国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

菌劑掛膜3D-RBC聯(lián)合BCO工藝處理養(yǎng)豬沼液廢水

2020-12-25 07:26:06劉向陽羅萬東張正義郭青松趙天濤
農(nóng)業(yè)工程學(xué)報 2020年20期
關(guān)鍵詞:菌劑沼液硝化

劉向陽,張 千,羅萬東,陳 雪,張正義,郭青松,趙天濤

菌劑掛膜3D-RBC聯(lián)合BCO工藝處理養(yǎng)豬沼液廢水

劉向陽,張 千※,羅萬東,陳 雪,張正義,郭青松,趙天濤

(重慶理工大學(xué)化學(xué)化工學(xué)院,重慶 400054)

針對養(yǎng)豬沼液廢水寡營養(yǎng)、高氨氮的水質(zhì)特征,該研究采用耐高氨氮、適應(yīng)貧營養(yǎng)生長的異養(yǎng)硝化-好氧反硝化(Heterotrophic Nitrification-Aerobic Denitrification,以下簡稱HN-AD)菌掛膜啟動三維結(jié)構(gòu)生物轉(zhuǎn)盤+生物接觸氧化反應(yīng)器(3D-RBC+BCO)組合工藝對沼液進(jìn)行處理。該文研究了3D-RBC+BCO組合工藝在真實沼液條件下的啟動過程及污染物去除效果,重點考察了溶解氧(Dissolved Oxygen,DO)濃度和C/N比2個關(guān)鍵因素對組合工藝污染物去除效果的影響。同時,借助高通量測序技術(shù)對DO和C/N比優(yōu)化過程中微生物群落結(jié)構(gòu)的變化規(guī)律進(jìn)行解析。結(jié)果表明:在真實沼液條件下,采用HN-AD菌劑掛膜啟動方法,僅用12和18 d就分別完成3D-RBC和BCO反應(yīng)器的掛膜啟動,同時組合工藝對COD、NH4+-N和TN的去除率分別穩(wěn)定在94.8%、95.7%和80.1%,出水優(yōu)于城鎮(zhèn)污水廠排放一級B標(biāo)準(zhǔn)。在對3D-RBC反應(yīng)器DO和C/N比的優(yōu)化過程中,增設(shè)底曝后COD、NH4+-N和TN等指標(biāo)的去除率分別降低了25.4%、15.4%和15.5%。高通量測序結(jié)果顯示,增加底曝后3D-RBC盤片生物膜中微生物菌屬的數(shù)量小幅下降,但HN-AD優(yōu)勢菌屬的種類與豐度顯著降低,導(dǎo)致脫氮效率下降;貧營養(yǎng)型菌屬是3D-RBC可以對真實沼液高效脫氮的關(guān)鍵,提高C/N比會顯著降低其豐度,進(jìn)而影響脫氮效果。

膜; 菌;高氨氮;生物脫氮工藝;養(yǎng)豬沼液廢水;微生物群落結(jié)構(gòu)

0 引 言

規(guī)?;B(yǎng)豬場排放的養(yǎng)殖廢水屬于中國農(nóng)業(yè)面源重大污染源之一[1-2],其污染治理已被納入環(huán)境保護(hù)的重要議程。目前,養(yǎng)豬廢水常用厭氧-好氧或厭氧-自然聯(lián)合法進(jìn)行處理,具有負(fù)荷高、可產(chǎn)沼氣等特點[3],但養(yǎng)殖廢水經(jīng)過厭氧發(fā)酵處理后,絕大部分COD被去除,而氨氮濃度仍然很高,造成了低C/N比、高氨氮沼液的產(chǎn)生(氨氮187~510 mg/L、COD 732.9~2 325.5 mg/L)[4-9]。受限于養(yǎng)殖場周邊有限的消納田地,大量的沼液需要通過進(jìn)一步的處理才能排放或回用。但是,由于此類沼液氨氮濃度過高,超出常規(guī)脫氮微生物耐受極限,導(dǎo)致其富集困難;同時傳統(tǒng)異養(yǎng)硝化菌和好氧反硝化菌脫氮過程中對有機物有較高的需求(C/N>7)[10-11],沼液有機物含量不足影響總氮去除效果[6,8],因此現(xiàn)有處理工藝普遍存在脫氮效果差、工藝流程復(fù)雜、處理成本高和達(dá)標(biāo)排放困難等系列問題[12-13]。研究適用于畜禽養(yǎng)殖沼液處理的新型生物處理技術(shù),是保障畜牧業(yè)持續(xù)發(fā)展的迫切需求。

異養(yǎng)硝化-好氧反硝化(Heterotrophic Nitrification- Aerobic Denitrification,HN-AD)是指一類HN-AD菌,可在好氧條件下快速將氨氮、硝態(tài)氮(NO3--N)、亞硝態(tài)氮(NO2--N)轉(zhuǎn)化為氮氣,且整個代謝過程幾乎沒有 NO3--N和NO2--N積累的生物脫氮過程[14-16]。隨著對 HN-AD菌的深入研究,科研人員發(fā)現(xiàn)部分HN-AD菌具有污染物耐受濃度高、可適應(yīng)貧營養(yǎng)環(huán)境且污染物去除效率高等優(yōu)點[17-18],這為利用生物法處理低C/N比、高氮沼液提供了基礎(chǔ)。但是,目前有關(guān)HN-AD菌的研究主要集中在HN-AD純菌的篩選、性能的驗證[19-20]及機理研究[21-22]上,而對于HN-AD菌工程應(yīng)用的研究鮮有報道。究其原因,主要為在低氨氮污水處理體系當(dāng)中,HN-AD菌在于傳統(tǒng)脫氮菌的競爭中不具備優(yōu)勢;在高氨氮污水處理體系中已有研究未能解決HN-AD菌在反應(yīng)體系中的固定和富集問題,無法充分發(fā)揮功能菌的優(yōu)勢[23]。作者所在團(tuán)隊前期,首次在三維結(jié)構(gòu)生物轉(zhuǎn)盤(Three-Dimensional Rotating Biological Contactor,3D-RBC)中實現(xiàn)了HN-AD菌的固定和富集,并且該反應(yīng)器在實驗室小試中對模擬高氨氮養(yǎng)殖廢水展現(xiàn)出了良好的預(yù)處理效果[24],證明經(jīng)菌劑掛膜富集的HN-AD菌具備高效脫氮效果。

本研究在前期研究的基礎(chǔ)之上,構(gòu)建了3D-RBC和生物接觸氧化(Biological Contact Oxidation,BCO)的新型組合工藝,利用耐高氨氮HN-AD菌在貧營養(yǎng)條件下的高效降解性能對沼液進(jìn)行預(yù)處理,隨后通過BCO的進(jìn)一步處理,實現(xiàn)沼液的達(dá)標(biāo)排放。本文研究了3D-RBC+BCO組合工藝在真實沼液條件下的啟動過程及污染物去除效果,重點考察溶解氧(DO)濃度和C/N比2個關(guān)鍵因素對組合工藝污染物去除效果的影響,同時借助高通量測序技術(shù)對DO和C/N比優(yōu)化過程中微生物群落結(jié)構(gòu)的變化規(guī)律進(jìn)行了解析,以期為3D-RBC+BCO組合工藝在養(yǎng)殖沼液廢水處理中的工程應(yīng)用中提供理論與實踐基礎(chǔ)。

1 試驗材料與方法

1.1 試驗裝置

3D-RBC+BCO組合工藝流程如圖1所示,主體反應(yīng)器材質(zhì)為有機玻璃。主要由3D-RBC預(yù)處理和BCO深度處理兩部分組成。3D-RBC為凹槽反應(yīng)器,有效體積為24.0L,低速電機帶動三級盤片構(gòu)成的生物轉(zhuǎn)盤轉(zhuǎn)動,盤片浸沒率為40%;BCO為圓柱形反應(yīng)器,有效體積為6.0L,內(nèi)部以鐵碳微電解-活性炭纖維作為填料,填料填充率為58.6%,3D-RBC與BCO反應(yīng)器底部均內(nèi)嵌曝氣裝置。3D-RBC和BCO反應(yīng)器內(nèi)的菌劑接種量均為10%。2反應(yīng)器分別借助自然接觸復(fù)氧和人工曝氣增氧的方式保持系統(tǒng)內(nèi)DO分別為2~3和4~6 mg/L。

1.進(jìn)水池 2.蠕動泵 3.三維結(jié)構(gòu)盤片 4.低速電機 5.中間罐 6.曝氣泵 7.鐵碳微電解-活性炭纖維填料 8.出水池

1.2 試驗用水與接種菌劑

試驗用水取自于重慶市巴南區(qū)某生豬養(yǎng)殖場沼液池,該養(yǎng)殖場清污方式為干清糞,廢水經(jīng)過厭氧發(fā)酵處理排入池內(nèi)。水質(zhì)指標(biāo)見表1,由表1可知,該沼液屬于高懸浮物、高有機物、高氨氮含量的“三高”廢水,且廢水的C/N比較低(約為3)。為避免高懸浮物對污染物去除效果的影響,沼液在進(jìn)入組合工藝處理系統(tǒng)前進(jìn)行絮凝沉淀預(yù)處理,經(jīng)預(yù)處理后沼液中SS濃度降為90 mg/L左右。

試驗所用菌劑為HN-AD復(fù)合菌劑,為團(tuán)隊專利產(chǎn)品(專利號:CN201810209983.8)。主要是由假單胞菌(),糞產(chǎn)堿桿菌(),不動桿菌()和蒼白桿菌TAC-2(sp.TAC-2)等幾種菌株復(fù)配而成。該菌劑生長周期短、易于培養(yǎng),且具有耐高氨氮、寡營養(yǎng)和高效降解性能。

表1 養(yǎng)豬沼液廢水水質(zhì)

注:COD, Chemical Oxygen Demand; TN, Total Nitrogen; TP,Total Phosphorus; SS, Suspended Solid.

1.3 試驗方法

1.3.1 反應(yīng)器的啟動運行

3D-RBC和BCO反應(yīng)器系統(tǒng)的啟動,主要是完成HN-AD菌的固定和富集,兩個反應(yīng)器均采用菌劑掛膜啟動。掛膜啟動過程采用序批式換水的方式,換水周期為48 h,定期監(jiān)測廢水的COD、NH4+-N、TN和TP數(shù)值,計算COD、NH4+-N、TN和TP的去除率,通過去除率變化規(guī)律以及填料表面生物膜的變化情況,來判斷啟動是否完成。

1.3.2 運行參數(shù)優(yōu)化階段

菌劑掛膜啟動完成后,在25~30 ℃下,保持3D-RBC和BCO反應(yīng)器的水力停留時間(HRT)為24 h,以連續(xù)流運行方式處理沼液,通過氣體轉(zhuǎn)子流量計控制BCO反應(yīng)器內(nèi)DO穩(wěn)定在4~6 mg/L范圍內(nèi),并通過控制3D-RBC反應(yīng)器外設(shè)曝氣裝置來增加和取消底曝;試驗過程中采用稀釋實際沼液、增加氨氮(投加硫酸銨藥劑)和投加外碳源(乙酸鈉)的方式來控制進(jìn)水水質(zhì),調(diào)節(jié)沼液C/N比為1、3和6 三個水平,考察DO濃度和C/N比對污染物的去除效果以及微生物群落結(jié)構(gòu)的的影響。

1.4 檢測分析方法

1.4.1 常規(guī)指標(biāo)測定

本試驗的水質(zhì)指標(biāo)均按照《水和廢水監(jiān)測分析方法》[25]進(jìn)行。所有水樣經(jīng)高速離心機(4 000 r/min)離心5 min后取上清液測定以下各參數(shù):NH4+-N采用納氏試劑分光光度法;COD指標(biāo)使用LH-16K型標(biāo)準(zhǔn)化學(xué)需氧量消解儀,采用重鉻酸鉀法測定;TN采用堿性過硫酸鉀消解紫外分光光度法測定;TP采用鉬酸銨分光光度法;DO采用哈希HQ-30d便攜式溶解氧測定儀直接檢測。

1.4.2 多樣性分析

在參數(shù)優(yōu)化及連續(xù)運行階段,DNA提取和高通量測序[26]采用MobioPowerSoil? DNA Isolation Kit提取填料表面微生物總基因組DNA。完成基因組DNA抽提后,利用1%瓊脂糖凝膠電泳檢測抽提的基因組DNA。依托上海美吉生物醫(yī)藥科技有限公司進(jìn)行Illumina MiSeq高通量測序。按指定測序區(qū)域,合成帶有barcode的特異引物。PCR(ABI GeneAmp? 9700型)采用TransGen AP221-02:TransStart Fastpfu DNA Polymerase。全部樣本按照正式試驗條件進(jìn)行,每個樣本3個重復(fù),將同一樣本的PCR產(chǎn)物混合后用2%瓊脂糖凝膠電泳檢測,使用AxyPrepDNA凝膠回收試劑盒(AXYGEN公司)切膠回收PCR產(chǎn)物,Tris_HCl洗脫;2%瓊脂糖電泳檢測。將PCR產(chǎn)物用QuantiFluor? -ST藍(lán)色熒光定量系統(tǒng)(Promega公司)進(jìn)行檢測定量。根據(jù)Illumina MiSeq平臺(Illumina,San Diego,USA)標(biāo)準(zhǔn)操作規(guī)程將純化后的擴增片段構(gòu)建MiSeq文庫。

2 結(jié)果與討論

2.1 組合工藝掛膜啟動

3D-RBC掛膜啟動階段各污染物的去除情況如圖2a所示。掛膜啟動前4 d,3D-RBC中各污染物去除呈現(xiàn)快速上升然后迅速下降的趨勢,快速上升的可能原因為接種的菌劑增加了沼液中微生物的含量。隨后,接種的菌劑進(jìn)入了適應(yīng)期,各污染物的去除有了明顯的下降;從第5天開始,接種菌劑逐漸適應(yīng)了新的環(huán)境,各污染物的去除呈不斷上升的趨勢;運行至12 d后,COD去除率提高并穩(wěn)定至81.3%,NH4+-N去除率提高并穩(wěn)定至86.1%,TP和TN去除率也穩(wěn)定至41.7%和78.2%,同時可觀察盤片表面附著一層黃褐色的生物膜,結(jié)合污染物去除情況可判斷3D-RBC掛膜啟動成功。

BCO掛膜啟動階段各污染物的去除情況如圖2b所示,由圖2b可知,BCO掛膜啟動前4 d,由于3D-RBC出水波動較大,導(dǎo)致BCO中各污染物的去除波動也較大。但是,從第5天開始,各污染物的去除開始呈現(xiàn)一個逐漸上升的趨勢,推測可能是吸附到填料上的接種菌劑適應(yīng)了BCO中的環(huán)境,并逐漸發(fā)展成優(yōu)勢菌群,使得有機物去除及脫氮性能提高。運行18 d后,各項污染物實現(xiàn)穩(wěn)定去除,COD去除率達(dá)到91.6%,NH4+-N去除率達(dá)到97.1%,TP和TN去除率分別達(dá)到31.6%和86.7%。同時觀察到填料表面有淡黃色生物膜形成,綜上可以判斷,BCO完成掛膜啟動。此時,組合工藝出水COD、NH4+-N優(yōu)于城鎮(zhèn)污水廠排放一級B標(biāo)準(zhǔn)。據(jù)文獻(xiàn)報道,在真實沼液條件下,利用活性污泥掛膜的生物膜反應(yīng)器的掛膜啟動時間為40 d[27],遠(yuǎn)長于菌劑掛膜所需的15~18 d,這表明,菌劑掛膜可顯著縮短生物膜反應(yīng)器的啟動時間。

注:a、b圖從左到右依次為NH4+-N、COD、TN、TP的去除情況,下同。

2.2 3D-RBC中DO濃度對組合工藝處理效果的影響

圖3所示為組合工藝中3D-RBC增加底曝前后系統(tǒng)中的污染物去除變化規(guī)律。從圖中可以看到,未增加底曝前,組合工藝COD、NH4+-N、TN和TP出水平均濃度分別為56.9、5.5、30.0、8.3 mg/L,其最終出水均低于《畜禽養(yǎng)殖污染物排放標(biāo)準(zhǔn)》(GB 18596—2001)限值。其中出水COD和NH4+-N滿足《城鎮(zhèn)污水處理廠污染物排放標(biāo)準(zhǔn)》(GB 18918—2002)一級B標(biāo)準(zhǔn)。RBC增加底曝后,DO升高對RBC去除COD和TP的影響較小,但對NH4+-N和TN的去除影響顯著,NH4+-N和TN的平均去除率分別從77.4%和 70.1%降低到58.5%和48.1%。未增加底曝前,3D-RBC內(nèi)DO濃度為2~4 mg/L,但在增設(shè)底曝后DO濃度升高至7~8mg/L,結(jié)合進(jìn)水沼液高氨氮水質(zhì)和系統(tǒng)內(nèi)全好氧環(huán)境,判斷HN-AD菌在整個脫氮過程中發(fā)揮主要作用。增設(shè)底曝后RBC內(nèi)DO濃度過高,形成過曝氣的狀態(tài),可能使得HN-AD菌在與沼液中土著微生物的競爭中處于劣勢,難以形成優(yōu)勢化構(gòu)建,無法發(fā)揮功能菌的脫氮優(yōu)勢,進(jìn)而影響脫氮效果;而增加底曝前后,組合工藝對COD、NH4+-N、TN和TP的平均去除率影響較小,表明DO的上升并不影響B(tài)CO的后續(xù)處理效果。綜上所述,針對低C/N比高氨氮廢水,3D-RBC不需要提供額外曝氣,僅通過自身轉(zhuǎn)盤轉(zhuǎn)動復(fù)氧就可以滿足脫氮對DO的需求,增加曝氣,DO濃度增大不僅會降低TN的去除,而且會導(dǎo)致能耗和運行成本增加。

2.3 C/N比對組合工藝處理效果的影響

圖4所示為不同C/N比下3D-RBC+BCO系統(tǒng)中污染物去除變化規(guī)律。由圖中可以看出,當(dāng)進(jìn)水C/N比為1和3時,3D-RBC對NH4+-N和TN的去除率分別保持在68.7%~78.7%到54.6%~60.9%的區(qū)間,說明3D-RBC在高氨氮和低C/N比條件下對氨氮和總氮具有較高的去除效果。但是當(dāng)C/N比增加到6時,3D-RBC對NH4+-N和TN的去除迅速下降到48.1%和41.9%。推測其原因,可能是在低C/N比條件下,碳源不足,耐高氨氮、寡營養(yǎng)的HN-AD菌在與其他微生物的競爭中占據(jù)優(yōu)勢;C/N比提高到6時,HN-AD菌的競爭優(yōu)勢逐漸喪失,導(dǎo)致脫氮效果急劇惡化。當(dāng)進(jìn)水C/N比從1提高到3再到6的過程中,除了TN的平均去除率有小幅的下降外,組合工藝對COD、NH4+-N一直保持高效的去除效果,出水水質(zhì)均滿足《污水綜合排放標(biāo)準(zhǔn)》(GB 8978—1996)一級標(biāo)準(zhǔn),這表明進(jìn)水C/N比對BCO單元和組合工藝的影響較小。綜上所述,組合工藝針對低C/N比沼液具有高效的脫氮表現(xiàn),提高C/N比不僅影響3D-RBC單元對NH4+-N和TN的去除,同時也會增加碳源消耗,增加運行成本。

綜上所述,在真實沼液條件下,采用HN-AD菌劑掛膜啟動方法,僅用12和18 d就分別完成3D-RBC和BCO反應(yīng)器的掛膜啟動,同時組合工藝對COD、NH4+-N和TN的去除率分別穩(wěn)定在94.8%、95.7%和80.1%,出水優(yōu)于城鎮(zhèn)污水廠排放一級B標(biāo)準(zhǔn)。在對3D-RBC反應(yīng)器DO和C/N比的優(yōu)化過程中,增設(shè)底曝后COD、NH4+-N和TN等指標(biāo)的去除率分別降低了25.4%、15.4%和15.5%。

圖3 增加底曝前后對組合工藝處理效果的影響

圖4 不同C/N比下組合系統(tǒng)污染物變化及脫氮效率

2.4 不同生物組合工藝微生物群落結(jié)構(gòu)影響分析

對增加底曝(R1)、取消底曝(R2)和改變C/N比為6(R3)、3(R4)、1(R5)不同運行參數(shù)下的生物膜樣品進(jìn)行高通量測序,分別獲得56 277、44 848、61 521、50 891和61 723有效序列(見表2),將有效序列在97%的相似性類聚,5個樣品的覆蓋度(coverage)均在99%以上,意味著該檢測結(jié)果能夠反映生物膜樣品中微生物的真實情況。同時對比ACE和Chao指數(shù)可以發(fā)現(xiàn),增加底曝后3D-RBC中菌屬的數(shù)量出現(xiàn)一定的程度的下降,而提高C/N比的過程中,3D-RBC中菌屬的數(shù)量則呈現(xiàn)小幅下降然后快速上升的變化趨勢。

表2 組合工藝3D-RBC單元中微生物多樣性指數(shù)分析結(jié)果

不同生物樣品在屬水平上的群落結(jié)構(gòu)分布如圖5所示。增加底曝后,3D-RBC系統(tǒng)中屬于HN-AD菌的陶厄氏菌屬()[28]和代爾夫特菌屬()[29]的相對豐度分別從沒有增加底曝時的1.8%和1.5%降低到0.8% 和 0.2%,而亞硝化單胞菌屬()[30](2.1%)和新鞘氨醇桿菌屬()[31](1.2%)2種HN-AD菌在增加底曝后則直接從3D-RBC系統(tǒng)中消失。增設(shè)底曝后RBC內(nèi)DO濃度由3~4 mg/L升高至7~8 mg/L,形成過曝氣的狀態(tài)。Sun和Ma等的研究表明,過高的DO濃度會導(dǎo)致亞硝酸的大量累計,亞硝酸鹽的累計一方面會抑制HN-AD菌的生長,另一方面會嚴(yán)重影響好氧反硝化過程,從而導(dǎo)致TN去除下降[32-34]。這與本研究的結(jié)論較一致,增加底曝后,RBC反應(yīng)器內(nèi)以陶厄氏菌屬、代爾夫特菌屬、亞硝化單胞菌屬和新鞘氨醇桿菌屬為代表的異養(yǎng)硝化-好氧反硝化菌的豐度降低顯著。同時,結(jié)合圖3中增加底曝后3D-RBC對TN的去除率顯著下降,進(jìn)一步證實了HN-AD菌屬種類和豐度的降低可能是導(dǎo)致3D-RBC脫氮效果下降主要原因的推測。

由圖5可知,當(dāng)C/N比為1時,系統(tǒng)中的HN-AD菌屬仍然具有較高的相對豐度,主要包括鹽單胞菌屬()[35](3.1%)、嗜氫菌屬()[36](2.9%)、假單胞菌屬()[37](2.4%)和叢毛單胞菌屬()[38-39](1.1%),其中為貧營養(yǎng)型菌[40],其他3種菌屬要實現(xiàn)脫氮功能,則需要較高的C/N比[35-36,38],據(jù)此可以推測,菌屬是保障3D-RBC在C/N比為1的寡營養(yǎng)條件下仍具有高效脫氮效果的關(guān)鍵脫氮菌;當(dāng)C/N比為3時,3D-RBC系統(tǒng)中各類HN-AD菌屬豐度均出現(xiàn)降低,但出現(xiàn)了一種新的、相對豐度高達(dá)53%的HN-AD菌屬-不動桿菌()[41],且菌屬同樣具有貧營養(yǎng)生長特性[42],結(jié)合圖4可以推測,C/N=3時廢水中污染物去除效果較高的主要原因是菌屬的優(yōu)勢化構(gòu)建與富集提高了脫氮效果。當(dāng)C/N為6時,系統(tǒng)中只存在(0.5%)和(1.1%)2種HN-AD菌屬,且相對豐度都較低。 HN-AD菌屬種類與豐度的大幅降低,可能導(dǎo)致3D-RBC系統(tǒng)脫氮效率的下降,這一推測與圖4中結(jié)果保持一致,當(dāng)C/N比提升到6時,3D-RBC對NH4+-N和TN的去除出現(xiàn)了明顯的降低。

圖5 組合工藝系統(tǒng)微生物群落結(jié)構(gòu)菌群分布

3 結(jié) 論

1)真實沼液條件下,采用HN-AD復(fù)合菌劑掛膜的啟動方式,3D-RBC和BCO反應(yīng)器僅需12d和18d就可以成功實現(xiàn)掛膜啟動,組合工藝對COD、NH4+-N和TN的去除率分別穩(wěn)定在94.8%、95.7%和80.1%,出水優(yōu)于城鎮(zhèn)污水廠排放一級B標(biāo)準(zhǔn)。

2)提高3D-RBC的DO濃度不會增加組合工藝對COD、NH4+-N、TN的去除效率,反而增加了曝氣能耗;組合工藝特別適用于低碳、高氮沼液的處理,提高C/N比反而會導(dǎo)致3D-RBC中TN去除率的下降,并且增加碳耗成本。

3)高通量測序結(jié)果表明,3D-RBC增加底曝后,微生物菌屬的數(shù)量小幅下降,但是HN-AD菌的多樣性和豐度下降明顯,導(dǎo)致脫氮效果下降;在C/N=1和C/N=3時,假單胞菌屬()和不動桿菌屬()2種貧營養(yǎng)菌屬相對豐度較高,當(dāng)C/N增加到6時候,其豐度降低顯著,脫氮效率變差,推測這兩種菌屬是組合工藝對低碳、高氮沼液具有高效脫氮效果的關(guān)鍵。

[1] 孫良媛,劉濤,張樂. 中國規(guī)?;笄蒺B(yǎng)殖的現(xiàn)狀及其對生態(tài)環(huán)境的影響[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報:社會科學(xué)版,2016,15(2):23-30. Sun Liangyuan, Liu Tao, Zhang Le. The pollution of scale livestock and poultry breeding and its influence on eco-environment[J]. South China Agricultural University (Social science edition), 2016, 15(2): 23-30. (in Chinese with English abstract)

[2] 仇煥廣,井月,廖紹攀,等. 我國畜禽污染現(xiàn)狀與治理政策的有效性分析[J]. 中國環(huán)境科學(xué),2013,33(12):2268-2273. Qiu Huanguang, Jing Yue, Liao Shaopan, et al. Environmental pollution of livestock and the effectiveness of different management policies in China[J]. China Environmental Science, 2013, 33(12): 2268-2273. (in Chinese with English abstract)

[3] 張彩瑩,王妍艷,王巖. 大狼把草對豬場廢水中污染物的凈化效果[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(4):264-269. Zhang Caiying, Wang Yanyan, Wang Yan. Removal effects ofon pollutants in swine wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(4): 264-269. (in Chinese with English abstract)

[4] 秦嘉偉,信欣,魯航,等. 連續(xù)流SNAD工藝處理豬場沼液啟動過程中微生物種群演變及脫氮性能[J]. 環(huán)境科學(xué),2020,41(5):2349-2357. Qin Jiawei, Xin Xin, Lu Hang, et al. Bacterial community shifts and nitrogen removal characteristics for a SNAD process treating Anaerobic Digester Liquor of Swine Wastewater (ADLSW) in a Continuous-Flow Biofilm Reactor (CFBR)[J]. Environmental Science, 2020, 41(5): 2349-2357. (in Chinese with English abstract)

[5] 宋成芳,單勝道,張妙仙,等. 畜禽養(yǎng)殖廢棄物沼液的濃縮及其成分[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(12):256-259. Song Chengfang, Shan Shengdao, Zhang Miaoxian, et al. Concentration and determination of composition of biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(12): 256-259. (in Chinese with English abstract)

[6] 岳彩德,董紅敏,張萬欽,等. 陶瓷膜凈化豬場沼液的效果試驗[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(5):212-218. Yue Caide, Dong Hongmin, Zhang Wanqin, et al. Experiment on purified effect of ceramic membrane for digested slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 212-218. (in Chinese with English abstract)

[7] 劉慶玉,魏歡歡,郎咸明,等. 反滲透膜削減沼液氨氮工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(8):192-198. Liu Qingyu, Wei Huanhuan, Lang Xianming, et al. Optimization of ammonia nitrogen removal from biogas slurry in osmosis technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 192-198. (in Chinese with English abstract)

[8] 田鎖霞,于瓊,孫振鈞. 蚯蚓引入垂直流-水平潛流濕地混流系統(tǒng)處理沼液的效果[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(8):199-205. Tian Suoxia, Yu Qiong, Sun Zhenjun. Treatment efficiencies of biogas slurry by earthworm-constructed vertical flow and horizontal subsurface flow constructed wetlands system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 199-205. (in Chinese with English abstract)

[9] 鄒夢圓,董紅敏,朱志平,等. 惰性填料種類對豬場沼液氨吹脫效果的影響[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(23):186-192. Zou Mengyuan, Dong Hongmin, Zhu Zhiping, et al. Effect of different types of sluggishness packings on ammonia stripping of piggery biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 186-192. (in Chinese with English abstract)

[10] 宋成芳,單勝道,張妙仙,等. 畜禽養(yǎng)殖廢棄物沼液的濃縮及其成分[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(12):256-259. Song Chengfang, Shan Shengdao, Zhang Miaoxian, et al. Concentration and determination of composition of biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(12): 256-259. (in Chinese with English abstract)

[11] Yang Xinping, Wang Shimei, Zhang Dewei, et al. Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying–denitrifying bacterium,subtilis A1[J]. Bioresource Technology, 2011, 102(2): 854-862.

[12] Mohan T V, Nancharaiah Y V, Venugopalan V P, et al. Effect of C/N ratio on denitrification of high-strength nitrate wastewater in anoxic granular sludge sequencing batch reactors[J]. Ecological Engineering, 2016: 441-448.

[13] 隋倩雯. 氨吹脫與膜生物反應(yīng)器組合工藝處理豬場厭氧消化液研究[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2014. Sui Qianwen. Combined of Ammonia Stripping and Membrane Bioreactor Processes for Anaerobically Digested Swine Wastewater Treatment[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese with English abstract)

[14] 張培玉,曲洋,于德爽,等. 菌株qy37的異養(yǎng)硝化/好氧反硝化機制比較及氨氮加速降解特性研究[J]. 環(huán)境科學(xué),2010,31(8):1819-1826. Zhang Peiyu, Qu Yang, Yu Deshuang, et al. Comparison of heterotrophic nitrification and aerobic denitrification system by strain qy37 and its accelerating removal characteristic of NH4+-N[J]. Environmental Science, 2010, 31(8): 1819-1826. (in Chinese with English abstract)

[15] 楊靜丹,祝銘韓,劉琳,等. 異養(yǎng)硝化-好氧反硝化菌HY3-2的分離及脫氮特性[J]. 中國環(huán)境科學(xué),2020,40(1):294-304. Yang Jingdan, Zhu Minghan, Liu Lin, et al. Isolation and denitrification characteristics of heterotrophic nitrification-aerobic denitrification bacterium HY3-2[J]. China Environmental Science, 2020, 40(1): 294-304. (in Chinese with English abstract)

[16] 袁建華,趙天濤,彭緒亞. 極端條件下異養(yǎng)硝化-好氧反硝化菌脫氮的研究進(jìn)展[J]. 生物工程學(xué)報,2019,35(6):942-955. Yuan Jianhua, Zhao Tiantao, Peng Xuya. Advances in heterotrophic nitrification-aerobic denitrifying bacteria for nitrogen removal under extreme conditions[J]. Chinese Journal of Biotechnology, 2019, 35(6): 942-955. (in Chinese with English abstract)

[17] 楊墨,劉乾亮,呂東偉,等. 低溫異養(yǎng)硝化-好氧反硝化菌篩選及其脫氮特性[J]. 中國給水排水,2019,35(23):100-104. Yang Mo, Liu Qianliang, Lv Dongwei, et al. Isolation of cold-resistant heterotrophic nitrification - aerobic denitrification strain and its nitrogen removal performance[J]. China Water & Wastewater, 2019, 35(23): 100-104. (in Chinese with English abstract)

[18] 張婷月,丁鈺,黃民生. 異養(yǎng)硝化-好氧反硝化細(xì)菌的篩選及其脫氮性能研究[J]. 華東師范大學(xué)學(xué)報(自然科學(xué)版),2018(6):22-31,87. Zhang Tingyue, Ding Jue, Huang Minsheng. Screening of heterotrophic nitri cation-aerobic denitrifying bacteria and its nitrogen removal characteristics[J]. East China Normal University (Natural Science Edition), 2018(6): 22-31,87. (in Chinese with English abstract)

[19] 左薇. 一株好氧反硝化菌的篩選鑒定及其脫氮特性分析[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2006. Zuo Wei. An Aerobic Denirifier Screened Identification and Denitrification Characteristic[D]. Harbin: Harbin Institute of Technology, 2006. (in Chinese with English abstract)

[20] 蘇俊峰. 異養(yǎng)型同步硝化反硝化脫氮技術(shù)及微生物特性研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2007. Su Junfeng. The Study of Denitrifying Technology of Heterotrophic Simultaneous Nitrification and Denitrification and Microbial Character[D]. Harbin: Harbin Institute of Technology, 2007. (in Chinese with English abstract)

[21] 王佳樂. 高鹽廢水強化多路徑耦合脫氮技術(shù)及機理研究[D]. 重慶:重慶大學(xué),2018. Wang Jiale. The Multi-path Coupled Technologies and Mechanisms in Nitrogen Removal Process Treating Saline Wastewater[D]. Chongqing: Chongqing University, 2018. (in Chinese with English abstract)

[22] 李貴珍,賴其良,邵宗澤等. 異養(yǎng)硝化-好氧反硝化細(xì)菌的研究進(jìn)展[J]. 生物資源,2018,40(5):419-429. Li Guizhen, Lai Qiliang, Shao Zongze, et al. Research progress of heterotrophic nitrification-aerobic denitrification bacteria[J]. Biotic Resources, 2018, 40(5): 419-429. (in Chinese with English abstract)

[23] 蘇婉昀,高俊發(fā),趙紅梅. 異養(yǎng)硝化-好氧反硝化菌的研究進(jìn)展[J]. 工業(yè)水處理,2013,33(12):1-5. Su Wanyun, Gao Junfa, Zhao Hongmei. Research progress in heterotrophic nitrification-aerobic denitrification bacteria[J]. Industrial Water Treatment, 2013, 33(12): 1-5. (in Chinese with English abstract)

[24] 劉向陽,張千,吳恒,等. HN-AD菌強化3D-RBC處理養(yǎng)豬廢水及微生物特性研究[J]. 中國環(huán)境科學(xué),2019,39(9):3848-3856. Liu Xiangyang, Zhang Qian, Wu Heng, et al. Study on treatment of raw swine wastewater by enhanced 3D-RBC with HN-AD bacteria and its microbial characteristics[J]. China Environmental Science, 2019, 39(9): 3848-3856. (in Chinese with English abstract)

[25] 劉新梅. 《水和廢水監(jiān)測分析方法》問題探討[J]. 中國環(huán)境監(jiān)測,1993 (1):63-64.

[26] 陳重軍,張海芹,汪瑤琪,等. 基于高通量測序的ABR厭氧氨氧化反應(yīng)器各隔室細(xì)菌群落特征分析[J]. 環(huán)境科學(xué),2016,37(7):2652-2658. Chen Chongjun, Zhang Haiqin, Wang Yaoqi, et al. Characteristics of microbial community in each compartment of ABR ANAMMOX reactor based on High-throughput sequencing[J]. Environmental Science, 2016, 37(7): 2652-2658. (in Chinese with English abstract)

[27] 劉向陽,張千,吳恒,等. HN-AD菌生物強化接觸氧化工藝處理豬場沼液[J]. 環(huán)境科學(xué),2019,40(5):2349-2356. Liu Xiangyang, Zhang Qian, Wu Heng, et al. Treatment of piggery biogas slurry by enhanced biological contact oxidation with HN-AD bacteria[J]. Environmental Science, 2019, 40(5): 2349-2356. (in Chinese with English abstract)

[28] 楊華,黃鈞,趙永貴,等. 陶厄氏菌sp. strain TN9的鑒定及特性[J]. 應(yīng)用與環(huán)境生物學(xué)報,2013,19(2):318-323. Yang Hua, Huang Jun, Zhao Yonggui, et al. Identification and characterization ofsP. Strainn TN9*[J]. Chinese Journal of Applied & Environmental Biology, 2013, 19(2): 318-323. (in Chinese with English abstract)

[29] 許濤,王國英,岳秀萍.sp. PDB3菌好氧反硝化脫氮特性[J]. 中國環(huán)境科學(xué),2018,38(6):2321-2328. Xu Tao, Wang Guoying, Yue Xiuping. The nitrogen removal characteristics of aerobic denitrification bysp. PDB3[J]. China Environmental Science, 2018, 38(6): 2321-2328. (in Chinese with English abstract)

[30] 熊英,向斯,程凱. 一株高適應(yīng)性Nitrosomonas eutropha CZ-4的脫氨特性[J]. 中國環(huán)境科學(xué),2019,39(8):3365-3372. Xiong Ying, Xiang Si, Cheng Kai. Nitrogen removal characteristics of a highly adaptableCZ-4[J]. China Environmental Science, 2019, 39(8): 3365-3372. (in Chinese with English abstract)

[31] 崔志松,邵宗澤. 一株海洋新鞘氨醇桿菌phe-8 (sp. )的PAHs降解基因和降解特性[J]. 廈門大學(xué)學(xué)報:自然科學(xué)版,2006 (S1):257-261. Cui Zhisong, Shao Zongze. Characterization of a PAHs DegradingMarine Strainsp. Phe-8 and Its Degradative Genes[J]. Xiamen University (Natural Science Edition), 2006 (S1): 257-261. (in Chinese with English abstract)

[32] Sun Y, Li A, Zhang X, et al. Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of Pseudomonas stutzeri T13[J]. Applied Microbiology and Biotechnology, 2015, 99(7): 3243-3248.

[33] Ma Fang, Sun Yilu, Li Ang, et al. Activation of accumulated nitrite reduction by immobilized Pseudomonas stutzeri T13 during aerobic denitrification[J]. Bioresource Technology, 2015, 187: 30-36.

[34] Sun Y, Feng L, Li A, et al. Ammonium assimilation: An important accessory during aerobic denitrification of Pseudomonas stutzeri T13[J]. Bioresource Technology, 2017, 234: 264-272.

[35] 孫雪梅,李秋芬,張艷,等. 一株海水異養(yǎng)硝化-好氧反硝化菌系統(tǒng)發(fā)育及脫氮特性[J]. 微生物學(xué)報,2012,52(6):687-695. Sun Xuemei, Li Qiufen, Zhang Yan, et al. Phylogenetic development and denitrification characteristics of a heterotrophic nitrification-aerobic denitrification bacterium in seawater[J]. Acta Microbiologica Sinica, 2012, 52(6): 687-695. (in Chinese with English abstract)

[36] 孟建宇,李蘅,唐凱,等. 兩株氫噬胞菌的萘降解特性分析[J]. 化工環(huán)保,2017,37(3):300-303. Meng Jianyu, Li Heng, Tang Kai, et al. Analysis on naphthalene degradation characteristics of twosp. strains[J]. Environmental Protection of Chemical Industry, 2017, 37(3): 300-303. (in Chinese with English abstract)

[37] Paranjape Kiran, Bédard émilie, Whyte Lyle G, et al. Presence of legionella spp. in cooling towers: The role of microbial diversity, Pseudomonas, and continuous chlorine application[J]. Water Research, DOI: 10.1101/540302.

[38] Su Junfeng, Yang Shu, Huang Tinglin, et al. Enhancement of the denitrification in low C/N condition and its mechanism by a novel isolated Comamonas sp. YSF15[J]. Environmental Pollution, 2020, 32: 256.

[39] 王慶國,張懷玉,周麗燁,等. 酶菌劑對廢水生化處理效果的影響[J]. 中國給水排水,2016,32(5):85-88. Wang Qingguo, Zhang Huaiyu, Zhou Liye, et al. Effect of mixture of enzyme and microbe on biochemical treatment of wastewater[J]. China Water & Wastewater, 2016, 32(5): 85-88. (in Chinese with English abstract)

[40] 周蘭影,馬秀蘭,張晨東,等. 低溫低碳氮比好氧反硝化菌的篩選及鑒定[J]. 科技導(dǎo)報,2014,32(11):33-37. Zhou Lanying, Ma Xiulan, Zhang Chendong, et al. Screening and identification of an aerobic denitrifying bacterium with low C/N ration at low temperatur[J]. Science & Technology Review, 2014, 32(11): 33-37. (in Chinese with English abstract)

[41] 姜巖,張曉華,楊穎,等. 基于約氏不動桿菌的萘生物降解特性[J]. 化工學(xué)報,2016,67(9):3981-3987. Jiang Yan, Zhang Xiaohua, Yang Ying, et al. Naphthalene biodegradation byjohnsonii[J]. CIESC Journal, 2016, 67(9): 3981-3987. (in Chinese with English abstract)

[42] 夏輝,梁運祥. 1株凈水貧營養(yǎng)細(xì)菌的篩選及其低營養(yǎng)特性的初步研究[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報,2006(5):530-534. Xia Hui, Liang Yunxiang. Screening of 1 strain of purified water nutrient-poor bacteria and preliminary study of its low nutrient characteristics[J]. Journal of Huazhong Agricultural University, 2006(5): 530-534. (in Chinese with English abstract)

Treatment of pig biogas slurry wastewater by microbial inoculum 3D-RBC combined with BCO process

Liu Xiangyang, Zhang Qian※, Luo Wandong, Chen Xue, Zhang Zhengyi, Guo Qingsong, Zhao Tiantao

(,,400054,)

Discharge of aquaculture wastewater from large-scale pig farms has become one of the major pollution sources for agricultural non-point sources in China. After the treatment of anaerobic fermentation for aquaculture wastewater, most of the COD is removed, but the concentration of NH4+-N is still very high, leading to the production of biogas slurry with the low ratio of C/N and high strength of ammonia nitrogen. If the concentration of NH4+-N was high beyond the threshold of conventional denitrification microorganisms, the enrichment difficulty with the seriously unbalanced C/N ratio can occur, while, the low organic matter also affects the removal of total nitrogen. Therefore, it is highly demanding to explore a new biological treatment technology that suitable for this kind of biogas slurry, in order to ensure the sustainable development of industrial aquaculture in animal husbandry. In view of the water quality characteristics of oligotrophic and high ammonia nitrogen, a novel process was proposed to combine three-dimensional rotating biological contactor (3D-RBC) and biological contact oxidation (BCO) reactor using the oligotrophic heterotrophic nitrification-aerobic denitrification (HN-AD) mixed bacteria with high tolerance of ammonia nitrogen as microbial inoculants for the treatment of piggery biogas slurry wastewater.The removal efficiency of pollutants was also evaluated in the combination process under the condition of actual biogas slurry. An emphasis was put on the effects of concentration of dissolved oxygen (DO) and C/N ratio on the removal of pollutant during the treatment. A high-throughput sequencing technology was selected to analyze the change of microbial community structure in optimization process of DO and C/N ratio. The results showed that: (1) In the case of actual biogas slurry, the start-up of 3D-RBC and BCO reactors can be completed in 12d and 18d, respectively, when using the HN-AD mixed bacteria as microbial inoculants for the biofilm formation. The removal efficiency of COD, NH4+-N, and TN in the combined process were 94.8%, 95.7% and 80.1%, respectively, and the effluent water quality can reach the level of Class I-B according the national standard GB 18918-2002. (2) During the optimization of DO and C/N ratios in the 3D-RBC reactor, the removal rates of COD, NH4+-N, and TN were reduced by 25.4%, 15.4%, and 15.5%, respectively, particularly after the addition of the bottom exposure. There was no significantly increase in the removal efficiency of COD, NH4+-N, TN, and TP, whereas, the energy consumption of aeration increased in the combination process. The combined process can be especially suitable to treat the biogas slurry with the low C/N ratio and high concentration of nitrogen. The improved C/N ratio can lead to the decrease in the removal rate of TN , while, increase the cost of carbon in the treatment of 3D-RBC. (3) The biodiversity in the 3D-RBC disc biofilm decreased slightly after the addition of bottom exposure, but the variety and abundance of the dominant genus HN-AD decreased significantly, leading to a decrease in the removal efficiency of nitrogen. When C/N=1 and C/N=3,andhave relatively high abundance, whereas, its abundance decreased significantly while the nitrogen removal efficiency decreased, when C/N increased to 6. The oligotrophicand Pseudomonas bacteria can serve as the key materials for the efficient removal of nitrogen from actual biogas slurry in the 3D-RBC. It infers that the decrease of C/N ratio can significantly enhance its abundance, and thereby improve the nitrogen removal.

films; bacterias; high ammonia nitrogen; biological nitrogen removal process; piggery biogas slurry wastewater; microbial community structure

劉向陽,張千,羅萬東,等. 菌劑掛膜3D-RBC聯(lián)合BCO工藝處理養(yǎng)豬沼液廢水[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(20):49-56.doi:10.11975/j.issn.1002-6819.2020.20.007 http://www.tcsae.org

Liu Xiangyang, Zhang Qian, Luo Wandong, et al. Treatment of pig biogas slurry wastewater by microbial inoculum 3D-RBC combined with BCO process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 49-56. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.20.007 http://www.tcsae.org

2020-05-09

2020-10-09

國家自然科學(xué)基金項目(No.51908099);重慶市社會事業(yè)與民生保障科技創(chuàng)新專項(No.cstc2018jscx-mszdX0005);重慶理工大學(xué)研究生創(chuàng)新項目(No.ycx20192073)

劉向陽,主要研究方向為生物膜反應(yīng)器脫氮工藝。Email:liuxy@2017.cqut.edu.cn

張千,博士、副教授,主要研究方向為低碳源、高氨氮污水全好氧脫氮除碳新工藝?yán)碚撆c應(yīng)用研究。Email:zhangqianswu2005@163.com

10.11975/j.issn.1002-6819.2020.20.007

X713

A

1002-6819(2020)-20-0049-08

猜你喜歡
菌劑沼液硝化
復(fù)合微生物菌劑在農(nóng)業(yè)生產(chǎn)中的應(yīng)用
外生菌根真菌菌劑的制備及保存研究
園林科技(2020年2期)2020-01-18 03:28:26
新型液體菌劑研制成功
MBBR中進(jìn)水有機負(fù)荷對短程硝化反硝化的影響
沼液能否預(yù)防病蟲
“播可潤”微生物菌劑在甜瓜上的應(yīng)用效果研究
大棚絲瓜沼液高產(chǎn)栽培技術(shù)
上海蔬菜(2016年5期)2016-02-28 13:18:05
厭氧氨氧化與反硝化耦合脫氮除碳研究Ⅰ:
海水反硝化和厭氧氨氧化速率同步測定的15N示蹤法及其應(yīng)用
沼液喂豬有講究
青神县| 靖江市| 罗平县| 靖边县| 临海市| 东宁县| 呈贡县| 马尔康县| 永登县| 双鸭山市| 海南省| 阳春市| 安康市| 永寿县| 莫力| 全椒县| 离岛区| 丹东市| 太仆寺旗| 阿拉善右旗| 吉安县| 沁源县| 大连市| 琼结县| 政和县| 昌黎县| 文山县| 涡阳县| 天水市| 孟村| 江北区| 手游| 菏泽市| 贵阳市| 秦皇岛市| 淳化县| 仪征市| 九龙坡区| 水富县| 高要市| 武夷山市|