周敏姑,邵國(guó)敏,張立元,姚小敏,韓文霆
無(wú)人機(jī)多光譜遙感反演冬小麥SPAD值
周敏姑1,邵國(guó)敏2,張立元2,姚小敏2,韓文霆3※
(1. 西北農(nóng)林科技大學(xué)旱區(qū)節(jié)水農(nóng)業(yè)研究院,楊凌 712100;2. 西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院,楊凌 712100;3. 西北農(nóng)林科技大學(xué)水土保持研究所,楊凌 712100)
為研究無(wú)人機(jī)多光譜遙感5個(gè)波段光譜反射率反演冬小麥SPAD(Soil and Plant Analyzer Development)值的可行性,該研究采用六旋翼無(wú)人機(jī)搭載五波段多光譜相機(jī),采集冬小麥拔節(jié)期、孕穗期、抽穗期、開(kāi)花期的冠層光譜影像并提取反射率特征參數(shù),建立SPAD值的反演模型。結(jié)果表明,當(dāng)波長(zhǎng)范圍在藍(lán)光、綠光和紅光波段,冬小麥拔節(jié)期、孕穗期和開(kāi)花期的無(wú)人機(jī)多光譜影像反射率參數(shù)與SPAD值呈負(fù)相關(guān)關(guān)系,而在抽穗期,二者呈正相關(guān);當(dāng)波長(zhǎng)范圍為紅邊及近紅外波段,在整個(gè)生長(zhǎng)期,二者均呈現(xiàn)正相關(guān)關(guān)系。該研究構(gòu)建冬小麥SPAD值反演模型采用了主成分回歸、逐步回歸和嶺回歸法,經(jīng)對(duì)比發(fā)現(xiàn)基于逐步回歸法構(gòu)建的模型效果最優(yōu),該模型的校正決定系數(shù)為0.77,主成分回歸法次之,嶺回歸法較差。此外,冬小麥抽穗期多光譜反射率反演SPAD值效果最顯著,主成分回歸、嶺回歸和逐步回歸3種回歸模型的校正決定系數(shù)分別為0.72、0.74和0.77。該研究可為無(wú)人機(jī)多光譜遙感監(jiān)測(cè)作物長(zhǎng)勢(shì)、實(shí)現(xiàn)精準(zhǔn)農(nóng)業(yè)生產(chǎn)管理提供技術(shù)依據(jù)。
無(wú)人機(jī);遙感;冬小麥;多光譜影像;回歸模型;SPAD
葉綠素含量SPAD(Soil and Plant Analyzer Development)值是農(nóng)作物生長(zhǎng)過(guò)程中重要的生化參數(shù)之一[1],對(duì)其含量的監(jiān)測(cè)有助于衡量作物光合能力和生理?yè)p傷狀況[2],從而有效評(píng)估作物的生長(zhǎng)環(huán)境及水肥管理情況,快速、準(zhǔn)確地獲取農(nóng)作物SPAD值是智慧農(nóng)業(yè)發(fā)展的必要條件。
目前,農(nóng)作物SPAD值的監(jiān)測(cè)方法主要包括人工測(cè)量法和遙感監(jiān)測(cè)法[3]。人工測(cè)量法以手持式葉綠素儀應(yīng)用最多,但測(cè)量時(shí)和葉片接觸面積僅有0.000 006 m2,必須進(jìn)行大量反復(fù)測(cè)定才能降低測(cè)定值的變異,因此存在測(cè)量面積小,工作量大,數(shù)據(jù)代表性差等缺點(diǎn)[4],遠(yuǎn)不能滿(mǎn)足作物的大面積精準(zhǔn)化管理需求,所以利用遙感技術(shù)對(duì)作物進(jìn)行大面積、快速、動(dòng)態(tài)的無(wú)損監(jiān)測(cè)被廣泛研究,但遙感監(jiān)測(cè)法由于其非接觸的,遠(yuǎn)距離的探測(cè)特點(diǎn),在精度方面不及人工測(cè)量法,因其能快速、動(dòng)態(tài)、及時(shí)地獲取田間數(shù)據(jù),被研究人員應(yīng)用于小麥的SPAD值監(jiān)測(cè)[5]。目前最常用的方法為衛(wèi)星遙感和地面遙感,王麗愛(ài)等[6]利用環(huán)境減災(zāi)衛(wèi)星(HJ-1)遙感技術(shù)分析了2010—2013年江蘇地區(qū)稻茬小麥不同生育期葉片SPAD值與8種植被指數(shù)的相關(guān)關(guān)系,建立的回歸方程能夠較好地估算SPAD值;李粉玲等[7]模擬高分一號(hào)(GF-1)衛(wèi)星光譜反射率,研究了冬小麥SPAD值與18種寬波段光譜指數(shù)的關(guān)系,證明了基于綠色歸一化植被指數(shù)、綠色比值植被指數(shù)和三角綠度指數(shù)等建立的冬小麥SPAD值估算模型效果較優(yōu);張銳等[8]利用便攜式地物光譜儀研究了湖南地區(qū)油菜的冠層高光譜反射率和SPAD值的關(guān)系,建立SPAD值預(yù)測(cè)模型,得出基于支持向量機(jī)的預(yù)測(cè)模型反演精度最高(決定系數(shù)為0.913)的結(jié)論;殷紫等[9]基于地面高光譜測(cè)量技術(shù)在西北地區(qū)利用光譜參數(shù)紅邊面積與黃邊面積的比值與油菜葉片SPAD值構(gòu)建了能較好估算油菜SPAD值的反演模型(決定系數(shù)為0.79)。孫紅等[5]利用便攜式地物光譜儀研究了北京市昌平區(qū)冬小麥的5個(gè)生長(zhǎng)期冠層光譜反射率和葉綠素含量的變化特征,并對(duì)二者的相關(guān)性進(jìn)行了研究,分別建立了拔節(jié)期和孕穗期葉綠素含量線(xiàn)性監(jiān)測(cè)模型。上述研究方法中,衛(wèi)星遙感雖然能夠?qū)崿F(xiàn)對(duì)農(nóng)作物SPAD值的大面積快速無(wú)損監(jiān)測(cè),但存在成本高、周期長(zhǎng)、分辨率較低等缺點(diǎn)[10];而地面光譜儀掃描范圍小,不易操作,且結(jié)果易受人為因素和周?chē)h(huán)境影響[11-12]。無(wú)人機(jī)遙感平臺(tái)既克服了地物光譜儀的工作量大、數(shù)據(jù)代表性差的缺點(diǎn),又具有成本低、時(shí)效性強(qiáng)、分辨率高的優(yōu)點(diǎn),彌補(bǔ)了衛(wèi)星遙感和地面遙感的不足[13-14],目前已有研究將無(wú)人機(jī)遙感技術(shù)應(yīng)用于作物的生長(zhǎng)參數(shù)監(jiān)測(cè),周敏姑等[15]基于無(wú)人機(jī)多光譜遙感技術(shù)構(gòu)建7種植被指數(shù),對(duì)楊凌地區(qū)冬小麥拔節(jié)后至孕穗前的生長(zhǎng)階段葉片的葉綠素含量進(jìn)行反演,證明調(diào)整土壤亮度植被指數(shù)構(gòu)建的一元二次線(xiàn)性回歸模型反演精度最高(決定系數(shù)為0.866);魏青等[16]基于無(wú)人機(jī)多光譜遙感技術(shù)對(duì)北京市大興區(qū)的冬小麥在不同施氮水平下冠層葉綠素含量進(jìn)行監(jiān)測(cè),選取拔節(jié)期、抽穗期和灌漿期3個(gè)生育期的16種植被指數(shù),采用2種回歸分析方法建立了不同施氮水平下冬小麥冠層葉綠素含量估算模型。以上研究均是利用無(wú)人機(jī)多光譜影像構(gòu)建常用植被指數(shù)或利用便攜式地物光譜儀獲取冬小麥冠層葉片光譜反射數(shù)據(jù)對(duì)冬小麥葉綠素含量進(jìn)行估算,但利用無(wú)人機(jī)遙感的多光譜反射率因素對(duì)冠層葉片SPAD值的研究還鮮有報(bào)道。
綜上,本研究采用無(wú)人機(jī)遙感技術(shù)結(jié)合地面監(jiān)測(cè)的方法,選取冬小麥拔節(jié)期、孕穗期、抽穗期和開(kāi)花期4個(gè)生長(zhǎng)期,運(yùn)用多光譜影像,研究不同波段反射率因素與冠層葉片SPAD值的關(guān)系,嘗試對(duì)冠層葉片5個(gè)波段反射率與SPAD值之間建立不同的回歸模型,并對(duì)模型進(jìn)行精度評(píng)價(jià),得出反演SPAD值的最佳回歸方法和最佳生長(zhǎng)期,以期為陜西關(guān)中地區(qū)冬小麥SPAD的遙感監(jiān)測(cè)提供理論支持,并為農(nóng)作物的長(zhǎng)勢(shì)監(jiān)測(cè)、精準(zhǔn)管理提供技術(shù)依據(jù)。
試驗(yàn)區(qū)位于西北農(nóng)林科技大學(xué)旱區(qū)節(jié)水農(nóng)業(yè)研究院,地處陜西關(guān)中平原中部的楊陵區(qū)(34°14′N(xiāo)~34°20′N(xiāo),107°59′E~108°08′E),地勢(shì)南低北高,海拔460 m,年降水量635.1~663.9 mm,年均氣溫12.9 ℃,屬暖溫帶季風(fēng)半濕潤(rùn)氣候區(qū),種植作物一年兩熟,以冬小麥和夏玉米為主,當(dāng)年10月中下旬進(jìn)行冬小麥播種,次年6月初收獲。
試驗(yàn)區(qū)東西向長(zhǎng)度25 m,南北向長(zhǎng)度162.5 m,行向由南到北,共劃分為65個(gè)2.5 m×25 m的長(zhǎng)方形小區(qū),每個(gè)小區(qū)內(nèi)選擇1個(gè)1 m×1 m的樣本區(qū),樣本區(qū)分別位于長(zhǎng)方形小區(qū)中心點(diǎn)或中心點(diǎn)兩端水平方向8 m處,整體呈S形分布。
根據(jù)景毅剛等[17]在氣候變暖對(duì)陜西冬小麥生育期的影響中,對(duì)1986年以來(lái)陜西冬小麥生長(zhǎng)發(fā)育始期觀(guān)測(cè)資料進(jìn)行分析認(rèn)為,陜西冬小麥拔節(jié)期出現(xiàn)在3月下旬末,抽穗期出現(xiàn)在4月下旬前期,開(kāi)花期出現(xiàn)在4月下旬后期,因此本試驗(yàn)中無(wú)人機(jī)多光譜影像和地面數(shù)據(jù)采集時(shí)間選擇為2018年4月1日、8日、16日和27日,分別對(duì)應(yīng)冬小麥冠層葉片光譜變化較為明顯的拔節(jié)期、孕穗期、抽穗期和開(kāi)花期,每次進(jìn)行SPAD值地面數(shù)據(jù)采集時(shí)同步獲取無(wú)人機(jī)遙感數(shù)據(jù)。
1.2.1 無(wú)人機(jī)多光譜遙感圖像獲取
試驗(yàn)采用團(tuán)隊(duì)研發(fā)的六旋翼無(wú)人機(jī),搭載五波段多光譜相機(jī)(MicaSense RedEdge-M,美國(guó)),組成無(wú)人機(jī)多光譜信息采集系統(tǒng),無(wú)人機(jī)和相機(jī)信息參數(shù)如表1所示。數(shù)據(jù)采集選擇天氣晴朗無(wú)風(fēng)的日期,采集時(shí)間為15:00—16:00,無(wú)人機(jī)飛行高度60 m,航速5 m/s,航向和旁向重疊度均為80%,地面分辨率為4 cm/pixel。獲取無(wú)人機(jī)多光譜影像前,首先在飛行區(qū)域內(nèi)布置漫反射板(反射效率58%,尺寸3 m×3 m,GroupVIII,美國(guó)),用于多光譜影像像元亮度值(Digital Number,DN)的標(biāo)定。多光譜相機(jī)鏡頭垂直向下,采集5種不同波長(zhǎng)范圍內(nèi)的小麥冠層多光譜影像,5種波段中心波長(zhǎng)分別為475(藍(lán)光波段)、560(綠光波段)、668(紅光波段)、717(紅邊波段)和840(近紅外波段)nm。
表1 無(wú)人機(jī)和相機(jī)主要參數(shù)
1.2.2 冬小麥4個(gè)生長(zhǎng)期SPAD值測(cè)量
無(wú)人機(jī)影像采集當(dāng)日,同步在地面利用手持式葉綠素儀(SPAD-502Plus,日本)測(cè)量65個(gè)樣本的SPAD值。樣本區(qū)內(nèi)選取具有代表性的7株小麥植株,測(cè)量每株倒二葉的葉尖、葉中、葉基3個(gè)部位SPAD值,求得平均值作為該植株的SPAD值,7株小麥的平均值作為該樣本的SPAD值。
本研究采用Pix4Dmapper軟件對(duì)獲取的無(wú)人機(jī)多光譜影像進(jìn)行拼接及處理。首先利用對(duì)應(yīng)地面控制點(diǎn)數(shù)據(jù)對(duì)多光譜影像進(jìn)行校正,生成數(shù)字正射影像圖(Digital Orthophoto Map,DOM);然后利用灰板對(duì)多光譜影像進(jìn)行反射率校正,獲取試驗(yàn)地反射率影像,以.TIF格式存儲(chǔ);最后采用ENVI 5.1軟件平臺(tái)裁剪得到4個(gè)生長(zhǎng)期的單波段光譜反射率影像,提取本研究區(qū)的平均反射率作為樣本在該波段的光譜反射率(圖1)。
分別提取冬小麥4個(gè)生長(zhǎng)期的無(wú)人機(jī)多光譜影像光譜反射率數(shù)據(jù)及與之對(duì)應(yīng)的同步測(cè)量地面數(shù)據(jù),構(gòu)成樣本數(shù)據(jù)集,每個(gè)波段均獲得65組數(shù)據(jù),隨機(jī)選取70% 的樣本數(shù)據(jù)(45組數(shù)據(jù))作為建模集,采用不同的回歸分析方法構(gòu)建SPAD值反演模型,再利用其余30% 的樣本數(shù)據(jù)(20組數(shù)據(jù))作為驗(yàn)證集,評(píng)價(jià)該SPAD值反演模型。構(gòu)建冬小麥SPAD值反演模型時(shí),若自變量之間存在多重共線(xiàn)性問(wèn)題[18]會(huì)降低模型檢驗(yàn)可靠性,導(dǎo)致分析結(jié)果不穩(wěn)定[19-20]。因此,本研究采用主成分回歸法(Principle Component Regression,PCR)、逐步回歸法(Stepwise Regression,SR)與嶺回歸法(Ridge Regression,RR)作為建模方法,消除多重共線(xiàn)性問(wèn)題,并驗(yàn)證模型的可靠性及穩(wěn)定性。主成分回歸法將5個(gè)波段降維,利用某幾個(gè)主要波段的線(xiàn)性組合解決共線(xiàn)性問(wèn)題[21];逐步回歸法用實(shí)測(cè)SPAD值與單波段反射率特征參數(shù)進(jìn)行簡(jiǎn)單回歸,逐步引入其余波段,剔除不顯著波段,使模型中的波段既顯著又無(wú)多重共線(xiàn)性問(wèn)題[22];嶺回歸法是一種改良的最小二乘估計(jì)法,以損失部分信息和降低精度為代價(jià)獲得更可靠回歸系數(shù)[23]。
圖1 冬小麥4個(gè)生長(zhǎng)期多光譜反射率影像
本研究選用決定系數(shù)(coefficient of determination,2)、均方根誤差(Root Mean Squared Error,RMSE)綜合評(píng)價(jià)冬小麥SPAD值反演模型精度[24]。在多元回歸分析中,當(dāng)回歸模型增加一個(gè)解釋變量,決定系數(shù)2會(huì)相應(yīng)增大,即2是回歸模型解釋變量個(gè)數(shù)的非減函數(shù),因此使用2來(lái)判斷具有相同被解釋變量和不同個(gè)數(shù)解釋變量的回歸模型優(yōu)劣時(shí)存在不合理性。為了消除解釋變量個(gè)數(shù)對(duì)決定系數(shù)2的影響,選擇使用校正決定系數(shù)(adjusted coefficient of determination,2adj)對(duì)模型擬合效果進(jìn)行評(píng)價(jià)。模型的2越接近1,相應(yīng)的RMSE數(shù)值越小,則模型估算能力越好。R、2adj和RMSE的計(jì)算方法如式(1)~(3)所示
本研究首先對(duì)無(wú)人機(jī)多光譜影像進(jìn)行拼接、裁剪等預(yù)處理,獲得冬小麥4個(gè)生長(zhǎng)期的單波段光譜影像,提取反射率特征參數(shù),并分別建立5個(gè)波段反射率數(shù)據(jù)和實(shí)測(cè)SPAD值之間的相關(guān)關(guān)系;然后判斷自變量之間的共線(xiàn)性問(wèn)題,分別基于主成分回歸、逐步回歸和嶺回歸法構(gòu)建SPAD值反演模型;最后對(duì)各個(gè)模型進(jìn)行驗(yàn)證分析,優(yōu)選冬小麥SPAD值的最佳反演模型。具體研究方案如圖2所示。
圖2 冬小麥SPAD值反演模型構(gòu)建流程圖
試驗(yàn)選取的65個(gè)樣本實(shí)測(cè)SPAD值統(tǒng)計(jì)特征見(jiàn)表2,隨著小麥生長(zhǎng)期的推移,SPAD平均值整體呈上升趨勢(shì),此結(jié)果與王凱龍等[25]在干旱區(qū)冬小麥不同生長(zhǎng)階段的光譜特征與葉綠素含量估測(cè)研究中的結(jié)果一致。本研究中得到的SPAD值變異系數(shù)介于1%~10%之間,表現(xiàn)為弱變異[26]。
表2 冬小麥4個(gè)生長(zhǎng)階段SPAD值統(tǒng)計(jì)特征
本研究采用OriginLab軟件,建立的冬小麥不同生長(zhǎng)期光譜反射率與SPAD值的特征曲線(xiàn)如圖3所示。冬小麥拔節(jié)期至開(kāi)花期,冠層葉片光譜反射率與SPAD值的關(guān)系表現(xiàn)出相同的變化規(guī)律,藍(lán)、紅光波段的光輻射被葉片中的葉綠素吸收進(jìn)行光合作用而形成2個(gè)低反射區(qū),在綠光波段形成較小的反射峰,紅邊波段出現(xiàn)了高反射峰,在近紅外波段均出現(xiàn)最強(qiáng)反射峰。這是由于小麥冠層在可見(jiàn)光區(qū)(400~700 nm)的反射率主要取決于葉綠素含量的多少,葉綠素含量多,吸收率高,反射率就低,藍(lán)光波段和紅光波段是植物葉綠素的顯著吸收波段,在綠光區(qū)吸收較少故形成綠色反射峰,隨著葉綠素含量的增加,紅邊位置反射率也增加,出現(xiàn)一個(gè)高反射峰,而近紅外光譜區(qū),光譜反射率一般受葉片內(nèi)部細(xì)胞結(jié)構(gòu)和的影響,葉綠素含量高的葉片,其內(nèi)部細(xì)胞更為復(fù)雜,因而反射率高。對(duì)近紅外區(qū)葉片光譜反射率和葉綠素含量的關(guān)系,已有學(xué)者進(jìn)行過(guò)研究,武倩雯等[11]在基于近紅外波段玉米葉綠素含量最佳預(yù)測(cè)模型研究中,為了探究近紅外波段玉米光譜反射率與其葉綠素含量之間的關(guān)系,對(duì)玉米葉綠素含量與近紅外光譜反射率及植被指數(shù)之間的關(guān)系進(jìn)行分析,建立葉綠素含量最佳模型。結(jié)果表明,在近紅外波段,光譜反射率與玉米葉綠素含量的相關(guān)性較大。近紅外區(qū)葉片光譜反射率雖然影響因素較多,但此波段位于綠色植被強(qiáng)反射光譜區(qū),其為葉片健康狀況最靈敏的標(biāo)志,對(duì)植物長(zhǎng)勢(shì)反映敏感,指示植物光合作用能否正常進(jìn)行,因此近紅外區(qū)與葉片葉綠素含量關(guān)系密切。
由圖3可知,冬小麥從拔節(jié)期到開(kāi)花期,冠層光譜反射率在可見(jiàn)光區(qū)隨著SPAD值增大,反射率減小,至孕穗期達(dá)到最小,抽穗期開(kāi)始增大,至開(kāi)花期達(dá)到最大。紅邊和近紅外波段,冠層光譜反射率從拔節(jié)期到開(kāi)花期一直呈現(xiàn)上升趨勢(shì)。出現(xiàn)該趨勢(shì)的原因在于,小麥植株處于生長(zhǎng)階段,SPAD值逐漸增大,光合能力不斷增強(qiáng),葉綠素含量逐漸增加,葉片的綠色加深,對(duì)可見(jiàn)光吸收增加,反射率減小,另外拔節(jié)期到孕穗期葉片對(duì)地面未全覆蓋,裸露的土壤會(huì)增強(qiáng)對(duì)可見(jiàn)光的吸收,導(dǎo)致無(wú)人機(jī)多光譜影像反射率降低;小麥抽穗期階段,由于植株冠層變黃,對(duì)可見(jiàn)光反射增強(qiáng),吸收作用減弱,冠層光譜反射率開(kāi)始增加,開(kāi)花期達(dá)到最大。
圖3 冬小麥4個(gè)生長(zhǎng)階段葉片光譜反射率隨SPAD值變化特征
本研究首先采用統(tǒng)計(jì)分析軟件SPSS 22.0分析5個(gè)波段葉片反射率和其SPAD值之間的相關(guān)關(guān)系(如表3所示)。由表3可知,當(dāng)多光譜相機(jī)波長(zhǎng)范圍處于藍(lán)光、綠光和紅光波段時(shí),冬小麥拔節(jié)期、孕穗期和開(kāi)花期的無(wú)人機(jī)多光譜圖像反射率參數(shù)與SPAD值呈負(fù)相關(guān)關(guān)系,而在抽穗期,二者呈正相關(guān);當(dāng)波長(zhǎng)范圍為紅邊及近紅外波段,二者在整個(gè)生長(zhǎng)期均呈現(xiàn)正相關(guān)關(guān)系。
此外,不同生長(zhǎng)期的小麥葉片反射率與SPAD值的相關(guān)程度不同。開(kāi)花期綠光波段小麥葉片反射率與SPAD值相關(guān)系數(shù)絕對(duì)值最高,為0.89,而拔節(jié)期近紅外波段小麥葉片反射率與SPAD值相關(guān)系數(shù)最小,為0.71。通常認(rèn)為相關(guān)系數(shù)為0.5~0.8表現(xiàn)為顯著相關(guān),0.8~1.0表現(xiàn)為高度相關(guān)[25];單波段小麥葉片反射率與SPAD值的顯著相關(guān)性說(shuō)明了采用5個(gè)波段反射率參數(shù)建立SPAD值的估算模型的可行性。
在上述相關(guān)性分析的基礎(chǔ)上,本研究對(duì)建模數(shù)據(jù)集(45個(gè)樣本)波段反射率與SPAD值進(jìn)行多元線(xiàn)性回歸分析。在回歸分析前,選用容忍度[27]對(duì)5個(gè)波段反射率之間進(jìn)行共線(xiàn)性判斷,結(jié)果如表4所示。容忍度的取值在(0,1)之間,值越小,則多重共線(xiàn)性越嚴(yán)重[28];通常認(rèn)為容忍度<0.1時(shí),存在嚴(yán)重的多重共線(xiàn)性問(wèn)題[29]。
表3 冬小麥4個(gè)生長(zhǎng)階段SPAD值與單波段光譜反射率相關(guān)性分析
注:** 表示在0.01水平上顯著相關(guān)。
Note: ** indicates correlation is significant at 0.01 level。
表4 冬小麥4個(gè)生長(zhǎng)階段葉片單波段光譜反射率間容忍度統(tǒng)計(jì)分析
由表4可知,拔節(jié)期波段1、3、4,孕穗期波段4和開(kāi)花期波段1、4、5的容忍度>0.1,其余均<0.1。這表明5個(gè)波段之間存在較嚴(yán)重的多重共線(xiàn)性問(wèn)題,因此本研究分別采用主成分回歸、逐步回歸和嶺回歸法構(gòu)建SPAD值反演模型,各模型的評(píng)價(jià)指標(biāo)如表5所示。
表5 冬小麥4個(gè)生長(zhǎng)階段光譜反射率與SPAD值回歸分析結(jié)果
注:為SPAD預(yù)測(cè)值;1、2、3、4和5分別為藍(lán)光、綠光、紅光、紅邊和近紅外波段的光譜反射率。共65個(gè)樣本,建模樣本45個(gè)。
Note:is the predicted SPAD values;1,2,3,4,and5is the spectral reflectance of blue, green, red, red-edge and near-infrared band, respectively. There are 65 samples, including 45 modeling samples.
由表5可知,采用3種回歸分析法建立的冬小麥4個(gè)生長(zhǎng)期的SPAD值反演模型中,表達(dá)模型的波段與波段數(shù)目均不相同,這說(shuō)明在冬小麥生長(zhǎng)的不同階段,SPAD對(duì)波段光譜的敏感性不同,拔節(jié)期最敏感波段為近紅外波段,孕穗期為藍(lán)光波段,抽穗期近紅外波段,開(kāi)花期為綠光和紅光波段。
此外,3種回歸分析法建立的冬小麥SPAD值反演模型在小麥不同生長(zhǎng)期的計(jì)算精度有所差異。其中,拔節(jié)期主成分回歸模型的精度檢驗(yàn)結(jié)果最優(yōu),而嶺回歸模型的精度略?xún)?yōu)于逐步回歸模型,由主成分回歸模型得到的葉綠素SPAD估算值與實(shí)測(cè)值之間的2adj為0.68,RMSE為0.58;孕穗期主成分回歸模型各項(xiàng)檢驗(yàn)指標(biāo)精度仍然最優(yōu);而抽穗期逐步回歸模型精度最優(yōu),其2adj為0.77,RMSE為0.61;開(kāi)花期3種回歸模型的2adj值較為接近,但逐步回歸模型的RMSE較小,為0.63,表明其精度較高,抽穗期建立的SPAD值回歸模型精度要高于其他生長(zhǎng)期。
比較每個(gè)生長(zhǎng)期篩選出的最優(yōu)模型可以看出,抽穗期構(gòu)建的逐步回歸模型的2adj最高、RMSE最小,故冬小麥抽穗期建立的逐步回歸模型精度優(yōu)于其他模型,可作為冬小麥SPAD值反演的最佳模型(圖4a)。為驗(yàn)證模型的可靠性,采用驗(yàn)證數(shù)據(jù)集(30%的樣本數(shù)據(jù),20個(gè)樣本)進(jìn)行驗(yàn)證,結(jié)果如圖4b所示。結(jié)果表明,冬小麥SPAD的預(yù)測(cè)值與實(shí)測(cè)值擬合效果較好(2= 0.73,RMSE= 0.56,= 20)。因此,冬小麥抽穗期基于逐步回歸法構(gòu)建的模型能較好地反演SPAD值。
圖4 基于逐步回歸法的冬小麥抽穗期SPAD值反演模型模擬及預(yù)測(cè)值與實(shí)測(cè)值的關(guān)系
葉綠素相對(duì)含量SPAD值是農(nóng)作物的主要生化參數(shù)之一,其含量變化與作物的生存狀況、生長(zhǎng)態(tài)勢(shì)密切相關(guān),快速、準(zhǔn)確、動(dòng)態(tài)地監(jiān)測(cè)作物SPAD值,對(duì)智慧農(nóng)業(yè)的發(fā)展具有重要意義[30]。本研究選取冬小麥拔節(jié)期、孕穗期、抽穗期和開(kāi)花期4個(gè)生長(zhǎng)期,利用無(wú)人機(jī)遙感平臺(tái)獲取多光譜影像,提取葉片光譜反射率數(shù)據(jù)構(gòu)建冬小麥SPAD值的反演模型。結(jié)果發(fā)現(xiàn),4個(gè)生長(zhǎng)期構(gòu)建的模型中,抽穗期建立的3種回歸模型精度均高于其他生長(zhǎng)期,其中逐步回歸法構(gòu)建的模型精度最高,2adj為 0.77,RMSE為0.61;李粉玲等[7]等基于高分一號(hào)衛(wèi)星影像數(shù)據(jù)提取18種高光譜植被指數(shù)估算冬小麥葉片SPAD值,認(rèn)為拔節(jié)期構(gòu)建的模型效果最優(yōu)。兩種研究方法結(jié)果不同的原因可能是:采用植被指數(shù)研究SPAD值時(shí),常用的植被指數(shù)均是通過(guò)藍(lán)光、綠光、紅光和近紅外波段的光譜反射率經(jīng)過(guò)波段運(yùn)算獲得的寬帶綠度指數(shù)[31],忽略了紅光波段與近紅外區(qū)域的紅邊部分,紅邊是由于植被在紅光波段葉綠素強(qiáng)烈的吸收與近紅外波段光在葉片內(nèi)部的多次散射而形成的強(qiáng)反射造成的[32],植被覆蓋度越高,紅邊植被指數(shù)對(duì)SPAD值越敏感,當(dāng)冬小麥進(jìn)入抽穗期,植株由生殖生長(zhǎng)轉(zhuǎn)向營(yíng)養(yǎng)生長(zhǎng),葉片、葉稍鮮重達(dá)到峰值,覆蓋度屬于整個(gè)生長(zhǎng)期中最優(yōu)時(shí)期[33],此階段光譜反射率對(duì)紅邊波段敏感性較高,因此紅邊位置對(duì)研究作物SPAD值非常重要。王凱龍等[25]基于地面光譜分析儀提取15種高光譜植被指數(shù)估算冬小麥SPAD值,將紅邊內(nèi)一階微分最大值處的波長(zhǎng)(Red Edge Position,REP)加入研究,結(jié)果認(rèn)為開(kāi)花期構(gòu)建的模型效果最優(yōu)。綜上,對(duì)作物SPAD值進(jìn)行研究時(shí),獲取光譜數(shù)據(jù)的方法、植被指數(shù)的類(lèi)別、建模方法的選用等因素,導(dǎo)致不同研究方法得到的模型不同。因此,利用遙感技術(shù)對(duì)農(nóng)作物生化參數(shù)進(jìn)行監(jiān)測(cè)時(shí),光譜影像中獲取信息參數(shù)的精度、植被指數(shù)的適用性以及建模方法的選用還需要進(jìn)一步研究,光譜反射率與SPAD值之間的相關(guān)性高,也并不能說(shuō)明該波長(zhǎng)處的反射率就一定對(duì)葉綠素含量有指示作用,需要綜合考慮冬小麥的群體特征葉面積指數(shù)、葉片內(nèi)部結(jié)果、植被覆蓋度以及土壤背景等因素的影響。
本研究利用無(wú)人機(jī)多光譜遙感技術(shù)結(jié)合地面監(jiān)測(cè)數(shù)據(jù)研究了葉片光譜反射率參數(shù)反演冬小麥SPAD(Soil and Plant Analyzer Development)值的可行性,得出以下結(jié)論:
1)冬小麥從拔節(jié)期到開(kāi)花期,冠層光譜反射率與SPAD值特征曲線(xiàn)分析結(jié)果表明,拔節(jié)期冠層光譜反射率在可見(jiàn)光區(qū)隨著SPAD值增大,反射率減小,至孕穗期達(dá)到最小,抽穗期開(kāi)始增大,至開(kāi)花期達(dá)到最大。紅邊和近紅外波段,冠層光譜反射率從拔節(jié)期到開(kāi)花期一直呈現(xiàn)上升趨勢(shì)。
2)通過(guò)對(duì)冬小麥SPAD值與不同波段的無(wú)人機(jī)多光譜影像反射率進(jìn)行相關(guān)性分析得知,在藍(lán)光、綠光和紅光波段,光譜反射率和SPAD值在冬小麥拔節(jié)期、孕穗期和開(kāi)花期均呈顯著負(fù)相關(guān)關(guān)系,而在抽穗期呈正相關(guān);在紅邊和近紅外波段,SPAD值與光譜反射率在冬小麥4個(gè)生長(zhǎng)期均呈現(xiàn)正相關(guān)關(guān)系;相關(guān)系數(shù)絕對(duì)值最大為0.89,最小為0.71。
3)利用3種回歸法建立了基于5個(gè)波段葉片光譜反射率的SPAD值反演模型。經(jīng)驗(yàn)證,冬小麥4個(gè)生長(zhǎng)期中抽穗期建立的模型精度最高,為SPAD值的最佳反演階段,其次是開(kāi)花期、拔節(jié)期和孕穗期;3種回歸方法建立的反演模型中,抽穗期基于逐步回歸法反演效果最優(yōu),其決定系數(shù)為0.77,均方根誤差為0.61。
4)通過(guò)對(duì)3種回歸法構(gòu)建的冬小麥SPAD值反演模型進(jìn)行分析得知,不同生長(zhǎng)階段SPAD值對(duì)波段光譜的敏感性不同,拔節(jié)期最敏感波段為近紅外波段,孕穗期為藍(lán)光波段,抽穗期為近紅外波段,開(kāi)花期為綠光和紅光波段。
上述結(jié)論表明利用無(wú)人機(jī)平臺(tái)獲取多波段光譜反射率,建立冬小麥SPAD值反演模型,具有較好的預(yù)測(cè)精度,研究結(jié)果可為作物SPAD值的遙感反演研究提供進(jìn)一步參考,以期為精準(zhǔn)農(nóng)業(yè)的管理和決策奠定科學(xué)基礎(chǔ)和提供技術(shù)支持。
[1] Zhang Suming, Zhao Gengxing, Lang Kun, et al. Integrated satellite, Unmanned Aerial Vehicle (UAV) and ground inversion of the SPAD of winter wheat in the reviving stage[J]. Sensors, 2019, 19(7): 1-17.
[2] 梁亮,楊敏華,張連蓬,等. 基于SVR算法的小麥冠層葉綠素含量高光譜反演[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(20):162-171. Liang Liang, Yang Minhua, Zhang Lianpeng, et al. Chlorophyll content inversion with hyperspectral technology for wheat canopy based on SVR algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 162-171. (in Chinese with English abstract)
[3] 岳學(xué)軍,全東平,洪添勝,等. 柑橘葉片葉綠素含量高光譜無(wú)損檢測(cè)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(1):294-302. Yue Xuejun, Quan Dongping, Hong Tiansheng, et al. Non-destructive hyperspectral measurement model of chlorophyll content for citrus leaves[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 294-302. (in Chinese with English abstract)
[4] 馬明洋,許童羽,周云成,等. 東北粳稻葉綠素相對(duì)含量的無(wú)人機(jī)高清影像檢測(cè)方法[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,48(6):757-762. Ma Mingyang, Xu Tongyu, Zhou Yuncheng, et al. UAV HD image detection method for SPAD in northeast japonica rice[J]. Journal of Shenyang Agricultural University, 2017, 48(6): 757-762. (in Chinese with English abstract)
[5] 孫紅,李民贊,趙勇,等. 冬小麥生長(zhǎng)期光譜變化特征與葉綠素含量監(jiān)測(cè)研究[J]. 光譜學(xué)與光譜分析,2010,30(1):192-196. Sun Hong, Li Minzan, Zhao Yong, et al. The spectral characteristics and chlorophyll content at winter wheat growth stages[J]. Spectroscopy and Spectral Analysis, 2010, 30(1): 192-196. (in Chinese with English abstract)
[6] 王麗愛(ài),馬昌,周旭東,等. 基于隨機(jī)森林回歸算法的小麥葉片SPAD值遙感估算[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46 (1):259-265. Wang Liai, Ma Chang, Zhou Xudong, et al. Estimation of wheat leaf SPAD value using RF algorithmic model and remote sensing data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 259-265. (in Chinese with English abstract)
[7] 李粉玲,王力,劉京,等. 基于高分一號(hào)衛(wèi)星數(shù)據(jù)的冬小麥葉片SPAD值遙感估算[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(9):273-281. Li Fenling, Wang Li, Liu Jing, et al. Remote sensing estimation of SPAD value for wheat leaf based on GF-1date[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 273-281. (in Chinese with English abstract)
[8] 張銳,廖桂平,王訪(fǎng),等. 基于冠層高光譜的油菜角果期紅邊參數(shù)及葉片SPAD值反演模型[J]. 江蘇農(nóng)業(yè)科學(xué),2019,47(20):255-259. Zhang Rui, Liao Guiping, Wang Fang, et al. Red edge parameters and SPAD inversion model of rapeseed based on canopy hyperspectral data[J]. Jiangsu Agricultural Sciences, 2019, 47(20): 255-259. (in Chinese with English abstract)
[9] 殷紫,常慶瑞,劉淼,等. 基于光譜指數(shù)的不同生育期油菜葉片SPAD估測(cè)[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2017,45(5):66-72. Yin Zi, Chang Qinrui, Liu Miao, et al. Estimation of rape leaf SPAD in different periods based on spectral indices[J]. Journal of Northwest A&F University: Natural Science Edition, 2017, 45(5): 66-72. (in Chinese with English abstract)
[10] 陳鵬,馮海寬,李長(zhǎng)春,等. 無(wú)人機(jī)影像光譜和紋理融合信息估算馬鈴薯葉片葉綠素含量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(11):63-74. Cheng Peng, Feng Haikuan, Li Changchun, et al. Estimation of chlorophyll content in potato using fusion of texture and spectral features derived from UAV multispectral image[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 63-74. (in Chinese with English abstract)
[11] 武倩雯,熊黑鋼,王莉鋒,等. 基于近紅外波段玉米葉綠素含量最佳預(yù)測(cè)模型研究[J]. 中國(guó)農(nóng)學(xué)通報(bào),2015,31(15):260-264. Wu Qianwen, Xiong Heigang, Wang Fengli, et al. Optimum predection model of maize leaf chlorophyll content based on near-infrared band[J]. Chinese Agricultural Science Bulletin, 2015, 31(15): 260-264. (in Chinese with English abstract)
[12] 周雪,王芳,趙庚星. 基于小麥冠層近地多光譜圖像的葉綠素(SPAD值)估測(cè)方法[J]. 山東農(nóng)業(yè)科學(xué),2016,48(6):138-141. Zhou Xue, Wang Fang, Zhao Gengxing. Estimation method of chlorophyll content (SPAD value) based on near ground multispectral images of wheat canopy[J]. Shandong Agricultural Sciences, 2016, 48(6): 138-141. (in Chinese with English abstract)
[13] 秦占飛,常慶瑞,謝寶妮,等. 基于無(wú)人機(jī)高光譜影像的引黃灌區(qū)水稻葉片全氮含量估測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(23):77-85. Qin Zhanfei, Chang Qingrui, Xie Baoni, et al. Rice leaf nitrogen content estimation based on hyperspectral imagery of UAV in Yellow River diversion irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 77-85. (in Chinese with English abstract)
[14] 裴浩杰,馮海寬,李長(zhǎng)春,等. 基于綜合指標(biāo)的冬小麥長(zhǎng)勢(shì)無(wú)人機(jī)遙感[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(20):74-82. Pei Haojie, Feng Haikuan, Li Changchun, et al. Remote sensing monitoring of winter wheat growth with UAV based on comprehensive index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 74-82. (in Chinese with English abstract)
[15] 周敏姑,邵國(guó)敏,張立元,等. 基于無(wú)人機(jī)遙感的冬小麥葉綠素含量多光譜反演[J]. 節(jié)水灌溉,2019(9):40-45. Zhou Mingu, Shao Guomin, Zhang Liyuan, et al. Multi-spectral inversion of SPAD value of winter wheat based on unmanned aerial vehicle remote sensing[J]. Water Saving Irrigation, 2019(9): 40-45. (in Chinese with English abstract)
[16] 魏青,張寶忠,魏征,等. 基于無(wú)人機(jī)多光譜遙感的冬小麥葉綠素含量估測(cè)研究[J]. 麥類(lèi)作物學(xué)報(bào),2020,40(3):365-372. Wei Qing, Zhang Baozhong, Wei Zheng, et al. Estimation of canopy chlorophyll content in winter wheat by UAV multispectral remote sensing[J]. Journal of Triticeae Crops, 2020, 40(3): 365-372. (in Chinese with English abstract)
[17] 景毅剛,范建忠,高茂盛. 氣候變暖對(duì)陜西冬小麥生育期的影響[J]. 麥類(lèi)作物學(xué)報(bào),2013,33(2):389-396. Jing Yigang, Fan Jianzhong, Gao Maosheng. Influences of the climate warming on developmental stages of winter wheat in Shaanxi[J]. Journal of Triticeae Crops, 2013, 33(2): 389-396. (in Chinese with English abstract)
[18] Ullah M I, Aslam M, Altaf S, et al. Some new diagnostics of multicollinearity in linear regression model[J]. Sains Malaysiana, 2019, 48(9): 2051-2060.
[19] 田明璐,班松濤,常慶瑞,等. 基于無(wú)人機(jī)成像光譜儀數(shù)據(jù)的棉花葉綠素含量反演[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào)2016,47(11):285-293. Tian Minglu, Ban Songtao, Chang Qingrui, et al. Estimation of SPAD value of cotton leaf using hyperspectral images from UAV-based imaging spectroradiometer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 285-293. (in Chinese with English abstract)
[20] 潘蓓,趙庚星,朱西存,等. 利用高光譜植被指數(shù)估測(cè)蘋(píng)果樹(shù)冠層葉綠素含量[J]. 光譜學(xué)與光譜分析,2013,33(8):2203-2206. Pan Bei, Zhao Gengxing, Zhu Xicun, et al. Estimation of chlorophyll content in apple tree canopy based on hyperspectral parameters[J]. Spectroscopy and Spectral Analysis, 2013, 33(8): 2203-2206. (in Chinese with English abstract)
[21] 盧二坡,張煥明. 基于穩(wěn)健主成分回歸的統(tǒng)計(jì)數(shù)據(jù)可靠性評(píng)估方法[J]. 統(tǒng)計(jì)研究,2011,28(8):21-27. Lu Erpo, Zhang Huanming. An evaluation method of reliability of published statistics data based on robust principal component regression method[J]. Statistical Research, 2011, 28(8): 21-27. (in Chinese with English abstract)
[22] 游士兵,嚴(yán)研. 逐步回歸分析法及其應(yīng)用[J]. 統(tǒng)計(jì)與決策,2017,7(14):31-35. You Shibing, Yan Yan. Stepwise regression analysis and its application[J]. Statistics & Decision, 2017, 7(14): 31-35. (in Chinese with English abstract)
[23] 開(kāi)璇,張莉莉. 主成分回歸和嶺回歸在新疆農(nóng)業(yè)經(jīng)濟(jì)的應(yīng)用[J]. 遼寧農(nóng)業(yè)職業(yè)技術(shù)學(xué)院學(xué)報(bào),2017,19(1):57-61. Kai Xuan, Zhang Lili. Application of Xinjiang agricultural economy based on ridge regression and principal component regression[J]. Journal of Liaoning Agricultural Technical College, 2017, 19(1): 57-61. (in Chinese with English abstract)
[24] Ma Xiaodan, Feng Jiarui, Guan Haiou, et al. Prediction of chlorophyll content in different light areas of apple tree canopies based on the color characteristics of 3D reconstruction[J]. Remote Sensing, 2018, 10(3): 1-16.
[25] 王凱龍,熊黑鋼,張芳. 干旱區(qū)冬小麥不同生長(zhǎng)階段的光譜特征與葉綠素含量估測(cè)研究[J]. 干旱區(qū)資源與環(huán)境,2013,27(11):45-49. Wang Kailong, Xiong Heigang, Zhang Fang. The spectral characteristics and the best model for chlorophyll content at winter wheat growth stages in arid land[J]. Journal of Arid Land Resources and Environment, 2013, 27(11): 45-49. (in Chinese with English abstract)
[26] 王海峰,張智韜,Amon K,等. 基于灰度關(guān)聯(lián)-嶺回歸的荒漠土壤有機(jī)質(zhì)含量高光譜估算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(14):124-131. Wang Haifeng, Zhang Zhitao, Amon K, et al. Hyperspectral estimation of desert soil organic matter content based on gray correlation-ridge regression model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 124-131. (in Chinese with English abstract)
[27] 毛博慧,孫民贊,孫紅,等. 冬小麥苗期葉綠素含量檢測(cè)光譜學(xué)參數(shù)尋優(yōu)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):164-169. Mao Bohui, Sun Minzan, Sun Hong, et al. Optimization of spectroscopy parameters and prediction of chlorophyll content at seeding stage of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 164-169. (in Chinese with English abstract)
[28] Gamze G, Hatice S. Examination of dimension reduction performances of PLSR and PCR techniques in data with multicollinearity[J]. Iranian Journal of Science & Technology, 2019, 43(3): 969-978.
[29] 張智韜,王海峰,韓文霆,等. 基于無(wú)人機(jī)多光譜遙感的土壤含水率反演研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(2):173-181. Zhang Zhitao, Wang Haifeng, Han Wenting, et al. Inversion of soil moisture content based on multispectral remote sensing of UAV[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 173-181. (in Chinese with English abstract)
[30] Ahmed A D, Abdulah E K, Ismael B. et al. Solving multicollinearity problem of gross domestic product using ridge regression method[J]. Periodicals of Engineering and Natural Sciences, 2020, 2(8): 668-672.
[31] 郭燕,程永政,黎世民,等. 區(qū)域尺度冬小麥葉綠素含量的高光譜預(yù)測(cè)和空間變異研究[J]. 麥類(lèi)作物學(xué)報(bào),2017,37(7):970-977. Guo Yan, Cheng Yongzheng, Li Shimin, et al. Hyperspectral-based estimation and spatial variability of chlorophyll content of winter wheat in regional scale[J]. Journal of Triticeae Crops, 2017, 37(7): 970-977. (in Chinese with English abstract)
[32] 羅丹,常慶瑞,齊雁冰,等. 基于光譜指數(shù)的冬小麥冠層葉綠素含量估算模型研究[J]. 麥類(lèi)作物學(xué)報(bào),2016,36(9):1225-1233. Luo Dan, Chang Qingui, Qi Yanbing, et al. Estimation model chlorophyll content in winter wheat canopy based on spectral indices[J]. Journal of Triticeae Crops, 2016, 36(9): 1225-1233. (in Chinese with English abstract)
[33] 鞠昌華,田永超,朱艷,等. 小麥疊加葉片的葉綠素含量光譜反演研究[J]. 麥類(lèi)作物學(xué)報(bào),2008,28(6):1068-1074. Ju Changhua, Tian Yongchao, Zhu Yan, et al. Spectral inverse study of stacked leaf chlorophyll concentration in wheat[J]. Journal of Triticeae Crops, 2008, 28(6): 1068-1074. (in Chinese with English abstract)
Inversion of SPAD value of winter wheat by multispectral remote sensing of unmanned aerial vehicles
Zhou Mingu1, Shao Guomin2, Zhang Liyuan2, Yao Xiaomin2, Han Wenting3※
(1.,,712100,; 2.,,712100,; 3.,,712100,)
Remote sensing technology has been widely used to monitor the changes in SPAD, which is an important parameter. In this study, the multispectral images were acquired by a six-rotor unmanned aerial vehicle, and the SPAD of winter wheat was measured to carry out the estimation research. The four growth stages with the most obvious changes in SPAD were selected, namely the jointing stage, booting stage, heading stage, and flowering stage. The camera with five bands (475, 560, 668, 717, and 840 nm) was used to collect multispectral canopy leaves at the four stages. A total of four data collections were performed to extract spectral reflectance data and the SPAD was measured from 1stApril to 27thApril 2018. A total of 65 samples were selected and recorded with GPS. The test area was divided into 65 sample zones with each one measuring 2.5 m×25 m, of which one sample area of 1 m × 1 m was selected. All the zones were in a rectangle, so they could be evenly distributed 8 m from the center of the cell in the horizontal direction. The overall samples were S-shaped distribution. The samples in the middle were located at the center of the rectangular cell. The SPAD of 65 samples were measured by SPAD-502 chlorophyll meter at the same time when the UAV data was collected. In the sample area, seven leaves of different canopy parts were selected to measure the tip, middle, and base. The average of the three parts was used as the SPAD values of the leaf. Finally, the average value of the leaf blades was taken as the final SPAD value of the sample. The canopy reflectance data was extracted from multispectral images. And then the correlation coefficients of SPAD values and spectral reflectance data in four growth stages were analyzed. Herein, the reflectivity of single-band and SPAD directly had serious collinearity problems so principal component regression, stepwise regression, and ridge regression these three methods were chosen to solve it. After that, the SPAD inversion models were established separately by using the reflectance data and the SPAD values as the data source. The best inversion model and stage were selected by comparison. The results showed that a high correlation was obtained between the SPAD and canopy spectral reflectance. In the visible light band, the negative correlation was observed between canopy spectral reflectance and SPAD at the jointing stage, booting stage, and flowering stage. On the contrary, it was a positive correlation at the heading stage and a positive correlation at the red-edge and near-infrared bands at all four stages. Compared with the main bands in the model expression, the frequency of passing the screening in different growth stages was different. The highest passing frequency was the near-infrared band in the jointing stage. The blue band was selected at the booting stage, the near-infrared band at the heading stage, and the green and red bands at the flowering stage. This study compared the prediction accuracy of the models established by three regression methods. The results showed that the models of stepwise regression established at the heading stage had the highest inversion accuracy with the adjusted coefficient of determination was 0.77, and the root mean square error was 0.61. The validation showed the coefficient of determination was 0.73, and the root mean square error was 0.56. It indicated that the model could be used to estimate the crop coefficient. Compared with the four periods, the heading stage was the best inversion stage of SPAD value. The study results proved the feasibility of inversion of the winter wheat SPAD value by unmanned aerial vehicle multispectral remote sensing, and at the same time, it could provide a reference for the rapid monitoring of the SPAD value of other crops.
unmanned aerial vehicle; remote sensing; winter wheat; multispectral image; regression model; SPAD
周敏姑,邵國(guó)敏,張立元,等. 無(wú)人機(jī)多光譜遙感反演冬小麥SPAD值[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(20):125-133.doi:10.11975/j.issn.1002-6819.2020.20.015 http://www.tcsae.org
Zhou Mingu, Shao Guomin, Zhang Liyuan, et al. Inversion of SPAD value of winter wheat by multispectral remote sensing of unmanned aerial vehicles[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 125-133. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.20.015 http://www.tcsae.org
2020-03-04
2020-05-25
“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0403203);楊凌示范區(qū)產(chǎn)學(xué)研用協(xié)同創(chuàng)新重大項(xiàng)目(2018CXY-23)
周敏姑,實(shí)驗(yàn)師,主要從事農(nóng)業(yè)智能檢測(cè)、材料分析與檢測(cè)研究。Email:zmingu@163.com
韓文霆,博士,研究員,主要從事無(wú)人機(jī)遙感與精準(zhǔn)灌溉技術(shù)研究。Email:hanwt2000@126.com
10.11975/j.issn.1002-6819.2020.20.015
S252
A
1002-6819(2020)-20-0125-09