国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

中國果園植保機械化技術與裝備研究進展

2020-12-25 07:37:32鄭永軍陳炳太呂昊暾江世界
農(nóng)業(yè)工程學報 2020年20期
關鍵詞:噴霧機靜電植保

鄭永軍,陳炳太,呂昊暾,康 峰,江世界

·農(nóng)業(yè)航空工程·

中國果園植保機械化技術與裝備研究進展

鄭永軍1,陳炳太1,呂昊暾1,康 峰2,江世界1

(1. 中國農(nóng)業(yè)大學工學院,北京 100083;2. 北京林業(yè)大學工學院,北京 100083)

果園植保是果園管理關鍵環(huán)節(jié),其機械化發(fā)展水平直接影響水果種植的經(jīng)濟效益。為明確中國果園植保機械化技術與裝備未來發(fā)展方向,該研究首先介紹了中國果園的主要種植方式、植保機械化發(fā)展水平及發(fā)展制約的因素,然后重點闡述了管道噴霧、風力輔助噴霧、靜電噴霧、循環(huán)噴霧、變量噴霧和航空施藥等植保機械化關鍵技術與裝備的研究進展,概括分析了上述植保裝備的農(nóng)藥利用率情況,最后結合中國果園種植特點提出了推廣標準化果園種植方式、發(fā)展立體植保施藥技術、推廣專業(yè)化機械植保服務模式和研發(fā)智能植保機器人4個方面的建議,以期為中國果園植保機械化發(fā)展提供參考。

噴霧;機械化;農(nóng)藥;果園;植保機械;農(nóng)藥利用率;研究進展

0 引 言

水果已成為繼糧食和蔬菜后的中國第三大種植業(yè),據(jù)農(nóng)業(yè)部規(guī)劃,到2020年中國果園面積將穩(wěn)定在1.33×107hm2[1]。在果園管理中,果園植保是保障水果穩(wěn)產(chǎn)、增產(chǎn)的關鍵環(huán)節(jié),其工作量約占果園管理總工作量的25%[2-3]。當前果園植保主要依賴噴施化學農(nóng)藥進行病蟲害防治,先進的施藥技術與植保機械是提升農(nóng)藥利用率、提高作業(yè)效率、增強防治效果的重要手段。

目前,中國果園施藥仍以手動噴霧器大容量淋雨式噴霧法為主,用水量達600~1 200 L/hm2,農(nóng)藥利用率尚不足30%,造成大量藥液浪費、環(huán)境污染及果品農(nóng)藥殘留超標,嚴重時甚至導致作業(yè)人員中毒;而發(fā)達國家大量應用低容量、超低容量、循環(huán)噴霧等新技術,用水量低至200 L/hm2左右,施藥量大大降低,農(nóng)藥利用率大幅提高[4]。關于植保機械,中國各類背負式手動(電動、機動)噴霧器社會保有量達1億臺以上,一臺設備打遍百藥防治各種病蟲害是普遍情形[5];而發(fā)達國家已普遍采用機械施藥,實現(xiàn)專業(yè)化植保。從成本上看,隨著中國城市化進程加快,農(nóng)村勞動力轉(zhuǎn)移,人工施藥成本增加且作業(yè)效率低,導致水果種植效益不斷降低,水果產(chǎn)業(yè)發(fā)展緩慢。果園機械施藥不僅用藥少、農(nóng)藥利用率高,在降低勞動強度、提升作業(yè)效率、節(jié)約生產(chǎn)成本等方面也具有突出優(yōu)勢,是未來中國果園植保發(fā)展的必然趨勢。

本文首先介紹中國果園的主要種植方式及其植保機械化發(fā)展水平,然后闡述當前植保機械化關鍵技術與裝備研究進展,最后結合果園種植方式與植保機械研究現(xiàn)狀,提出果園植保機械化發(fā)展建議。

1 果園種植方式與植保機械化發(fā)展水平

1.1 果園種植方式

中國果園品種繁多、地域分布廣泛、種植歷史悠久。

按照地形劃分,主要分為丘陵山區(qū)果園和平原果園,但以丘陵山區(qū)果園為主,約占果園總面積的65%[6]。丘陵山區(qū)果園大多為陡丘陵和緩丘陵種植,僅有少許平地種植。特別是陡丘陵地區(qū),坡度較大、崎嶇不平,主要采用梯面種植方式,其垂直方向呈階梯式,水平方向依山走勢,由于山坡多為凸起狀態(tài),同一梯面種植果樹并不在同一直線上,且不同階梯彎曲度也不相同;緩丘陵地帶存在溝溝坎坎且田塊分散,階梯種植或順坡種植方式居多;坡度更小,地勢更加平坦的平地果園則接近平原果園種植方式。

按照年代劃分,主要分為傳統(tǒng)果園和現(xiàn)代標準化果園,但以傳統(tǒng)果園為主,約占果園總面積的75%[7]。傳統(tǒng)果園有喬化稀植型和低矮密植型,目前以低矮密植型居多。以蘋果為例,傳統(tǒng)果園行距一般為4.0~5.0 m,株距3.0~4.0 m,樹冠多為開心形,冠層高大、枝干粗壯,因建園時未考慮機械化作業(yè)需求及管理粗放等,易形成行間郁閉;現(xiàn)代標準化果園行距一般為3.0~4.0 m,株距1.0~1.5 m,樹型有紡錘形、直干形、Y形等,冠幅小而細高,管理規(guī)范,易于機械化作業(yè)[8-12]。此外,果樹設施栽培作為露地自然栽培的特殊形式,具有調(diào)控果實成熟期、延長果品供應期、擴大種植范圍和控制病蟲害傳播等優(yōu)點,在中國得到快速發(fā)展,其主要種植方式有日光溫室、塑料大棚和避雨栽培等,目前在葡萄、草莓、櫻桃、桃等果品種植中,應用較為成熟[13]。

1.2 果園植保機械化發(fā)展水平

受果園立地條件及種植方式等因素影響,中國果園植保機械化發(fā)展水平仍然偏低,資料顯示丘陵山區(qū)果園僅為7.5%,平原果園為15%[3]。分析原因主要有:丘陵山區(qū)果園種植面積比例大,但其地形地勢復雜,嚴重阻礙機械化施藥;如陡丘陵果園地面植保機械根本無法進園,導致幾乎無機可用;緩丘陵果園同樣地勢凹凸起伏,加之分散種植、分戶管理,缺乏機械行走、轉(zhuǎn)場農(nóng)機道,導致機械化施藥程度低。平原果園立體條件雖好,但由于以家庭種植方式為主,單戶種植規(guī)模小,購買設備成本高、獲益慢,影響了植保機械化發(fā)展;傳統(tǒng)果園種植方式農(nóng)藝管理較為粗放,行株距不規(guī)范、大樹冠、平拉枝、行間郁閉,影響植保機械通過性。此外,植保服務體系不健全,技術推廣培訓不到位以及果農(nóng)對機械施藥認識不足等,均是限制植保機械化發(fā)展的重要原因。

2 果園施藥技術發(fā)展

實現(xiàn)果園植保機械化,離不開先進的施藥技術與植保機械。其中施藥技術是果園噴霧作業(yè)的關鍵環(huán)節(jié),目前國內(nèi)果園施藥技術主要包括管道噴霧、風力輔助噴霧、靜電噴霧、循環(huán)噴霧、變量噴霧和航空施藥等。如今施藥技術與植保機械正逐漸向著智能、精準、高工效、低噴量的方向發(fā)展。

2.1 管道噴霧技術

管道噴霧技術指采用地下埋設管道,經(jīng)立管聯(lián)結地面高壓軟管和噴槍,通過藥泵對藥液加壓送入管道后帶動多個噴槍同時作業(yè)[14-15]。該技術多適用于中國丘陵山區(qū)果園,自20世紀80年代中期引入中國后得到不斷推廣[6],表1為果園管道噴霧技術在中國部分地區(qū)的應用發(fā)展。

表1 管道噴霧技術應用效果

從表1可以看出,管道噴霧技術在中國應用分布廣泛,且較人工背負式、推車式及車載式噴藥省工省時、效率高、投資少、效益好,能夠有效控制病蟲害發(fā)生和蔓延。但由于該技術仍然存在管道壓力分布不均時常爆管、管道藥液殘留腐蝕、郁閉果園施藥人員易中毒等問題,后續(xù)仍需進行針對性研究。

2.2 風力輔助噴霧技術

風力輔助噴霧技術是利用高速風機產(chǎn)生的強氣流,將經(jīng)過藥泵和噴頭霧化形成的細小霧滴吹送到果樹冠層,進而達到果樹防蟲治病的效果[22]。該技術既能保證噴霧距離,又能增強霧滴穿透性和沉積均勻性,同時氣流擾動葉片翻轉(zhuǎn)提高了葉片背面藥液附著率,自20世紀80年代引進中國,經(jīng)過多年研究改進,已取得長足發(fā)展。

國內(nèi)學者王榮等[23]通過改進風機蝸殼結構使出口風速提高61.5%;劉青等[24]通過在風筒中加裝導流器使噴灑幅寬提高22%~46%;祁力鈞等[25]通過CFD仿真與試驗發(fā)現(xiàn)距風機中心2.4 m處霧滴沉積量分布平均相對誤差最低為33%;張曉辛等[26]通過優(yōu)化導流片與噴頭噴射角度,使風速和噴霧量分布曲線與樹冠輪廓高度吻合。風力輔助噴霧技術的不斷進步,為風送噴霧機在中國的應用發(fā)展提供了良好的技術基礎。

2.3 靜電噴霧技術

靜電噴霧技術源于20世紀40年代的法國,指通過高壓靜電發(fā)生裝置讓靜電噴頭與靶標之間形成電場,使帶電霧滴與冠層形成“靜電環(huán)繞”效應并在靜電力、氣流曳力和重力作用下快速沉積到靶標,從而增加霧滴在作物表面的附著能力[27-28]。該技術能夠顯著提高霧滴沉積量,特別是作物背面霧滴沉積率,一度成為國內(nèi)學者研究的熱點。

針對靜電噴霧技術在果園的應用,舒朝然等[29]采用數(shù)理方法建立了樹冠靜電噴霧過程的電子-機械模型,精確表達了樹冠靜電噴霧過程中荷電霧滴的沉積機制,驗證了果園靜電噴霧的可行性,且其研究表明:霧滴粒徑在30~80m時,霧滴荷電性能最好,考慮自然蒸發(fā)和風的影響,建議作業(yè)霧滴粒徑譜寬范圍以50~100m為宜;周良富等[30]提出風送噴霧與靜電噴霧相結合,并通過響應面模型分析法研究了感應電壓、風機頻率、噴霧距離和噴霧壓力等工作參數(shù)對葉背面霧滴覆蓋率的影響,結果表明該模型決定系數(shù)為93.68%,相對誤差小于10%,工作參數(shù)對響應面模型有顯著性影響;除此,周良富等[31]還設計了雙氣流道輔助靜電噴頭,通過試驗表明該噴頭在噴霧壓力0.4 MPa、感應電壓6 kV、采集距離1.0 m以內(nèi)條件下,靜電噴霧葉背面霧滴覆蓋密度較非靜電噴霧提高15%以上。上述研究均為果園靜電噴霧機的研制及部件選擇、作業(yè)參數(shù)匹配等提供了良好的理論依據(jù)。

2.4 循環(huán)噴霧技術

循環(huán)噴霧技術最早出現(xiàn)在20世紀70年代[32-33],那時國外果園趨于矮化種植,原來高達近4.0 m的果樹冠層降到2.5 m以下,使其能夠被橫跨覆蓋噴霧,并且采用藥液回收裝置攔截并收集未沉積的藥液回收再利用成為可能,由此循環(huán)噴霧應運而生[4]。循環(huán)噴霧種類繁多,主要可概括為“П”型罩蓋型、收集器型、反射型和氣流循環(huán)型4 種類型。隨著技術發(fā)展,多技術融合,各類型之間區(qū)別已不再明顯,如“П”型罩蓋型與氣流循環(huán)型相結合。Ade等[34]通過葡萄噴霧試驗發(fā)現(xiàn),循環(huán)噴霧較普通風送噴霧地面流失量減少5%,霧滴沉積率提升至87%;Peterson等[35]通過改進循環(huán)噴霧風機配置方案,進一步提高了循環(huán)噴霧的工作性能。

2.5 變量噴霧技術

果園變量噴霧技術最早開始于20世紀70年代,是將對靶噴霧與變量控制相結合,通過非接觸式靶標探測技術獲得樹冠特征信息,在大量試驗基礎上建立與樹冠特征信息適應的噴霧決策模型,依據(jù)模型反饋的噴霧參數(shù)進行動態(tài)調(diào)節(jié),最終實現(xiàn)變量噴霧[36]。該技術核心是靶標探測技術,重點是變量控制系統(tǒng),表2為目前最具代表性的靶標探測技術原理及優(yōu)缺點,表3為變量控制系統(tǒng)及其效果。

表2 靶標探測技術原理及其優(yōu)缺點

表3 變量控制系統(tǒng)及其作業(yè)效果

2.6 航空施藥技術

航空施藥技術指利用飛機或其他飛行器將農(nóng)藥從空中均勻噴施在目標區(qū)域的施藥方法[51-52]。2010年以來,隨著植保無人機在中國的迅速發(fā)展,以植保無人機為應用載體的低空低量航空施藥技術已逐步成為研究熱點[53-58]。植保無人機施藥藥箱容量一般在5~20 L(最近兩年相繼出現(xiàn)過藥箱容量大于30 L的植保無人機,但是應用相對較少),噴灑幅寬在5~20 m,果園植保時飛行高度一般設置距離冠層頂端1.5~2.0 m,距地面高度至少為3.5~4.0 m[59]。該技術具有作業(yè)效率高、作業(yè)效果好、應急能力強等優(yōu)點,應用前景廣闊。

3 果園植保機械研究進展

植保機械是果園植保的關鍵裝備,依托施藥技術發(fā)展,植保機械也獲得了快速發(fā)展,經(jīng)過了從手動到機動、從粗放到精細、從地面到航空的發(fā)展歷程[60]。目前,果園植保機械主要分為地面植保機械和航空植保機械,地面植保機械除半機械化植保機具外,主要包括管道噴霧設施、風送噴霧機、靜電噴霧機、循環(huán)噴霧機和變量噴霧機等;航空植保機械則主要為植保無人機,包括單旋翼無人直升機和多旋翼植保無人機等。

3.1 半機械化植保機具

半機械化植保機具主要指各類型背負式噴霧器/機、背負式熱力煙霧機、擔架式(框架式、車載式)及推車式(手推式)機動噴霧機等,發(fā)達國家已多采用標準化果園種植方式,農(nóng)機農(nóng)藝融合程度深,機械化植保專業(yè)程度強,該類機具主要在其設施果園中仍有使用。中國大部分果園農(nóng)藝特點機械化作業(yè)適應性差,仍以半機械化植保機具為主。其中背負式手動噴霧器體力耗費大,背負式機動噴霧機質(zhì)量重,施藥人員易勞累,隨著技術推廣成熟,兩類機型正逐漸被背負式電動噴霧器取代。目前典型半機械化植保機具相關技術參數(shù),如表4所示。

表4 典型半機械化植保機具及其技術參數(shù)

由于中國果園仍以家庭小規(guī)模種植為主,半機械化植保機具以其價格低、操作簡單、無使用條件限制,一定程度上能夠滿足植保作業(yè)要求,至今仍是廣大果農(nóng)的首選,在中國各地區(qū)、各種植園中廣泛應用。但與發(fā)達國家相比,這類機具80%左右仍處于發(fā)到國家20世紀五六十年代的水平[5],作業(yè)效率低、藥液浪費大,農(nóng)藥利用率低,尤其對樹冠高大、枝葉茂密的果園,霧滴很難穿透果樹冠層,使其受藥均勻。此外,還存在施藥人員中毒概率高、霧滴飄失嚴重等問題,因此提升中國果園植保機械化水平任重道遠,意義重大。

3.2 管道噴霧設施

管道噴霧設施相比半機械化植保機具,在集中連片管理、大中型機械進園難的丘陵山區(qū)果園具有突出優(yōu)勢,已獲得相當?shù)貐^(qū)農(nóng)戶的認可。管道噴霧設施主要包括管道噴霧首部、地下管道系統(tǒng)和地面噴霧系統(tǒng)3部分,其中管道噴霧首部包括水源、藥池、電源、電動機和藥泵等,電動機功率一般選擇3~4 kW;地下管道系統(tǒng)主要由主管、支管和立管構成,主管多采用直徑20 mm的PVC管,支管上一般每隔50 m安裝一根立管,立管長20~30 cm,露出地面約10~15 cm作為出藥口,每個出藥口控制噴藥面積0.20~0.33 hm2;地面噴霧系統(tǒng)由耐壓膠管和噴槍構成,膠管和立管連接,噴槍數(shù)量根據(jù)實際情況配置[66]。

管道噴霧設施在應用中由于作業(yè)人數(shù)不同,管道壓力分布不均,時常會發(fā)生爆管問題;作業(yè)后管道中存在藥液殘留,殘留液用清水沖洗既造成農(nóng)藥浪費,又污染環(huán)境;此外在行間郁閉、枝繁葉密的復雜成齡果園環(huán)境中,不僅施藥困難,而且容易造成施藥人員中毒。為此,國內(nèi)學者進行了多項研究和改進工作,研發(fā)了多項管道噴霧設施新成果(表5),有效促進了上述問題的解決。

表5 管道噴霧設施研究成果

因中國丘陵山地果園種植面積比例過大,宜機化改造尚需時日,因此管道噴霧設施在不短的時期內(nèi)仍然具有廣闊的發(fā)展前景。

3.3 風送噴霧機

風送噴霧機是目前果園植保中應用最多的機具,其核心部件是風機和導流裝置。風機分為軸流風機和離心風機;導流裝置分為導流板和導流管,導流管有多導管式結構和加農(nóng)炮式結構,這些設計較好的滿足了果園多品種、多種植方式的植保需求[72]。

3.3.1 國外風送噴霧機發(fā)展現(xiàn)狀

目前,歐美、日、韓等國生產(chǎn)的果園風送噴霧機技術先進、產(chǎn)品成熟。著名生產(chǎn)企業(yè)有意大利CAFFINI公司、荷蘭MUNCKHOF公司、丹麥HARDI公司、日本丸山制作所及韓國ASIA TECH公司等。部分典型產(chǎn)品相關技術參數(shù)如表6所示。

總體來看,歐美果園多以牽引式和懸掛式大中型風送噴霧機為主,功率大、射程遠、藥箱容積大、風機風量高,適合寬行窄株、樹冠高大的標準化果園;日韓果園種植方式與中國相似,多以自走式中小型風送噴霧機為主,其功率較歐美低,具有結構緊湊、通過性好、藥箱容積小等特點,適合果樹行株距基本一致,密集程度低的果園。

表6 國外典型風送噴霧機技術參數(shù)

3.3.2 國內(nèi)風送噴霧機研究進展

直接引進國外大中型風送噴霧機,其在中國果園適用性較差,因此國內(nèi)研發(fā)團隊紛紛展開攻關,針對中國果園種植方式特點研發(fā)了多種風送噴霧機,典型成果如表7所示。

從表7可以看出,針對中國果園低矮密植種植方式特點,自走式(輪式驅(qū)動、履帶底盤)風送噴霧機因其結構緊湊、通過性強,受到國內(nèi)廣大學者青睞,研發(fā)人員較多。在導流裝置設計方面,除常規(guī)圓環(huán)形噴頭布置形式,亦有學者改進為垂直噴桿式、多柔性導管式、立管式和蝶形風箱等,適應了中國果園類型多樣的植保需求。目前國內(nèi)代表性生產(chǎn)企業(yè)有中農(nóng)豐茂、永佳動力、中農(nóng)博遠等,典型成熟的風送噴霧裝備相關技術參數(shù)如表8所示。

表7 風送噴霧機典型研究成果

表8 國內(nèi)典型風送噴霧機技術參數(shù)

果園風送噴霧機相比半機械化植保機具優(yōu)勢眾多,然而由于風送噴霧機多為連續(xù)型噴霧方式,加之其強氣流作用,作業(yè)過程中仍有大量霧滴脫離靶標和飄移損失,造成農(nóng)藥浪費和環(huán)境污染,因此仍需進一步加強研究。

3.4 靜電噴霧機

進入21世紀,隨著靜電噴霧技術的快速發(fā)展,果園靜電噴霧機因其具有霧滴飄移少、環(huán)境污染小、水藥用量低及農(nóng)藥利用率高等優(yōu)點得到推廣應用。

3.4.1 國外靜電噴霧機發(fā)展現(xiàn)狀

國外果園靜電噴霧機著名生產(chǎn)企業(yè)有美國ESS公司、BRUSHHOUND公司及意大利MARTIGNANI公司等。圖1a為MARTIGNANI公司生產(chǎn)的典型靜電噴霧機,該噴霧機采用牽引方式連接于拖拉機后方,通過離心風機將荷電霧滴輸送到果樹冠層,藥箱容積1 000 L,作業(yè)幅寬4.6~5.8 m,可節(jié)約用水達90%,主要適用于籬笆型標準化果園,而對其靜電噴霧系統(tǒng)的介紹及使用效果尚無文獻研究[89]。ESS公司靜電噴霧機是在MaxCharge?靜電噴頭基礎上根據(jù)果園實際應用條件研制的,適用于行距寬、冠層高、樹冠厚的果樹,圖1b為該公司典型產(chǎn)品,采用3點懸掛方式連接于拖拉機后方,最小藥箱容積212 L,最大流量5.03 L/min,霧滴粒徑為40m[90]。

圖1 果園靜電噴霧機

3.4.2 國內(nèi)靜電噴霧機研究進展

國內(nèi)學者對果園靜電噴霧機的研究,主要集中在多技術集成的樣機研制方面,表9為國內(nèi)研發(fā)團隊成功研制的靜電噴霧樣機及其測試效果。

從表9可以看出,靜電噴霧機中感應式充電是使用最普遍的方式,且靜電噴霧一般與風送噴霧相結合,克服了自身的局限性,在此基礎上融合氣力輔助噴霧、對靶噴霧等技術,更加提高了靶標霧滴密度、藥液覆蓋率以及農(nóng)藥利用率。目前,國內(nèi)市場商業(yè)化產(chǎn)品有博遠3WFQD-1600風送靜電噴霧機,該機采用牽引式連接于拖拉機后方,工作壓力0.5~2.5 MPa,噴灑幅寬8~12 m,可減少30%~60%農(nóng)藥使用量。然而,因環(huán)境參數(shù)(溫濕度、懸浮顆粒物、污染氣體、氣流速度等)、作業(yè)參數(shù)(充電方式、充電電壓、作業(yè)速度、噴霧方向、噴霧距離、噴霧量等)及靶標參數(shù)(材質(zhì)、葉面積指數(shù)、葉片傾角等)等對霧滴沉積的影響機理尚未清楚,果園靜電噴霧裝備成熟商業(yè)化產(chǎn)品仍然較少,而且距離廣泛推廣應用還有較大差距。

表9 靜電噴霧機典型成果

3.5 循環(huán)噴霧機

3.5.1 國外循環(huán)噴霧機發(fā)展現(xiàn)狀

歐美矮化果園種植方式發(fā)展后,風送噴霧機單側(cè)噴霧大量霧滴脫離靶標、無法回收利用問題變得凸顯,循環(huán)噴霧機能夠有效解決這一問題,受到人們廣泛重視。

圖2所示Nestor循環(huán)噴霧機為國外典型循環(huán)噴霧機型之一,該機采用牽引方式連接于拖拉機后方,藥箱容量2 000 L,作業(yè)幅寬0.94~2.70 m,適宜樹冠高度2.10~2.35 m[96]。此外,據(jù)LIPCO公司資料顯示其生產(chǎn)的循環(huán)噴霧機在果樹枝葉稀疏時藥液回收率達70%,枝葉茂盛時藥液回收率亦有20%;MUNKHOF公司制造的循環(huán)噴霧機根據(jù)枝葉茂密程度,藥液回收率在30%~60%[32]。可見循環(huán)噴霧在增強霧滴沉積、減少霧滴飄失、提升藥液回收利用方面具有重大優(yōu)勢。

圖2 Nestor循環(huán)噴霧機

3.5.2 國內(nèi)循環(huán)噴霧機研究進展

國內(nèi)果園種植方式與歐美果園區(qū)別明顯,循環(huán)噴霧機在中國適用程度低,因此目前中國學者對循環(huán)噴霧機的研究較少。中國農(nóng)業(yè)大學宋堅利等[97-98]曾于2012年針對葡萄園研發(fā)了“Π”型循環(huán)噴霧機并開展了防飄失性能試驗,結果表明該機比普通風送噴霧機霧滴飄失減少97.9%,地面流失量減少99.3%,極大的減少了農(nóng)藥浪費;山東農(nóng)業(yè)機械科學研究院牛萌萌等[99]同樣針對葡萄設計了高地隙隧道式循環(huán)噴霧機(圖3),該機采用乘坐式設計,結構緊湊、通過性強,“Π”型立桿長1.30 m,間距1.20 m,最大通過高度1.90 m,最大噴幅達8.10 m,經(jīng)試驗其藥液回收率達7.33%。

圖3 高地隙隧道式循環(huán)噴霧機

綜上可知,循環(huán)噴霧機能夠顯著降低霧滴飄移量和地面流失量,有效回收藥液進而提高農(nóng)藥利用率;但因其主要適用于特定矮化種植園,現(xiàn)階段中國該類果園種植方式尚未普及,農(nóng)藝條件發(fā)展不足,導致循環(huán)噴霧機仍未在中國獲得廣泛關注。

3.6 變量噴霧機

3.6.1 國外變量噴霧機發(fā)展現(xiàn)狀

風送噴霧機連續(xù)噴霧方式存在嚴重地農(nóng)藥過量噴灑和樹隙無效噴霧問題,果園變量噴霧機是解決該問題的有效手段[100-102],成為廣大學者研究的熱點。圖4為國外典型果園變量噴霧機機型,該機通過在HARDI公司生產(chǎn)的LE-600噴霧機上模塊化植入變量噴霧系統(tǒng)形成,采用懸掛方式連接于拖拉機后方,藥箱容量600 L[103]。總體來說,國外對果園變量噴霧機的研究領先中國,一般是通過在已有噴霧機上模塊化加裝變量噴霧系統(tǒng)融合而成。目前,果園變量噴霧機在歐美一些國家和地區(qū)已實現(xiàn)產(chǎn)業(yè)化發(fā)展和小規(guī)模應用。

圖4 果園變量噴霧機

3.6.2 國內(nèi)變量噴霧機研究進展

國內(nèi)對變量噴霧機的研究起步晚、發(fā)展快。針對果園變量噴霧機,研究人員開展了一系列探索并研發(fā)了成套樣機,如葛玉峰等[104]利用CCD攝像法實時采集樹木圖像,依據(jù)圖像處理結果進行施藥決策,建立了室內(nèi)農(nóng)藥自動精確噴霧系統(tǒng),表10為國內(nèi)研發(fā)團隊研制的部分典型果園變量噴霧機樣機及其測試效果。

從目前國內(nèi)技術研發(fā)結果看,超聲波傳感法和激光傳感法應用前景較好,其次是紅外探測法,機器視覺法目前研究更多集中于作物種類、部位及形態(tài)結構識別上,能為精確控制和精準定位提供信息,但在圖像處理速度、田間作業(yè)環(huán)境實時檢測等方面還存在諸多不足;此外在冠層參差不齊、枝葉時疏時密等復雜條件下,目標檢測可靠性、穩(wěn)定性、噴霧實時精準調(diào)節(jié)等方面還有所欠缺,總體上仍處于樣機試驗階段,尚未形成產(chǎn)業(yè)化成果。

表10 果園變量噴霧機典型成果

3.7 植保無人機

相比地面植保機械,植保無人機地形適應能力強,不受作物長勢限制,成本低、安全性好,已成為重要的植保機具。據(jù)相關部門統(tǒng)計,截至2018年底,中國已有300多家植保無人機生產(chǎn)企業(yè),開發(fā)近250多種機型,全年銷售量達1萬多臺,全國作業(yè)面積達1.78×107hm2,實現(xiàn)了“人機分離、人藥分離”,安全高效作業(yè)[110]。目前,國內(nèi)部分植保無人機典型機具相關技術參數(shù)如表11所示。

表11 植保無人機技術參數(shù)

為滿足植保無人機果園精準噴灑作業(yè)要求,提升果園噴霧效果,國內(nèi)研究人員分別從作業(yè)模式、旋翼風場及作業(yè)參數(shù)等方面開展了一系列研究[115-117]。

在作業(yè)模式方面,根據(jù)果樹分布及生長狀況,果樹作業(yè)模式可以分為手動噴灑、連續(xù)噴灑和定點噴灑,為使冠層與無人機保持恒定高度,部分機型已實現(xiàn)仿地形飛行功能,提升了施藥精準性和作業(yè)安全性。表12為果園主要施藥作業(yè)模式及其特點。

表12 果園主要施藥作業(yè)模式及其特點

在旋翼風場方面,植保無人機下方有無樹冠對風場影響重大。楊風波等[118]、Zheng等[119]利用CFD仿真分別對單旋翼和多旋翼無人機無樹冠條件下的風場分布規(guī)律進行了模擬分析,得到懸停高度2、3和5 m時對應的最小風速分別為1.33×10-4、2.02×10-4和1.87×10-4m/s,可見隨懸停高度增加,風場最小風速先增大后減小,懸停高度3 m時適宜田間噴灑作業(yè)。張豪等[120]等利用CFD仿真建立了六旋翼無人機無樹冠和有樹冠條件下的氣流分布三維模型,對比結果表明:無樹冠時,旋翼下方0.2 m處氣流速度最大,接近8.0 m/s,由于空氣阻力作用,0.2~0.6 m區(qū)域,氣流速度迅速由8.0 m/s衰減至4.0 m/s,并在0.6~1.7 m區(qū)域內(nèi)形成速度穩(wěn)定區(qū),約3.0~4.0 m/s;當存在樹冠時,0~0.6 m區(qū)域內(nèi)由于氣流未受冠層影響,速度變化規(guī)律與無樹冠時基本一致,但在0.6~1.7 m區(qū)域內(nèi),隨冠層壓力損失系數(shù)增加,氣流速度衰減加快,冠層壓力損失系數(shù)為6~10時,氣流速度均接近0;由此可見果樹冠層對旋翼下洗氣流有明顯阻擋作用,且樹冠越密氣流穿透性越小。實際果樹噴霧時,不同生長期,冠層疏密不同,因此為取得最佳噴霧效果,針對不同冠層密度的果樹選擇怎樣的機型仍然有待深入研究。

在作業(yè)參數(shù)方面,王娟等[121]開展了單旋翼無人機飛行高度10.5 m、11.5 m和12.0 m下的檳榔噴霧試驗,張盼等[122]進行了四旋翼無人機作業(yè)高度0.5 m、1.0 m和1.5 m下的柑橘噴霧試驗,結果均表明植保無人機果樹施藥具有最佳作業(yè)高度范圍,超出或低于最佳范圍,冠層霧滴沉積密度或沉積量減少。Lü等[123]在室內(nèi)進行了四旋翼無人機0.3~1.0 m/s作業(yè)速度下的仿真茶樹噴霧試驗,陳盛德等[124]開展了六旋翼無人機不同速度下的柑橘田間試驗,結果同樣表明植保無人機施藥具有最佳作業(yè)速度范圍,超出或低于最佳范圍,冠層霧滴沉積密度同樣減小??梢?,植保無人機作業(yè)參數(shù)是影響霧滴沉積效果的重要指標,針對特定果樹選擇適宜機型及最佳作業(yè)參數(shù)對實現(xiàn)最佳噴霧效果具有重要意義。

此外,Zhang等[125]將靜電噴霧技術與植保無人機結合形成航空靜電噴霧系統(tǒng),較非靜電噴霧霧滴密度提高13.6%;Zhang等[126]、Tang等[127]還研究了四旋翼無人機施藥條件下,柑橘冠層形狀對霧滴沉積效果的影響,為果園農(nóng)藝農(nóng)機融合發(fā)展提供了技術參考。

通過對植保無人機施藥作業(yè)模式、旋翼風場、作業(yè)參數(shù)及其他方面研究表明,植保無人機施藥能夠一定程度滿足果園植保需求,但其冠層霧滴穿透性差、霧滴分布不均勻等問題需要進一步解決。

4 結論與展望

進入新世紀以來,隨著人們環(huán)保意識增強和對農(nóng)藥污染問題的重視,針對果園施藥,越來越多的學者投入到降低農(nóng)藥使用量,提高植保機械化水平的研究中。從上述文獻分析可以看出,現(xiàn)階段中國果園植保半機械化植保機具應用最廣泛,用藥量最大、浪費最嚴重、農(nóng)藥利用率最低;其他地面植保機具中,風送噴霧機應用較普遍,對提高農(nóng)藥利用率,減少藥液損失有很大幫助;靜電噴霧機、循環(huán)噴霧機和變量噴霧機多處在樣機試驗階段,未形成產(chǎn)業(yè)化發(fā)展;航空植保機具特別是植保無人機多方面優(yōu)勢明顯,正處于蓬勃發(fā)展階段,但霧滴穿透能力弱,續(xù)航時間段尚是其發(fā)展制約因素。為進一步提升果園植保機械化水平,推進水果產(chǎn)業(yè)健康發(fā)展,可重點加強以下幾個方面研究工作:

1)推廣標準化果園種植方式

隨著土地流轉(zhuǎn)政策支持與家庭農(nóng)場建設實施,針對中國丘陵山區(qū)緩坡、平地地帶田塊分散種植的果園,通過土地承包,集中連片管理,大力推進園區(qū)階梯改坡、陡坡改緩坡、緩坡改平地等宜機化改造,推廣標準化果園種植方式,對于提高果園植保機械化水平意義重大。

2)發(fā)展立體植保施藥技術

隨著航空施藥技術不斷發(fā)展,果樹連續(xù)、定點噴灑作業(yè)模式應用成熟,針對檳榔、香蕉等樹冠高大、葉面寬厚、行間郁閉的果園,發(fā)展地空協(xié)同立體植保施藥技術,通過研發(fā)小微型地面植保機具與植保無人機結合,有望解決該類果園施藥難、受藥不均、機械化作業(yè)水平低的問題,將是未來重點研究方向。

3)大力推廣專業(yè)化機械植保服務模式

隨著中國城市化進程加快,農(nóng)村勞動力緊缺,果園人工采用半機械化植保機具施藥效率低、成本高,針對此類問題,大力推廣專業(yè)化機械植保服務模式,讓專業(yè)的人做專業(yè)的事,讓少數(shù)的人干更多的活,讓施藥成本更低,讓果農(nóng)收益更高,專業(yè)化機械植保前景廣闊。

4)研發(fā)智能植保機器人

針對中國廣泛種植的低矮密植果園,加強小微型智能植保機器人研發(fā),使其能夠精量對靶噴霧,實現(xiàn)送風量、藥流量智能精準調(diào)節(jié),如發(fā)展植保無人機隨速變量、仿冠層飛行施藥技術等,以期達到單位面積果園定量化、精量化、均勻性施藥要求。

[1] 2020年果園面積要穩(wěn)定在2億畝. [2020-10-17] https://news. cnhnb.com/rdzx/detail/384719/

[2] 常有宏,呂曉蘭,藺經(jīng),等. 我國果園機械化現(xiàn)狀與發(fā)展思路[J]. 中國農(nóng)機化學報,2013,34(6):21-26. Chang Youhong, Lü Xiaolan, Lin Jing, et al. Present state and thinking about development of orchard mechanization in China[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(6): 21-26. (in Chinese with English abstract)

[3] 趙映,肖宏儒,梅松,等. 我國果園機械化生產(chǎn)現(xiàn)狀與發(fā)展策略[J]. 中國農(nóng)業(yè)大學學報,2017,22(6):116-127. Zhao Ying, Xiao Hongru, Mei Song, et al. Current status and development strategies of orchard mechanization production in China[J]. Journal of China Agricultural University, 2017, 22(6): 116-127. (in Chinese with English abstract)

[4] 何雄奎. 高效施藥技術與機具[M]. 北京:中國農(nóng)業(yè)大學出版社,2012.

[5] 齊鵬. 常用植保機械簡介[J]. 科學種養(yǎng),2017,12(8):61-62. Qi Peng. Introduction to common plant protection machinery[J]. Scientific planting and nursing, 2017, 12(8): 61-62. (in Chinese with English abstract)

[6] 宋淑然,李琨,孫道宗,等. 山地果園植保技術與裝備研究進展[J]. 現(xiàn)代農(nóng)業(yè)裝備,2019,40(5):2-9. Song Shuran, Li Kun, Sun Daozong, et al. Research progress on plant protection technology and equipment in mountainous orchard[J]. Modern Agricultural Equipment, 2019, 40(5): 2-9. (in Chinese with English abstract)

[7] 楊鵬. 郁閉型果園遙控彌霧機的研制與試驗[D]. 楊凌:西北農(nóng)林科技大學,2016. Yang Peng. Development and Experimental Research of Canopy Type Remote Orchard Mist Sprayer[D]. Yangling: Northwest A&F University, 2016. (in Chinese with English abstract)

[8] 盧營蓬,易文裕,庹洪章,等. 果園噴霧機械現(xiàn)狀及發(fā)展趨勢[J]. 中國農(nóng)機化學報,2018,39(1):36-41. Lu Yingpeng, Yi Wenyu, Tuo Hongzhang, et al. Present state and trends of orchard sprayer[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(1): 36-41. (in Chinese with English abstract)

[9] Wertheim S J. Intensive apple orchards with slender spindles[J]. Acta Horticulturae, 1978(65): 209-216.

[10] Weber M S, Fokkema N J, Beek M A, et al. The super spindle system[C]. XXV International Horticultural Congress, 2000.

[11] 張林森,馬鋒旺,李丙智,等. 國外蘋果高紡錘形整形技術與應用[J]. 中國果樹,2007,31(6):69-70. Zhang Linsen, Ma Fengwang, Li Bingzhi, et al. Technology and application of apple high spindle shaping in foreign countries[J]. China Fruits, 2007, 31(6): 69-70. (in Chinese with English abstract)

[12] 趙芳. 日本的果園管理[J]. 西北園藝,2003,16(4):54-55. Zhao Fang. Orchard management in Japan[J]. Northwest Horticulture, 2003, 16(4): 54-55. (in Chinese with English abstract)

[13] 高東升. 中國設施果樹栽培的現(xiàn)狀與發(fā)展趨勢[J]. 落葉果樹,2016,48(1):1-4. Gao Dongsheng. Current situation and development trend of fruit tree protected cultivation in China[J]. Deciduous Fruits, 2016, 48(1): 1-4. (in Chinese with English abstract)

[14] 李民宇. 果園管道自動順序噴霧的噴霧裝置設計及試驗[D]. 廣州:華南農(nóng)業(yè)大學,2019. Li Minyu. Design and Experiment of Automatic Sequence Spray Device for Orchard Pipeline Spray[D]. Guangzhou: South China Agricultural University. (in Chinese with English abstract)

[15] 王輝,石昌飛,宋淑然,等. 果園管道自動順序噴霧控制系統(tǒng)設計[J]. 廣東農(nóng)業(yè)科學,2015,42(11):148-153. Wang Hui, Shi Changfei, Song Shuran, et al. Design of automatic sequence control system for orchard pipeline spray[J]. Guangdong Agricultural Sciences, 2015, 42(11): 148-153. (in Chinese with English abstract)

[16] 于紹夫,賈伯卿. 蘋果園管道輸液噴藥新設施[J]. 中國果樹,1980,3(12):36-38. Yu Shaofu, Jia Boqing. New facilities for pipeline spraying in apple orchard[J]. China Fruit, 1980, 3(12): 36-38. (in Chinese with English abstract)

[17] 劉學文. 果園管道噴藥技術的應用[C]. 北京昆蟲學會成立四十周年學術討論會,北京,1990:148-149.

[18] 萬欣. 果園管道噴藥技術[J]. 北京農(nóng)業(yè),1994,1(5):27. Wan Xin. Technology for orchard pipeline spray[J]. Beijing Agriculture, 1994, 1(5): 27. (in Chinese with English abstract)

[19] 田文龍,錢玉軍,胡文利,等. 密植果園微噴灌與管道噴藥試驗[J]. 山西果樹,2000,21(2):23-24. Tian Wenlong, Qian Yujun, Hu Wenli, et al. Experiment on micro irrigation and pipeline spray in dense orchard[J]. Shanxi Fruits, 2000, 21(2): 23-24. (in Chinese with English abstract)

[20] 王飛高,張大偉,林昌禮,等. 山地果園機械管道施藥設施建設及其效益分析[J]. 中國南方果樹,2005,34(5):73-74. Wang Feigao, Zhang Dawei, Lin Changli, et al. Facilities construction and benefit analysis for mountainous orchard pipeline spray[J]. South China Fruits, 2005, 34(5): 73-74. (in Chinese with English abstract)

[21] 遲志廣,方昭,林濤,等. 廣西規(guī)?;秷@機械化現(xiàn)狀分析[J]. 熱帶農(nóng)業(yè)科學,2015,35(8):37-41. Chi Zhiguang, Fang Zhao, Lin Tao, et al. Analysis on mechanization of large-scale banana plantation in Guangxi[J]. Chinese Journal of Tropical Agriculture, 2015, 35(8): 37-41. (in Chinese with English abstract)

[22] 董祥,張鐵,燕明德,等. 3WPZ-4型風送式葡萄噴霧機設計與試驗[J]. 農(nóng)業(yè)機械學報,2018,49(S):205-213. Dong Xiang, Zhang Tie, Yan Mingde, et al. Design and experiment of 3WPZ-4 type air-assisted grape sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S): 205-213. (in Chinese with English abstract)

[23] 王榮,黨革榮,祁正梅,等. 葡萄園噴霧機風機蝸殼結構改進與性能試驗[J]. 農(nóng)機化研究,2015,37(8):170-173. Wang Rong, Dang Gerong, Qi Zhengmei, et al. Structure improving and performance experimenting of sprayer fan for vineyard orchard[J]. Journal of Agricultural Mechanization Research, 2015, 37(8): 170-173. (in Chinese with English abstract)

[24] 劉青,傅澤田,祁力鈞,等. 9WZCD-25型風送式超低量噴霧機性能優(yōu)化試驗[J]. 農(nóng)業(yè)機械學報, 2005,36(9):44-47. Liu Qing, Fu Zetian, Qi Lijun, et al. Characteristics optimization experiments of 9WZCD-25 air-blast and ultralow volume sprayer[J]. Transactions of the Chinese Society of Agricultural Machinery, 2005, 36(9): 44-47. (in Chinese with English abstract)

[25] 祁力鈞,趙亞青,王俊,等. 基于CFD的果園風送式噴霧機霧滴分布特性分析[J]. 農(nóng)業(yè)機械學報,2010,41(2):62-67. Qi Lijun, Zhao Yaqing, Wang Jun, et al. CFD simulation and experimental verification of droplet dispersion of air-assisted orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Machinery, 2010, 41(2): 62-67. (in Chinese with English abstract)

[26] 張曉辛,呂曉蘭,丁素明,等. 果園風送式噴霧機仿形噴霧試驗研究[J]. 中國農(nóng)機化,2011,32(3):68-72. Zhang Xiaoxin, Lü Xiaolan, Ding Suming, et al. Experimental research on profiling spray of air-assisted orchard sprayer[J]. Chinese Agricultural Mechanization, 2011, 32(3): 68-72. (in Chinese with English abstract)

[27] Zhang Wei, Hou Yongrui, Liu Xin, et al. Wind tunnel experimental study on droplet drift reduction by a conical electrostatic nozzle for pesticide spraying[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3):87-94.

[28] 周良富,張玲,薛新宇,等. 農(nóng)藥靜電噴霧技術研究進展及應用現(xiàn)狀分析[J]. 農(nóng)業(yè)工程學報,2018,34(18):1-11. Zhou Liangfu, Zhang Ling, Xue Xinyu, et al. Research progress and application status of electrostatic pesticide spray technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 1-11. (in Chinese with English abstract)

[29] 舒朝然,詹敏,盛茂領,等. 果樹樹冠靜電噴霧的空間電荷效應分析[J]. 沈陽農(nóng)業(yè)大學學報,2007,38(1):59-64. Shu Chaoran, Zhan Min, Sheng Maoling, et al. Analysis on the space charge effects in tree canopy electrostatic spraying[J]. Journal of Shenyang Agricultural University, 2007, 38(1): 59-64. (in Chinese with English abstract)

[30] 周良富,張玲,丁為民,等. 風送靜電噴霧覆蓋率響應面模型與影響因素分析[J]. 農(nóng)業(yè)工程學報,2015,31(S2):52-59. Zhou Liangfu, Zhang Ling, Ding Weimin, et al. Droplet coverage response surface models and influencing factors of air-assisted electrostatic spray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(S2): 52-59. (in Chinese with English abstract)

[31] 周良富,張玲,薛新宇,等. 雙氣流道輔助靜電噴頭設計與試驗[J]. 江蘇農(nóng)業(yè)科學,2017,45(24):192-196. Zhou Liangfu, Zhang Ling, Xue Xinyu, et al. Design and experiment of double air-assisted electrostatic nozzle[J]. Jiangsu Agricultural Sciences 2017, 45(24): 192-196. (in Chinese with English abstract)

[32] 宮少俊,宋堅利. 隧道式循環(huán)噴霧機發(fā)展研究[J]. 北京農(nóng)業(yè),2007,14(9):55-58. Gong Shaojun, Song Jianli. Research on the development of tunnel circulating sprayer[J]. Beijing Agriculture, 2007, 14(9): 55-58. (in Chinese with English abstract)

[33] Beasley E, Rohrbach R, Mainland C, et al. Saturation spraying of blueberries with partial spray recovery[J]. Transactions of the ASAE, 1983, 26(3): 732-736.

[34] Ade G, Molari G, Rondelli V. Vineyard evaluation of a recycling tunnel sprayer[J]. Transactions of the ASAE, 2005, 48(6): 2105-2112.

[35] Peterson D L, Hogmire H W. Tunnel sprayer for dwarf fruit-trees[J]. Transactions of the ASAE, 1994, 37(3): 709-715.

[36] 周良富,薛新宇,周立新,等. 果園變量噴霧技術研究現(xiàn)狀與前景分析[J]. 農(nóng)業(yè)工程學報,2017,33(23):80-92. Zhou Liangfu, Xue Xinyu, Zhou Lixin, et al. Research situation and progress analysis on orchard variable rate spraying technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 80-92. (in Chinese with English abstract)

[37] Hong Y, Zhu H P, Richard D, et al. Evaluation of ultrasonic sensor for variable-rate spray applications[J]. Computers and Electronics in Agriculture, 2011, 75(5): 36, 173-191.

[38] Rosell J, Sanz R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities[J]. Computers and Electronics in Agriculture, 2012, 81(9): 124-141.

[39] 許林云,張昊天,張海峰,等. 果園噴霧機自動對靶噴霧控制系統(tǒng)研制與試驗[J]. 農(nóng)業(yè)工程學報,2014,30(22):1-9. Xu Linyun, Zhang Haotian, Zhang Haifeng, et al. Development and experiment of automatic target spray control system used in orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 1-9. (in Chinese with English abstract)

[40] Francisco J, Jaime S, Pablo A, et al. LiDAR and thermal images fusion for ground-based 3D characterisation of fruit trees[J]. Biosysterm Engineering, 2016, 151(11): 479-494.

[41] Cai Jichen, Wang Xiu, Song Jian, et al. Development of real-time laser-scanning system to detect tree canopy characteristics for variable-rate pesticide application[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(6):155-163.

[42] Francisco R, Zhang Q, John F, et al. Stereo vision three dimensional terrain maps for precision agriculture[J]. Computers and Electronics in Agriculture, 2008, 60(5):133-143.

[43] Qiu Wei, Zhao Sanqin, Ding Weimin, et al. Effects of fan speed on spray deposition and drift for targeting air-assisted sprayer in pear orchard[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(4):53-62.

[44] 李麗,李恒,何雄奎,等. 紅外靶標自動探測器的研制及試驗[J]. 農(nóng)業(yè)工程學報,2012,28(12):159-163. Li Li, Li Heng, He Xiongkui, et al. Development and experiment of automatic detection device for infrared target[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(12): 159-163. (in Chinese with English abstract)

[45] Gonzalez R, Pawlowski A, Rodriguez C, et al. Design and implementation of an automatic pressure-control system for a mobile sprayer for greenhouse applications[J]. Spanish Journal of Agricultural research, 2012, 10(4): 939-949.

[46] Womac A, Bui Q D. Design and tests of a variable-flow fan nozzle[J]. Transactions of the ASAE, 2002, 45(2): 287-295.

[47] 魏新華,蔣杉,孫宏偉,等. PWM間歇噴霧式變量噴施控制器設計與測試[J]. 農(nóng)業(yè)機械學報,2012,43(12):87-93,129. Wei Xinhua, Jiang Shan, Sun Hongwei, et al. Design and test of variable rate application controller of intermittent spray based on PWM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(12): 87-93, 129. (in Chinese with English abstract)

[48] 邱威,丁為民,傅錫敏,等. 果園噴霧機圓環(huán)雙流道風機的設計與試驗[J]. 農(nóng)業(yè)工程學報,2012,28(12):13-17. Qiu Wei, Ding Weimin, Fu Ximin, et al. Design and experiment of ring double-channel fan for spraying machine in orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(12): 13-17. (in Chinese with English abstract)

[49] 丁天航,曹曙明,薛新宇,等. 果園噴霧機單雙風機風道氣流場仿真與試驗[J]. 農(nóng)業(yè)工程學報,2016,32(14):62-68. Ding Tianhang, Cao Shuming, Xue Xinyu, et al. Simulation and experiment on single-channel and double-channel airflow field of orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 62-68. (in Chinese with English abstract)

[50] Aljaz O, Tone G, Marko H, et al. Real-time positioning algorithm for variable-geometry air-assisted orchard sprayer[J]. Computers and Electronics in Agriculture, 2013, 98(8):175-182.

[51] He Xiongkui, Bonds Jane, Herbst Andreas, et al. Recent development of unmanned aerial vehicle for plant protection in East Asia[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3):18.

[52] Wang Shilin, Song Jianli, He Xiongkui, et al. Performances evaluation of four typical unmanned aerial vehicles used for pesticide application in China[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(4):22-31.

[53] Wang Linhui, Lan Yubin, Yue Xuejun, et al. Vision-based adaptive variable rate spraying approach for unmanned aerial vehicles[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(3):18-26.

[54] Qin Weicai, Xue Xinyu, Zhang Shaoming, et al. Droplet deposition and efficiency of fungicides sprayed with small UAV against wheat powdery mildew[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(2):27-32.

[55] Meng Yanhua, Lan Yubin, Mei Guiying, et al. Effect of aerial spray adjuvant applying on the efficiency of small unmanned aerial vehicle for wheat aphids control[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(5):46-53.

[56] Zheng Yongjun, Yang Shenghui, Zhao Chunjiang, et al. Modelling operation parameters of UAV on spray effects at different growth stages of corns[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3):57.

[57] 秦維彩,薛新宇,周立新,等. 無人直升機噴霧參數(shù)對玉米冠層霧滴沉積分布的影響[J]. 農(nóng)業(yè)工程學報,2014,30(5):50-56. Qin Weicai, Xue Xinyu, Zhou Lixin, et al. Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distribution of maize canopies[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 50-56. (in Chinese with English abstract)

[58] Liao Juan, Zang Ying, Luo Xiwen, et al. Optimization of variables for maximizing efficacy and efficiency in aerial spray application to cotton using unmanned aerial systems[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(2):10-17.

[59] 何雄奎. 中國精準施藥技術和裝備研究現(xiàn)狀及發(fā)展建議[J].智慧農(nóng)業(yè),2020,2(1):133-146. He Xiongkui. Research progress and developmental recommendations on precision spraying technology and equipment in China[J]. Smart Agriculture, 2020, 2(1): 133-146. (in Chinese with English abstract)

[60] 傅錫敏,呂曉蘭,丁為民,等. 我國果園植保機械現(xiàn)狀與技術需求[J]. 中國農(nóng)機化,2009,16(6):10-13. Fu Ximin, Lü Xiaolan, Ding Weimin, et al. Present state and technical requirement about orchard plant protection machinery in China[J]. Journal of Chinese Agricultural Mechanization, 2009, 16(6): 10-13. (in Chinese with English abstract)

[61] WS-16D背負式電動噴霧器[EB/OL]. [2020-10-02] https://www. nongjitong. com/product/1522_ws-16d_ spray_machine. html.

[62] 3WF-960背負式機動噴霧噴粉機[EB/OL]. [2020-10-02] https://item. jd. com/25147383035. html.

[63] TS-35A背負式熱力煙霧機[EB/OL]. [2020-10-02] https://item. jd. com/68984797912. html.

[64] HD-22D擔架式機動噴霧機[EB/OL]. [2020-10-02] https://item. jd. com/1713681083. html.

[65] HD100T推車式機動噴霧機[EB/OL]. [2020-10-02] https://item. jd. com/26021986433. html.

[66] 馬錁,李建國,賴旭輝,等. 果園管道噴藥系統(tǒng)建設及效益分析[J]. 中國南方果樹,2018,47(2):165-166. Ma Ke, Li Jianguo, Lai Xuhui, et al. System construction and benefit analysis for orchard pipeline spray[J]. South China Fruits, 2018, 47(2): 165-166. (in Chinese with English abstract)

[67] 宋淑然,洪添勝,孫道宗,等. 基于微機的管道恒壓噴霧控制裝置:CN101690923A[P]. 2010-04-07.

[68] 宋淑然,阮耀燦,洪添勝,等. 果園管道噴霧系統(tǒng)藥液壓力的自整定模糊PID控制[J]. 農(nóng)業(yè)工程學報,2011,27(6):157-161. Song Shuran, Ruan Yaocan, Hong Tiansheng, et al. Self-adjustable fuzzy PID control for pressure of pipeline spray system in orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(6): 157-161. (in Chinese with English abstract)

[69] 吳偉鋒,洪添勝,代秋芳,等. 基于Zigbee的多節(jié)點管道噴霧壓力控制系統(tǒng)研究[J]. 農(nóng)機化研究, 2019,41(10):52-57. Wu Weifeng, Hong Tiansheng, Dai Qiufang, et al. Research of multi-node pressure control system for pipeline spray based on ZigBee[J]. Journal of Agricultural Mechanization Research, 2019, 41(10): 52-57. (in Chinese with English abstract)

[70] 李致. 基于管道噴霧的在線混藥技術及裝置[D]. 廣州:華南農(nóng)業(yè)大學,2018. Li Zhi. On-line Mixing Pesticide Technology and Device Based on Pipeline Spraying[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese with English abstract)

[71] 李民宇,宋淑然,代秋芳,等. 管道自動順序噴霧架設計及噴霧有效性試驗[J]. 農(nóng)機化研究,2020,42(1):153-160. Li Minyu, Song Shuran, Dai Qiufang, et al. Design and experiment of automatic sequential pipeline spray frame and spraying validity[J]. Journal of Agricultural Mechanization Research, 2020, 42(1): 153-160. (in Chinese with English abstract)

[72] 施鵬,薛新宇,王振龍,等. 果園動力底盤噴霧機的發(fā)展現(xiàn)狀[J]. 中國農(nóng)機化學報,2013,34(6):27-31. Shi Peng, Xue Xinyu, Wang Zhenlong, et al. Present situation of development on the dynamic chassis orchard sprayer[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(6): 27-31. (in Chinese with English abstract)

[73] 王艷紅. 2018意大利EIMA農(nóng)機展上的植保機械[J]. 農(nóng)業(yè)工程,2018,8(11):2-3. Wang Yanhong. Plant protection machinery showed in Italy agricultural machinery exhibition 2018[J]. Agricultural Engineering, 2018, 8(11):2-3. (in Chinese with English abstract)

[74] MUNCKHOF制造導流板式風送噴霧機[EB/OL]. [2020-10-02] https://www.agriexpo.cn/prod/munckhof/product-184798-82698.html.

[75] HARDI制造軸流風送噴霧機[EB/OL]. [2020-10-02] https://www.agriexpo.cn/prod/hardi/product-169215-13149.html.

[76] HARDI制造加農(nóng)炮式風送噴霧機[EB/OL]. [2020-10-02] https://hardi-international.com/sprayers/mistblowers/zenit-orchard/cannon#nav.

[77] ASIA TECH公司制造自走式風送噴霧機[EB/OL]. [2020-10-02] https://www.agriexpo.cn/prod/asia-technology- co-ltd/product-180444-55544.html.

[78] 張曉輝,郭清南,李法德,等. 3MG30型果園彌霧機的研制與試驗[J]. 農(nóng)業(yè)機械學報,2002,33(3):30-33. Zhang Xiaohui, Guo Qingnan, Li Fade, et al. Development of 3MG-30 orchard mist sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2002, 33(3): 30-33. (in Chinese with English abstract)

[79] 邱威,丁為民,汪小旵,等. 3WZ-700型自走式果園風送定向噴霧機[J]. 農(nóng)業(yè)機械學報,2012,43(4):26-30. Qiu Wei, Ding Weimin, Wang Xiaochan, et al. 3WZ-700 self-propelled air-blowing orchard sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 26-30. (in Chinese with English abstract)

[80] 徐莎,翟長遠,朱瑞祥,等. 噴霧高度可調(diào)的果園風送噴霧機的設計[J]. 西北農(nóng)林科技大學學報:自然科學版,2013,41(11):229-234. Xu Sha, Zhai Changyuan, Zhu Ruixiang, et al. Design of an orchard air-assisted sprayer with adjustable spray height[J]. Journal of Northwest A&F university (Natural Science Edition), 2013, 41(11): 229-234. (in Chinese with English abstract)

[81] 李超,張曉輝,姜建輝,等. 葡萄園立管風送式噴霧機的研制與試驗[J]. 農(nóng)業(yè)工程學報,2013,29(4):71-78. Li Chao, Zhang Xiaohui, Jiang Jianhui, et al. Development and experiment of riser air-blowing sprayer in vineyard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(4): 71-78. (in Chinese with English abstract)

[82] 張曉輝,姜宗月,范國強,等. 履帶自走式果園定向風送噴霧機[J]. 農(nóng)業(yè)機械學報,2014,45(8):117-122. Zhang Xiaohui, Jiang Zongyue, Fan Guoqiang, et al. Self-propelled crawler directional air-blowing orchard sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 117-122. (in Chinese with English abstract)

[83] 榮喃喃,王冉冉,郭鵬軍,等. 微型自走式電動果園彌霧機的研制與試驗[J]. 農(nóng)機化研究,2016,38(10):92-95. Rong Nannan, Wang Ranran, Guo Pengjun, et al. Design and experiment of the micro self-propelled electric sprayer in orchard[J]. Journal of Agricultural Mechanization Research, 2016, 38(10): 92-95. (in Chinese with English abstract)

[84] 丁素明,薛新宇,張玲,等. 自走式果園風送噴霧機的研制[J]. 中國農(nóng)機化學報,2016,37(4):54-58. Ding Suming, Xue Xinyu, Zhang Ling, et al. Design on self-propelled air-blowing orchard sprayer[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(4): 54-58. (in Chinese with English abstract)

[85] 樊桂菊,王永振,仉利,等. 履帶風送式噴霧機的設計與試驗[J]. 農(nóng)機化研究,2018,40(5):117-120. Fan Guiju, Wang Yongzhen, Zhang Li, et al. Design and experiment of caterpillar air-assisted orchard sprayer[J]. Journal of Agricultural Mechanization Research, 2018, 40(5): 117-120. (in Chinese with English abstract)

[86] 3WF-80F風送噴霧機[EB/OL]. [2020-10-02] http://www. sprayerchina.com/product/26.html.

[87] 3WFG-400X風送噴霧機[EB/OL]. [2020-10-02] http://www. sprayerchina.com/product/28.html.

[88] 3WZ-500L自走式風送噴霧機[EB/OL]. [2020-10-02] https://www.nongjitong.com/product/604_3wz_500l_spray_machine.html.

[89] Duo wing jet靜電噴霧機[EB/OL]. [2020-10-02] https://www.agriexpo.cn/prod/martignani-srl/product-179347-86640.html.

[90] 100SR靜電噴霧機[EB/OL]. [2020-10-02] https://www.agriexpo.cn/prod/electrostatic-spraying-systems/product-173798-55984.html.

[91] 何雄奎,嚴苛榮,儲金宇,等. 果園自動對靶靜電噴霧機設計與試驗研究[J]. 農(nóng)業(yè)工程學報,2003,19(6):78-80. He Xiongkui, Yan Kerong, Chu Jinyu, et al. Design and testing of the automatic target detecting, electrostatic, air assisted, orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(6): 78-80. (in Chinese with English abstract)

[92] 周艷,祁力鈞,賈首星,等. 果園氣力式靜電噴霧機的開發(fā)及應用前景[J]. 安徽農(nóng)業(yè)科學,2012,40(7):4429-4430. Zhou Yan, Qi Lijun, Jia Shouxing, et al. The development of pneumatic electrostatic spraying in orchard and the application prospect[J]. Anhui Agricultural Science, 2012, 40(7): 4429-4430. (in Chinese with English abstract)

[93] 楊洲,牛萌萌,李君,等. 果園在線混藥型靜電噴霧機的設計與試驗[J]. 農(nóng)業(yè)工程學報,2015,31(21):60-67. Yang Zhou, Niu Mengmeng, Li Jun, et al. Design and experiment of an electrostatic sprayer with on-line mixing system for orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 60-67. (in Chinese with English abstract)

[94] 周良富,張玲,薛新宇,等. 3WQ-400型雙氣流輔助靜電果園噴霧機設計與試驗[J]. 農(nóng)業(yè)工程學報,2016,32(16):45-53. Zhou Liangfu, Zhang Ling, Xue Xinyu, et al. Design and experiment of 3WQ-400 double air-assisted electrostatic orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 45-53. (in Chinese with English abstract)

[95] 王志強,郝志強,劉鳳之,等. 氣力霧化風送式果園靜電彌霧機的研制與試驗[J]. 果樹學報,2017,34(9):1161-1169. Wang Zhiqiang, Hao Zhiqiang, Liu Fengzhi, et al. Design and experiment of an air-atomized, air-assisted and electrostatic orchard sprayer[J]. Journal of Fruit Science, 2017, 34(9): 1161-1169. (in Chinese with English abstract)

[96] Nestor循環(huán)噴霧機[EB/OL]. [2020-10-02] https://www. agriexpo. cn/prod/weremczuk-fmr-sp-z-o-o/product-170611- 17417. html.

[97] 宋堅利,何雄奎,張京,等. “Π”型循環(huán)噴霧機設計[J]. 農(nóng)業(yè)機械學報,2012,43(4):31-36. Song jianli, He Xiongkui, Zhang Jing, et al. Design of Π-type recycling tunnel sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 31-36. (in Chinese with English abstract)

[98] 張京,宋堅利,何雄奎,等. “Π”型循環(huán)噴霧機防飄性能試驗[J]. 農(nóng)業(yè)機械學報,2012,43(4):37-39. Zhang Jing, Song Jianli, He Xiongkui, et al. Anti-drift performance experiment of Π-type recycling tunnel sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 37-39. (in Chinese with English abstract)

[99] 牛萌萌,方會敏,喬璐,等. 高地隙隧道式循環(huán)噴霧機設計與試驗[J]. 中國農(nóng)機化學報,2019,40(11):41-48. Niu Mengmeng, Fang Huimin, Qiao Lu, et al. Design and experiment of high clearance type recycling tunnel sprayer[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(11): 41-48. (in Chinese with English abstract)

[100] Sun Hong, Li Minzan, Zhang Qin. Detection system of smart sprayers: Status, challenges, and perspectives[J]. International Journal of Agricultural and Biological Engineering, 2012, 5(3):10-23.

[101] 邱白晶,閆潤,馬靖,等. 變量噴霧技術研究進展分析[J]. 農(nóng)業(yè)機械學報,2015,46(3):59-72. Qiu Baijing, Yan Run, Ma Jing, et al. Research progress analysis of variable rate sprayer technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 59-72. (in Chinese with English abstract)

[102] Berk P, Bel?ak A, Stajnko D, et al. Intelligent automated system based on a fuzzy logic system for plant protection product control in orchards[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(3):92-102

[103] Gil E, Llorens J, Llop J, et al. Variable rate sprayer Part 2-Vineyard prototype: Design, implementation, and validation[J]. Computers and Electronics in Agriculture, 2013, 95(3): 136-150.

[104] 葛玉峰,周宏平,鄭加強,等. 基于機器視覺的室內(nèi)農(nóng)藥自動精確噴霧系統(tǒng)[J]. 農(nóng)業(yè)機械學報,2005,36(3):86-89. Ge Yufeng, Zhou Hongping, Zheng Jiaqiang, et al. Indoor pesticide smart spraying system based on machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(3): 86-89. (in Chinese with English abstract)

[105] 宋淑然,陳建澤,洪添勝,等. 果園柔性對靶噴霧裝置設計與試驗[J]. 農(nóng)業(yè)工程學報,2015,31(10):57-63. Song Shuran, Chen Jianze, Hong Tiansheng, et al. Design and experiment of orchard flexible targeted spray device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 57-63. (in Chinese with English abstract)

[106] 金鑫,董祥,楊學軍,等. 3WGZ-500型噴霧機對靶噴霧系統(tǒng)設計與試驗[J]. 農(nóng)業(yè)機械學報,2016,47(7):21-27. Jin Xin, Dong Xiang, Yang Xuejun, et al. Design and experiment of target spraying system of 3WGZ-500 sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 21-27. (in Chinese with English abstract)

[107] 姜紅花,白鵬,劉理民,等. 履帶自走式果園自動對靶風送噴霧機研究[J]. 農(nóng)業(yè)機械學報,2016,47(S1):189-195. Jiang Honghua, Bai Peng, Liu Limin, et al. Caterpillar self-propelled and air-assisted orchard sprayer with automatic target spray system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(S1): 189-195. (in Chinese with English abstract)

[108] Qiu Wei, Zhao Sanqin, Ding Weimin, et al. Effects of fan speed on spray deposition and drift for targeting air-assisted sprayer in pear orchard[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(4):53-62.

[109] 李龍龍,何雄奎,宋堅利,等. 基于變量噴霧的果園自動仿形噴霧機的設計與試驗[J]. 農(nóng)業(yè)工程學報,2017,33(1):70-76. Li Longlong, He Xiongkui, Song Jianli, et al. Design and experiment of automatic profiling orchard sprayer based on variable air volume and flow rate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 70-76. (in Chinese with English abstract)

[110] 蘭玉彬,陳盛德,鄧繼忠,等. 中國植保無人機發(fā)展形勢及問題分析[J]. 華南農(nóng)業(yè)大學學報,2019,40(5):217-225. Lan Yubin, Chen Shengde, Deng Jizhong, et al. Development situation and problem analysis of plant protection unmanned aerial vehicle in China[J]. Journal of South China Agricultural University, 2019, 40(5): 217-225. (in Chinese with English abstract)

[111] 水星一號單旋翼植保無人機[EB/OL]. [2020-10-02] http://www.hanhe-aviation.com/sxyh.html

[112] 極飛P20植保無人機[EB/OL]. [2020-10-02] https://www. xa.com/p20-2018.

[113] 大疆T16植保無人機[EB/OL]. [2020-10-02] https://www.dji.com/cn/t16?site=brandsite&from=nav.

[114] 韋加JF01-20植保無人機[EB/OL]. [2020-10-02] http://www.vigauav.com/index.php/product-product-dataId-20.html.

[115] Yang Fengbo, Xue Xinyu, Zhang Ling, et al. Numerical simulation and experimental verification on downwash air flow of six-rotor agricultural unmanned aerial vehicle in hover[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(4):41-53.

[116] Hou Chaojun, Tang Yu, Luo Shaoming, et al. Optimization of control parameters of droplet density in citrus trees using UAVs and the Taguchi method[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(4):1-9.

[117] Zhou Qingqing, Xue Xinyu, Qin Weicai, et al. Optimization and test for structural parameters of UAV spraying rotary cup atomizer[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3):78-86.

[118] 楊風波,薛新宇,蔡晨,等. 多旋翼植保無人機懸停下洗氣流對霧滴運動規(guī)律的影響[J]. 農(nóng)業(yè)工程學報,2018,34(2):64-73. Yang Fengbo, Xue Xinyu, Cai Chen, et al. Effect of down wash airflow in hover on droplet motion law for multi-rotor unmanned plant protection machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 64-73. (in Chinese with English abstract)

[119] Zheng Y, Yang S, Liu X, et al. The computational fluid dynamic modeling of downwash flow field for a six-rotor UAV[J]. Frontiers of Agricultural Science and Engineering, 2018.

[120] 張豪,祁力鈞,吳亞壘,等. 基于Porous模型的多旋翼植保無人機下洗氣流分布研究[J]. 農(nóng)業(yè)機械學報,2019,50(2):112-122. Zhang Hao, Qi Lijun, Wu Yalei, et al. Spatio-temporal distribution of down wash airflow for multi-rotor plant protection UAV based on porous model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 112-122. (in Chinese with English abstract)

[121] 王娟,蘭玉彬,姚偉祥,等. 單旋翼無人機作業(yè)高度對檳榔霧滴沉積分布與飄移影響[J]. 農(nóng)業(yè)機械學報,2019,50(7):1-14. Wang Juan, Lan Yubin, Yao Weixiang, et al. Effects of working height of single-rotor unmanned aerial vehicle on drift and droplets deposition distribution of areca canopies[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 1-14. (in Chinese with English abstract)

[122] 張盼,呂強,易時來,等. 小型無人機對柑橘園的噴霧效果研究[J]. 果樹學報,2016,33(1):34-42. Zhang Pan, Lü Qiang, Yi Shilai, et al. Evaluation of spraying effect using small unmanned aerial vehicle (UAV) in citrus orchard[J]. Journal of Fruit Science, 2016, 33(1): 34-42. (in Chinese with English abstract)

[123] Lü Meiqiao, Xiao Shupei, Tang Yu, et al. Influence of UAV flight speed on droplet deposition characteristics with the application of infrared thermal imaging[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(3):10-17.

[124] 陳盛德,蘭玉彬,周志艷,等. 小型植保無人機噴霧參數(shù)對橘樹冠層霧滴沉積分布的影響[J]. 華南農(nóng)業(yè)大學學報,2017,38(5):97-102. Chen Shengde, Lan Yubin, Zhou Zhiyan, et al. Effects of spraying parameters of small plant protection UAV on droplets deposition distribution in citrus canopy[J]. Journal of South China Agricultural University, 2017, 38(5): 97-102. (in Chinese with English abstract)

[125] Zhang Yanliang, Lian Qi, Zhang Wei. Design and test of a six-rotor unmanned aerial vehicle (UAV) electrostatic spraying system for crop protection[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(6):68-76.

[126] Zhang Pan, Deng Lie, Lü Qiang, et al. Effects of citrus tree shape and spraying height of small unmanned aerial vehicle on droplet distribution[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(4): 45-52.

[127] Tang Y, Hou C J, Luo S M, et al. Effects of operation height and tree shape on droplet deposition in citrus trees using an unmanned aerial vehicle[J]. Computers and Electronics in Agriculture, 2018, 148: 1-7.

Research progress of orchard plant protection mechanization technology and equipment in China

Zheng Yongjun1, Chen Bingtai1, Lyu Haotun1, Kang Feng2, Jiang Shijie1

(1.,,100083,; 2.,,100083,)

Orchard spray is a key link to orchard production, due to it occupied nearly 25% of the total workload of orchard management. Moreover, the degree of plant protection mechanization directly affects the economic benefits of fruits. In this review, the orchard characteristic, the general situation of plant protection mechanization and the reasons restricting its development were introduced briefly, in order to clarify the future progress of mechanization technology and equipment for the orchard plant protection in China. The main reason impeding the development of plant protection mechanization can be a large proportion of hilly orchards, including gradient, slope and flat orchard, together with a very complex planting environment. Since the standardized modern orchards are being promoted, the scale is still small, due partly to the extensive management in traditional orchards the high price. Currently, the plant protection mechanization level of flat orchard was 15%, whereas, the hilly orchard was only 7.5%. Therefore, the progress of key plant protection mechanization technologies and equipment was presented in detail, further to improve the mechanization level of plant protection. For example, the pipeline spraying technology and equipment brought good benefits and spraying effects to the hilly orchard, while, the application of air-assisted spraying technology and equipment improved the mechanized operation level of the flat orchard. Electrostatic spraying technology and equipment were especially used to enhance the droplet coverage rate on the back of leaves. While the tunnel spraying technology and equipment increased the droplet density on the canopies, to recovery the droplet that left the target, indicating that it can effectively improve the pesticide utilization. Variable rate spraying technology and equipment were becoming a hot research topic, particularly on the precise control of spray on demand. The core technology of variable rate spraying was target detection, such as ultrasonic detection, laser detection, infrared detection, machine vision methods. The ultrasonic and laser detection methods have achieved the best application. Since 2010, the great development and application of aerial spraying technology and equipment have been widely recognized. Especially, the unmanned aerial vehicle (UAV) of rotor plant protection has become one of the most popular machines with small size, fast flight speed and strong terrain adaptability among the agricultural aerial equipment. In this review, the research state of rotor plant protection UAV in orchard was introduced from three aspects: operation model, downwash flow field, and working parameters. Plant protection equipment can offer some suggestions for the development of plant protection mechanization from these aspects: promoting standardized models of orchard plant, developing stereo spraying technology, promoting specialized and mechanical service model of plant protection, thereby for the intelligent robots of plant protection.

spraying; mechanization; pesticides; orchards; plant protection machinery; pesticide utilization rate; research progress

鄭永軍,陳炳太,呂昊暾,等. 中國果園植保機械化技術與裝備研究進展[J]. 農(nóng)業(yè)工程學報,2020,36(20):110-124.doi:10.11975/j.issn.1002-6819.2020.20.014 http://www.tcsae.org

Zheng Yongjun, Chen Bingtai, Lyu Haotun, et al. Research progress of orchard plant protection mechanization technology and equipment in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 110-124. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.20.014 http://www.tcsae.org

2020-07-30

2020-10-03

國家重點研發(fā)計劃項目(2018YFD0700603);山東煙臺校地融合發(fā)展項目

鄭永軍,博士,教授,博士生導師,主要從事農(nóng)業(yè)智能裝備和無人機應用研究。Email:zyj@cau.edu.cn

10.11975/j.issn.1002-6819.2020.20.014

S224

A

1002-6819(2020)-20-0110-15

猜你喜歡
噴霧機靜電植保
淺析玉米栽培的噴霧機選型與施藥技術規(guī)范
噼里啪啦,鬧靜電啦
廣西植保(2021年4期)2022-01-06 07:55:00
壺關縣:開展2021年植保無人機操作手培訓
水田自走式噴桿噴霧機的現(xiàn)狀與發(fā)展趨勢
以3WX—650型為例談噴桿式噴霧機的使用
植保機何時走下“神壇”
森林病蟲害防治噴霧機的種類、特點及應用條件
靜電魔力
奇妙的靜電
仁怀市| 长治市| 桓台县| 怀宁县| 赤城县| 思茅市| 田阳县| 舒兰市| 江安县| 乌什县| 平邑县| 阿合奇县| 定安县| 澜沧| 和林格尔县| 榆社县| 郴州市| 周口市| 航空| 顺平县| 海城市| 健康| 合川市| 新蔡县| 启东市| 淮北市| 收藏| 神农架林区| 濮阳市| 辽阳县| 盈江县| 余干县| 延庆县| 平果县| 东城区| 广水市| 深水埗区| 芜湖县| 福清市| 文昌市| 南部县|