国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

“學方法”重于“教結果”

2021-01-04 20:27楊敏
安徽教育科研 2021年32期
關鍵詞:線段解決問題方法

楊敏

摘要:在小學數學解決問題的教學中,向學生滲透數學思考方法至關重要,掌握了方法,才能將數學知識靈活運用。本文主要討論教學中幫助學生獲得解決問題捷徑的幾種方法。

關鍵詞:數轉化為形列舉尋找關鍵建立聯系

數學源于生活,服務于生活。在小學數學解決問題的教學中,向學生滲透數學思考方法至關重要,掌握了方法,才能將數學知識靈活運用于生活之中。蘇教版小學數學課本非常重視對學生解決問題的方法的指導,課本中安排專門的單元學習“解決問題的策略”。下面談談本人在教學中總結出的幫助學生獲得解決問題捷徑的幾種方法。

一、將數轉化為形,在直觀認識中尋求解決問題的方法

數不離形,數形本一家。在解決問題的教學中,將數形相互轉化,將數學語言和圖形相互結合,化難為易,化繁為簡,讓學生在生動有趣的直觀演示中清楚地獲得解決問題的方法。比較常見的方法有畫線段圖和畫形象示意圖。

(一)畫線段圖——最實用的方法

在數學教學中,最主要的解決問題的方法是畫線段圖,解決常見的行程類問題時就經常用到這個方法。畫線段圖的方法運用非常廣泛,也特別實用。

如:爸爸的年齡是兒子的5倍,爸爸比兒子大28歲,爸爸和兒子各多少歲?很多學生一看到這道題就犯難:這可怎么解決呀?這時,提醒學生畫線段圖最有效。師:爸爸和兒子的年齡誰的可以看成1份,誰的可以看成5份,你能畫線段表示嗎?當學生畫好后,再引導他們發(fā)現表示爸爸年齡的線段比表示兒子年齡的線段多4份,這4份就是爸爸比兒子大的28歲,可以算出一份是28÷4=7(歲),這樣就能算出爸爸和兒子的年齡。

小小的線段圖能將在學生看來很難的問題轉化為簡單的可解決的問題。在教學生用畫線段圖的方法解決問題時應讓學生體會到線段圖把復雜問題簡單化的妙用,讓學生喜歡和欣賞這種方法,從而把畫線段圖這種方法自覺應用到自己的學習中去。

(二)畫形象示意圖——最有趣的方法

小學生的形象思維優(yōu)于抽象思維。在解決問題的教學中,我們借助有趣的圖示不僅可以幫助學生將抽象思維轉化為形象思維,更能激發(fā)學生的學習興趣,提高課堂教學效率。

蘇教版六年級課本上有“假設的策略”一節(jié),主要講雞兔同籠問題,對于初次接觸“假設”方法的學生們來說,這一內容有點抽象。如果這時借助形象有趣的示意圖來說明如何“假設”,則事半功倍。如:雞和兔子同在一個籠子里,共有6個頭,18只腳,雞和兔各有多少只?

教學時,我讓學生和我一起畫有趣的示意圖。雞和兔共有6個頭,說明總的只數是6,可以畫6個圓圈表示6個動物:

假設這6個動物全部都是雞,現在每只雞有兩只腳,我們把它畫在圖上:

師:現在數一數,共畫了幾只腳?(12只)比實際的腳只數少多少?(6只)一只兔有4只腳,現在我們把少畫的6只腳添上去,一只兔添幾只?(2只)請大家邊畫邊數,把少了的6只腳補上去。

大家看,有幾只兔,幾只雞?

簡單有趣的圖示,寥寥幾筆,將看似難以解決的問題變成了有意思的簡單題目。不光是“假設”問題,對于數學中的許多問題都可以教學生采用這個方法幫助分析題意,加以解決。

二、運用表格列舉法,將紛繁的結果系統(tǒng)化

數學中有很多和生活比較貼近的問題,比如怎樣買劃算、怎樣坐車比較合理等,它們都是在多種可能中篩選出最佳方案。小學生考慮問題不夠全面,很難想出所有的可能加以優(yōu)選。這種情況下,教給他們用表格列舉的方法加以整理是合理有效的,既能培養(yǎng)學生縝密的思維,又能鍛煉學生解決問題的實際能力。

如:老師給班長100元錢,讓她買8個計算器獎勵同學。商店里的計算器有10元和15元兩種價格,班長該怎樣購買正好把100元花完呢?

顯然,這里有許多種購買的可能性,那么哪種購買方法既能買到8個計算器,又正好把100元花完呢?這時,教學生運用表格的方法進行優(yōu)選是對學生最大的幫助。

10元0個1個2個3個4個5個6個7個8個15元8個7個6個5個4個3個2個1個0個價格120元115元110元105元100元95元90元85元80元借助表格,列舉出了所有可能的購買方案,一眼就能看出只有10元和15元各買4個這種方法正好把100元花完。

三、教會學生抓住解決問題的關鍵——善于尋找“突破口”

數學中的問題有很多都是“紙老虎”,看起來非常難,但只要找到“突破口”,便能“擊潰”。我們要教會學生一條路走不通,就換條路試試,盡快找到解決問題的“金鑰匙”。

例如六年級有一類分數問題,只要能找出其中不變的那個量,順藤摸瓜,一切便可迎刃而解。下面便是一個例子。

六年級三班有學生60人,其中男生占3/5,這學期轉走了幾名男生后,男生占班級人數的4/7,問:轉走了幾名男生?

男生人數在變,班級總人數也在變,顯然,如果只關注這兩個變化的量,這道題是沒有辦法解決的。所以必須引導學生找出題目中不變的量:男生人數在變,班級總人數也在變,但女生人數是不變的。我們可以抓住這個“不變”以應“萬變”。女生人數:60×(1-3/5)=24(人)。這24名女生在班級轉走幾名男生后,占總人數的1-4/7=3/7。現在班級總人數的3/7是24人,因此,現在總人數為24÷3/7=56人。原有人數60人,現只有56人,因而轉走了4名男生?!按蛏叽蚱叽纭?,教會學生巧抓關鍵,還有什么問題不能解決呢?

四、引導學生自覺地將“解決問題”與生活實際聯系

生活離不開數學,數學也不能脫離生活。小學階段,有很多問題是與生活密切聯系的,如三年級有余數除法問題中的“進一”和“去尾”。教學這類問題時,有必要也必須引導學生回想生活中乘船、坐車時,多余的幾個人也要準備一艘船、一輛車,所以選用“進一法”;而做衣服、扎花束時,多余的材料只能浪費,所以選用“去尾法”。教會學生聯系生活經驗解決數學中的問題,能將抽象的難以表述清楚的問題變得具體化,又能讓學生體會到數學來源于生活,應用于生活。

六年級有這樣一道問題:一個長方體木箱,長9分米,寬6分米,高5分米,如果在里面裝上棱長為2分米的正方體,最多可以裝多少個?如果不聯系生活實際,很容易出現用大體積除以小體積的錯誤。引導學生聯系生活實際想一想,學生很快就能得出,木塊不能切,在木箱長和高的方向上不能正好裝滿,還有縫隙。于是得出在長的方向上,可以排9÷2=4個,多余的1分米長度不能容納棱長為2分米的正方體,在這個方向上,只能裝4個;同理,寬的方向可以裝3個,高的方向只能裝2個。因此,最多能裝下4×3×2=24個這樣的正方體。

除了上述這些方法,在數學解決問題的教學中,思考方法還有很多,在這里不再贅述。總之,教學教學,主要教的還是方法,只要學生學會靈活運用恰當的方法,輔助思考、深入分析、解決問題,并使其成為自覺的行為,就是我們教學上最大的成功。

責任編輯:黃大燦

猜你喜歡
線段解決問題方法
淺談列方程解決問題
“解決問題的策略:一一列舉”教學實錄與反思
一次函數助解線段差最大絕對值
兩只想打架的熊
線段圖真好用
用對方法才能瘦
如何確定線段的條數
四大方法 教你不再“坐以待病”!
賺錢方法
觀察