time sideslip observer-based adaptive fuzzy path-following control of underactuated marine vehicles with time-varying large sideslip[J]. International Journal of Fuzzy Systems, 2017, 20: 1767-1778. DOI: 10.1007/s40815-017-0392-0.
[14] FOSSEN T I, LEKKAS A M. Direct and indirect adaptive integral line-of-sight path-following controllers for marine craft exposed to ocean currents[J]. International Journal of Adaptive Control and Signal Processing, 2017, 31(4): 445-463. DOI: 10.1002/acs.2550.
[15] ZHENG Zewei, SUN Liang. Path following control for marine surface vessel with uncertainties and input saturation[J]. Neurocomputing, 2016, 177: 158-167. DOI: 10.1016/j.neucom.2015.11.017.
[16] FOSSEN T I, PETTERSEN K Y, GALEAZZI R. Line-of-sight path following for Dubins paths with adaptive sideslip compensation of drift forces[J]. IEEE Transactions on Control Systems Technology, 2015, 23(2): 820-827. DOI: 10.1109/TCST.2014.2338354.
[17] CAHARIJA W, CANDELORO M, PETTERSEN K Y, et al. Relative velocity control and integral LOS for path following of underactuated surface vessels[J]. IFAC Proceedings Volumes, 2012, 45(27): 380-385. DOI: 10.3182/20120919-3-IT-2046.00065.
[18] XUE Wenchao, HUANG Yi. On performance analysis of ADRC for a class of MIMO lower-triangular nonlinear uncertain systems[J]. ISA Transactions, 2014, 53(4): 955-962. DOI: 10.1016/j.isatra.2014.02.002.
[19] SHAO Xingling, WANG Honglun. Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO[J]. ISA Transactions, 2015, 57: 10-22. DOI: 10.1016/j.isatra.2015.02.013.
[20] LIU Lu, WANG Dan, PENG Zhouhua. ESO-based line-of-sight guidance law for path following of underactuated marine surface vehicles with exact sideslip compensation[J]. IEEE Journal of Oceanic Engineering, 2017, 42(2): 477-487. DOI: 10.1109/JOE.2016.2569218.
[21] LIU Lu, WANG Dan, PENG Zhouhua. Path following of marine surface vehicles with dynamical uncertainty and time-varying ocean disturbances[J]. Neurocomputing, 2016, 173: 799-808. DOI: 10.1016/j.neucom.2015.08.033.
(編輯 賈裙平)