沐旭升 鄒奇彤 黃銳 胡海巖
摘要:提出了一種新穎的抑制體自由度顫振(BFF,Body Freedom Flutter)的多輸入/多輸出(MIMO,Multiple In-put/Multiple Output)控制律設(shè)計(jì)方法。該控制律將受控對(duì)象的不確定因素作為“未知擾動(dòng)”,通過受控對(duì)象的輸入/輸出關(guān)系對(duì)其進(jìn)行估計(jì)并給予補(bǔ)償,最后綜合出具有高魯棒性的MIMO輸出反饋控制律。為了驗(yàn)證所提出的控制律設(shè)計(jì)方法對(duì)于BFF抑制的有效性,選擇一大展弦比飛翼布局無人機(jī)為研究對(duì)象,分別以機(jī)身升降舵與機(jī)翼外側(cè)副翼為控制輸入,飛機(jī)剛體俯仰率和翼尖加速度為反饋信號(hào)來設(shè)計(jì)MIMO自抗擾控制器。對(duì)閉環(huán)系統(tǒng)根軌跡分布、閉環(huán)時(shí)域仿真和閉環(huán)系統(tǒng)最小奇異值等進(jìn)行了數(shù)值仿真,結(jié)果表明該MIMO自抗擾控制律設(shè)計(jì)方法能有效提高飛機(jī)BFF臨界速度,可將飛翼布局無人機(jī)的BFF顫振臨界速度提高約45.3%,并且具有很高的魯棒性。
關(guān)鍵詞:氣動(dòng)彈性力學(xué);顫振主動(dòng)抑制;飛翼布局飛行器;體自由度顫振;自抗擾控制器
中圖分類號(hào):V215.3文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1004-4523(2020)05-0910-11
DOI:10.16385/j.cnki.issn.1004-4523.2020.05.006
引言
隨著航空工業(yè)部門對(duì)先進(jìn)飛行器在氣動(dòng)效率、續(xù)航時(shí)問以及氣動(dòng)隱身等方面需求的不斷提升,研發(fā)基于飛翼布局的先進(jìn)飛行器設(shè)計(jì)是發(fā)展趨勢(shì)之一。這類飛機(jī)一般采用大展弦比機(jī)翼設(shè)計(jì),以獲得較好的升阻特性,并使用輕質(zhì)復(fù)合材料減輕結(jié)構(gòu)重量,以滿足長(zhǎng)時(shí)問續(xù)航任務(wù)需求。但由于結(jié)構(gòu)重量輕、柔性大,這類飛機(jī)的結(jié)構(gòu)(特別是機(jī)翼)在飛行載荷作用下,機(jī)翼會(huì)產(chǎn)生很大的彎曲變形和扭轉(zhuǎn)變形,結(jié)構(gòu)受載后的氣動(dòng)一結(jié)構(gòu)一控制耦合系統(tǒng)會(huì)出現(xiàn)復(fù)雜的非線性結(jié)構(gòu)動(dòng)力學(xué)與控制問題,給飛翼布局無人機(jī)的設(shè)計(jì)帶來新的挑戰(zhàn)。例如,飛翼布局無人機(jī)機(jī)翼的低階彎曲振動(dòng)模態(tài)往往會(huì)與機(jī)體俯仰模態(tài)耦合,誘發(fā)一種新型的顫振形態(tài)——體自由度顫振(BFF,Body Freedom Flutter)。由于剛體模態(tài)參與耦合顫振,抑制體自由度顫振現(xiàn)象的發(fā)生,除了要考慮剛體模態(tài)效應(yīng)外,還需要考慮對(duì)飛行器飛行力學(xué)行為的影響,這對(duì)顫振抑制技術(shù)研究提出了新的挑戰(zhàn)。
在傳統(tǒng)的飛機(jī)設(shè)計(jì)中,避免顫振的最有效的辦法是提高飛機(jī)的結(jié)構(gòu)剛度。而提高結(jié)構(gòu)剛度勢(shì)必會(huì)增加飛機(jī)的重量、降低飛機(jī)的性能,這與現(xiàn)代飛行器追求更輕更快的理念是矛盾的。主動(dòng)控制技術(shù)的發(fā)展給解決上述矛盾帶來了轉(zhuǎn)機(jī),現(xiàn)代的飛機(jī)設(shè)計(jì)理念發(fā)生了如下跨越式發(fā)展:在飛機(jī)結(jié)構(gòu)設(shè)計(jì)中,不再以附加結(jié)構(gòu)重量、犧牲飛行性能為代價(jià)來提高結(jié)構(gòu)剛度以回避氣動(dòng)彈性問題,而是通過在飛機(jī)機(jī)翼表面布置多個(gè)可操縱的控制面,并設(shè)計(jì)主動(dòng)控制系統(tǒng)驅(qū)動(dòng)其聯(lián)合偏轉(zhuǎn),提高機(jī)翼控制氣流的能力,進(jìn)而主動(dòng)調(diào)節(jié)飛行器結(jié)構(gòu)的氣動(dòng)彈性效應(yīng)。這種主動(dòng)控制技術(shù)在有效抑制顫振的同時(shí)也大大迎合了現(xiàn)代飛行器對(duì)于高性能的需求。20世紀(jì)90年代,美國實(shí)施的“主動(dòng)氣動(dòng)彈性機(jī)翼(AAw,Active Aeroelasticwing)計(jì)劃”首次驗(yàn)證了上述的主動(dòng)控制設(shè)計(jì)理念。近年來,關(guān)于AFS(Active Flutter Suppres-sion)技術(shù)的研究取得了重要進(jìn)展,有些甚至進(jìn)行了風(fēng)洞實(shí)驗(yàn)與飛行試驗(yàn)驗(yàn)證。例如,于明禮等采用超聲電機(jī)作為作動(dòng)器,研究含控制面的二元翼段的魯棒顫振主動(dòng)抑制問題,分別設(shè)計(jì)了H∞魯棒控制律和u控制器,并進(jìn)行了風(fēng)洞實(shí)驗(yàn)驗(yàn)證。黃銳等在南京航空航天大學(xué)NH-2亞音速風(fēng)洞中進(jìn)行了小展弦比機(jī)翼模型的顫振主動(dòng)控制和閉環(huán)顫振模態(tài)辨識(shí)的實(shí)驗(yàn)研究,利用通過極點(diǎn)配置優(yōu)化設(shè)計(jì)的線性反饋控制器有效地抑制了顫振失穩(wěn),并對(duì)機(jī)翼模型的在線閉環(huán)顫振辨識(shí)進(jìn)行了探索。
上述研究主要是針對(duì)機(jī)翼模型開展顫振主動(dòng)抑制技術(shù),少有研究全機(jī)模型的顫振主動(dòng)抑制技術(shù),更為少見的是針對(duì)飛翼布局飛行器全機(jī)模型AFS技術(shù)的研究。楊超等以仿F/A-18A外形的全機(jī)模型為對(duì)象,采用線性二次型高斯方法,結(jié)合平衡截?cái)喾ń惦A,研究了常規(guī)布局飛行器模型AFS設(shè)計(jì)的方法和特點(diǎn)。吳志剛等將基于極點(diǎn)配置的敏感性方法應(yīng)用到AFS技術(shù)中的研究。上述學(xué)者的研究雖是以全機(jī)模型為研究對(duì)象,開展全機(jī)顫振主動(dòng)抑制技術(shù)的研究,但并未考慮飛行器剛體模態(tài)對(duì)顫振主動(dòng)抑制的影響。Theis等針對(duì)明尼蘇達(dá)大學(xué)開發(fā)的Mini-MUTT(Multi-Utility Technology Test-bed)模型,用模型的外側(cè)副翼作為控制輸入,質(zhì)心加速度、機(jī)身剛體俯仰率與翼尖加速度作為輸出反饋,基于魯棒H∞控制律構(gòu)造出合理的增廣閉環(huán)系統(tǒng)并設(shè)計(jì)控制器,數(shù)值仿真結(jié)果表明該控制器可有效抑制體自由度顫振失穩(wěn)并具有較高的魯棒性。Schmidt針對(duì)洛馬公司的BFF06模型,利用ILAF(Identically Located Force and Acceleration)方法構(gòu)造雙回路的閉環(huán)系統(tǒng),抑制顫振并增加模型的阻尼,也取得了很好的結(jié)果[1引。基于魯棒控制理論的BFF主動(dòng)抑制技術(shù)雖有所進(jìn)展,但現(xiàn)有的控制律設(shè)計(jì)方法魯棒性有待提高,抗干擾性能存在顯著不足。因此,設(shè)計(jì)具有高魯棒性、強(qiáng)抗干擾能力、控制律簡(jiǎn)單并易于執(zhí)行的體自由度顫振主動(dòng)抑制系統(tǒng)具有重要的意義。
自抗擾控制理論于上世紀(jì)90年代被首次提出后,受到了廣泛的關(guān)注。該控制理論在結(jié)合跟蹤微分器(TD,Tracking Differentiator)、非線性狀態(tài)誤差反饋(NLSEF,Nonlinear State ErrorFeedback)以及擴(kuò)張狀態(tài)觀測(cè)器(ESO,Extend-ed State Observer)三大工具后,正式成為一類新的控制技術(shù)。該控制技術(shù)的核心思想是將作用于被控對(duì)象的所有不確定因素都?xì)w結(jié)為“未知擾動(dòng)”,而用對(duì)象的輸人/輸出數(shù)據(jù)對(duì)其進(jìn)行估計(jì)并給予補(bǔ)償。Yang等首次將自抗擾控制理論應(yīng)用到氣動(dòng)彈性控制律的設(shè)計(jì),研究了考慮參數(shù)不確定和測(cè)量噪聲干擾的BACT(Benchmark Active ControlTechnology)機(jī)翼的跨音速AFS問題。自抗擾控制技術(shù)在飛行器氣動(dòng)彈性控制領(lǐng)域的應(yīng)用雖取得進(jìn)展,但仍面臨如下困難問題:一是自抗擾控制理論雖然在原理上具備抗干擾和魯棒性特征,但缺乏魯棒性判別方法。二是之前的研究均是圍繞單輸入/單輸出控制系統(tǒng)的設(shè)計(jì),如何設(shè)計(jì)多輸入/多輸出自抗擾顫振抑制控制律也值得研究。三是由于體自由度顫振頻率較低、受控系統(tǒng)維數(shù)高,導(dǎo)致控制器參數(shù)難以整定。
本文的研究目標(biāo)是對(duì)多輸入/多輸出自抗擾氣動(dòng)彈性控制存在的上述問題進(jìn)行初步的探索。主要研究?jī)?nèi)容是以大展弦比飛翼布局無人機(jī)全機(jī)模型為研究對(duì)象,研究全機(jī)模型的體自由度顫振主動(dòng)抑制的自抗擾控制律設(shè)計(jì)問題。論文的主要框架如下:首先,對(duì)所選取的飛翼布局無人機(jī)全機(jī)模型進(jìn)行簡(jiǎn)單介紹,建立考慮剛體自由度的全機(jī)氣動(dòng)伺服彈性數(shù)學(xué)模型并進(jìn)行體自由度顫振穩(wěn)定性分析。其次,在自抗擾控制理論的基礎(chǔ)上,設(shè)計(jì)多輸入/多輸出控制器模型并構(gòu)造閉環(huán)系統(tǒng)。論文的第四部分進(jìn)行了全機(jī)模型仿真,并討論閉環(huán)系統(tǒng)的顫振穩(wěn)定性與魯棒性能。論文最后對(duì)本文的主要工作和貢獻(xiàn)進(jìn)行了總結(jié)。
1飛翼布局飛行器氣動(dòng)伺服彈性建模
飛翼布局飛機(jī)具有優(yōu)異的性能,但同時(shí)因其獨(dú)特的氣動(dòng)布局在低速時(shí)就表現(xiàn)出剛體模態(tài)與結(jié)構(gòu)彈性模態(tài)的耦合,進(jìn)而引發(fā)嚴(yán)重的體自由度顫振。如何抑制飛翼布局飛行器所特有的體自由度顫振失穩(wěn)是近年來飛行器設(shè)計(jì)領(lǐng)域的熱點(diǎn)與難點(diǎn)。對(duì)于體自由度顫振主動(dòng)抑制精確的動(dòng)力學(xué)建模是氣動(dòng)彈性分析的基礎(chǔ),也是控制律設(shè)計(jì)的前提。本節(jié)將對(duì)飛翼布局飛行器模型、多輸入/多輸出氣動(dòng)伺服彈性建模以及體自由度顫振穩(wěn)定性分析等進(jìn)行詳細(xì)介紹。
1.1飛翼布局飛行器模型
本文研究對(duì)象的原始模型是美國明尼蘇達(dá)大學(xué)的MUTT模型與NASA的X-56A模型,作者在這兩個(gè)模型的基礎(chǔ)上建立了幾何模型,如圖1和2所示,其主要的幾何尺寸如表1所示。圖3所示為全機(jī)有限元模型,通過NASTRAN的自由振動(dòng)分析模塊可容易獲得全機(jī)的固有模態(tài)特征。全機(jī)模型的前16階模態(tài)的固有頻率和模態(tài)振型如表2和圖4所示,其中前6階為剛體模態(tài),7-16階為彈性模態(tài)。
全機(jī)模型的控制面配置如圖5所示,該全機(jī)模型的機(jī)翼上有四組舵面(副翼),機(jī)身上有一組舵面(升降舵)。在全機(jī)模型的氣動(dòng)彈性控制研究中,本文選取了機(jī)翼最外側(cè)的一對(duì)副翼與機(jī)身上的升降舵作為模型的控制輸入,機(jī)翼翼尖的加速度與機(jī)身的剛體俯仰率作為模型的反饋信號(hào)。
1.2全機(jī)氣動(dòng)伺服彈性建模
氣動(dòng)伺服彈性系統(tǒng)建模的精確性是設(shè)計(jì)AFS控制律的先決條件。本節(jié)將從控制面偏轉(zhuǎn)以及作動(dòng)器系統(tǒng)建模等方面人手,對(duì)涉及ASE建模的各個(gè)環(huán)節(jié)分別進(jìn)行動(dòng)力學(xué)建模,進(jìn)而建立一套適用于AFS控制律設(shè)計(jì)的多輸入/多輸出ASE數(shù)學(xué)模型。
借助于分析力學(xué)的方法,從系統(tǒng)的功能原理關(guān)系出發(fā),利用Lagrange方程,可得到系統(tǒng)運(yùn)動(dòng)微分方程。然而對(duì)于多數(shù)實(shí)際飛機(jī)結(jié)構(gòu)來說,其結(jié)構(gòu)質(zhì)量密度分布和彈性模態(tài)振型往往無法解析獲得,通常只能借助于有限元方法來近似獲得。于是,將離散形式的結(jié)構(gòu)的動(dòng)能和勢(shì)能代入Lagrange方程中,可以得到如下形式的氣動(dòng)彈性方程
1.3模型顫振分析
當(dāng)升力面在氣流中以一定速度運(yùn)動(dòng)時(shí),在彈性力、慣性力和氣動(dòng)力的作用下,剛好使其產(chǎn)生等幅的自激振動(dòng),即發(fā)生顫振。當(dāng)飛行速度超過顫振速度后,其振動(dòng)幅值會(huì)隨時(shí)問不斷增加,從而會(huì)嚴(yán)重破壞飛行器結(jié)構(gòu)。為抑制飛機(jī)的顫振,首先需要求出飛機(jī)臨界顫振速度。
當(dāng)獲得氣動(dòng)伺服彈性狀態(tài)方程后,可通過求解狀態(tài)矩陣特征值的方法來求全機(jī)模型的顫振速度。圖6(a)所示為開環(huán)系統(tǒng)根軌跡隨來流風(fēng)速變化的分布情況。如圖所示,當(dāng)風(fēng)速接近26.5m/s時(shí)剛體俯仰模態(tài)穿越虛軸,發(fā)生顫振失穩(wěn),其顫振頻率約為3.6Hz。另外,由根軌跡分布可以看出誘發(fā)體自由度顫振失穩(wěn)的機(jī)理是結(jié)構(gòu)第1階對(duì)稱彎曲模態(tài)與俯仰模態(tài)耦合。圖6(b)所示為發(fā)生體自由度顫振時(shí)的顫振形態(tài)。
2多輸入/多輸出自抗擾控制律設(shè)計(jì)
本節(jié)將介紹基于自抗擾控制理論,設(shè)計(jì)一種不依賴于模型的多輸入/多輸出自抗擾顫振主動(dòng)抑制控制律??刂破髟O(shè)計(jì)思想是把作用于被控對(duì)象的所有不確定因素都?xì)w結(jié)為“未知擾動(dòng)”,而用對(duì)象的輸入一輸出數(shù)據(jù)對(duì)它進(jìn)行估計(jì)并給予補(bǔ)償,能夠很好地提高閉環(huán)系統(tǒng)的穩(wěn)定性。本節(jié)將分別從自抗擾控制器(ADRC,Active Disturbance R ejection Control-ler)基礎(chǔ)理論、控制器設(shè)計(jì)以及閉環(huán)系統(tǒng)構(gòu)建這三方面分別敘述。
2.1自抗擾控制理論基本原理
2.3閉環(huán)控制系統(tǒng)構(gòu)建
由于飛翼布局飛行器體自由度顫振模態(tài)為剛體俯仰模態(tài)與第1階彎曲模態(tài)的耦合,本文的控制思路為分別利用機(jī)身剛體俯仰率與機(jī)翼翼尖加速度作為控制輸入,利用機(jī)身上的升降舵與機(jī)翼最外側(cè)副翼構(gòu)成反饋對(duì)這兩個(gè)模態(tài)分別施加控制。按照這個(gè)思路構(gòu)建如圖8所示的閉環(huán)控制系統(tǒng)框圖??驁D共有4個(gè)控制器,其中控制左右對(duì)稱位置舵面的控制器參數(shù)相同。
兩組控制器的參數(shù)分別調(diào)節(jié),參考文獻(xiàn)[26]中給出的部分線性ADRC調(diào)參規(guī)律(如式(25)),并通過閉環(huán)系統(tǒng)根軌跡分布來指導(dǎo)參數(shù)的調(diào)節(jié)過程。同時(shí),文獻(xiàn)[29]證明,咒階ADRC可以有效地作用于階數(shù)大于n的系統(tǒng),且高階的n可能會(huì)導(dǎo)致系統(tǒng)噪聲的放大,降低控制器的穩(wěn)定性。在本研究中,作者根據(jù)預(yù)期的控制器適應(yīng)性和抗干擾性來決定n的取值。兩組參數(shù)的調(diào)節(jié)要使閉環(huán)系統(tǒng)的根軌跡盡量與原開環(huán)系統(tǒng)的根軌跡類似,也就是說,要保持顫振模態(tài)為體自由度顫振中耦合的第5階或第7階模態(tài),而其他模態(tài)的頻率與阻尼變化要盡可能小,這樣獲得的控制器才能更加可靠且擁有高的魯棒性。同時(shí)可以根據(jù)最小奇異值圖來分析閉環(huán)系統(tǒng)的魯棒性,最小奇異值大于0.3的閉環(huán)系統(tǒng)被認(rèn)為魯棒性較好。隨著模型飛行速度的增加,閉環(huán)系統(tǒng)的最小奇異值會(huì)逐漸降低以至于不能抵抗外界的干擾,使控制器起不到其應(yīng)有的效果。最終整定獲得的自抗擾控制器Ka(翼尖加速度回路)與Kp(俯仰率回路)的參數(shù)分別為:boa=259403072,ωca=0.01,ωoa=2.0;bop=259403072,ωcp=80,ωop=800。
為方便進(jìn)行時(shí)域仿真與魯棒性分析,本文將圖8中虛線框內(nèi)的4個(gè)并聯(lián)的控制器綜合為1個(gè)增廣的控制器K_au,其狀態(tài)空問方程為:
兩方程中各符號(hào)的含義均已在前文中敘述,在此不再贅述。于是閉環(huán)控制系統(tǒng)框圖可簡(jiǎn)化為圖9所示形式。
3數(shù)值仿真與驗(yàn)證
本節(jié)將進(jìn)行全機(jī)模型的閉環(huán)氣動(dòng)伺服彈性仿真,以評(píng)估控制系統(tǒng)的性能,仿真的過程借助于MATLAB軟件完成。本文利用根軌跡分布以及時(shí)域響應(yīng)曲線來評(píng)估閉環(huán)系統(tǒng)的穩(wěn)定性,用最小奇異值曲線來評(píng)估閉環(huán)系統(tǒng)的魯棒性。同時(shí),這三組曲線也是作者調(diào)節(jié)參數(shù)過程中的依據(jù),當(dāng)穩(wěn)定性與魯棒性達(dá)到預(yù)期的要求之后,就可以預(yù)測(cè)在實(shí)際的飛翼布局飛行器模型上也能起到良好的效果。
3.1閉環(huán)系統(tǒng)穩(wěn)定性分析
圖10所示為開環(huán)與閉環(huán)系統(tǒng)的根軌跡分布對(duì)比圖。如圖所示,本文所設(shè)計(jì)的控制器可將顫振速度由開環(huán)時(shí)的26.5m/s提升到了約53.5m/s,體自由度顫振臨界速度提升了約101.89%,此時(shí)閉環(huán)系統(tǒng)的顫振模態(tài)由原來的第5階俯仰模態(tài)變?yōu)榱说?階彎曲模態(tài)。并且從圖中可以看出,控制器對(duì)于ASE模型的高階模態(tài)與其他如氣動(dòng)力滯后根、作動(dòng)器狀態(tài)變量的影響較小。因此,控制器除了能有效地抑制BFF之外,并不會(huì)誘發(fā)高頻模態(tài)失穩(wěn)。
自抗擾控制器對(duì)于全機(jī)模型顫振抑制的效果也可以通過圖11-14更直觀地表現(xiàn)出來。圖11,12分別展示了在30m/s時(shí)全機(jī)模型的翼尖加速度與機(jī)身剛體俯仰率的時(shí)域響應(yīng)曲線。在30m/s時(shí),開環(huán)系統(tǒng)是不穩(wěn)定的,從圖11,12也可以看出,在微小擾動(dòng)的作用下,前0.8s模型的翼尖加速度與俯仰率響應(yīng)發(fā)散,0.8s后,模型升降舵與最外側(cè)副翼發(fā)生偏轉(zhuǎn)(如圖13,14所示),在舵面作用下模型的翼尖加速度與俯仰率響應(yīng)很快地收斂下來。且從圖13和14中可以看出,升降舵與副翼的偏轉(zhuǎn)基本是差動(dòng)的,這與圖6(b)中俯仰模態(tài)與彎曲模態(tài)的反相是對(duì)應(yīng)的,因此,控制器能夠準(zhǔn)確地追蹤對(duì)應(yīng)模態(tài),并有效地施加控制。
3.2閉環(huán)系統(tǒng)魯棒性分析
本節(jié)將分析閉環(huán)系統(tǒng)的魯棒性。由于實(shí)際飛行器模型存在建模不確定性與外界諸多擾動(dòng),因此閉環(huán)系統(tǒng)具有高的魯棒性是十分必要的,這樣控制器才能在模型有大量不確定性的情況下也能有效地抑制全機(jī)模型的顫振。單閉環(huán)奈奎斯特方法常用來分析系統(tǒng)的穩(wěn)定性裕度,然而其在一個(gè)瞬時(shí)只考慮一個(gè)回路的幅值或相角。因此其對(duì)于MIMO系統(tǒng)的穩(wěn)定性裕度的分析,傳統(tǒng)的單閉環(huán)奈奎斯特方法對(duì)于本文所建立的MIMO模型并不適用。本文利用閉環(huán)系統(tǒng)的最小奇異值的理論來判斷閉環(huán)系統(tǒng)的穩(wěn)定性裕度(魯棒性),最小奇異值方法能夠預(yù)測(cè)各個(gè)回路增益和相角同時(shí)變化時(shí)的穩(wěn)定性裕度。
閉環(huán)系統(tǒng)回差矩陣的最小奇異值隨風(fēng)速變化的曲線如圖15所示,從圖中可以看出直到約38.5m/s時(shí)系統(tǒng)的最小奇異值才掉到0.3以下,即保證足夠魯棒性。因此,可認(rèn)為自抗擾控制器閉環(huán)模型對(duì)于真實(shí)飛行器模型可將其顫振邊界速度提升約45.3%。
4結(jié)論
本文針對(duì)飛翼布局飛行器體自由度顫振主動(dòng)抑制問題,設(shè)計(jì)了多輸入/多輸出自抗擾控制律,該控制律設(shè)計(jì)方法具有魯棒性高、抗干擾能力強(qiáng)、易于執(zhí)行等優(yōu)點(diǎn)。為了驗(yàn)證本文提出的控制律設(shè)計(jì)方法的有效性,論文選取一大展弦比飛翼布局無人機(jī)為研究對(duì)象,對(duì)控制器的控制性能進(jìn)行了數(shù)值仿真,主要結(jié)論如下:
1)飛翼布局飛行器俯仰模態(tài)易與結(jié)構(gòu)彎曲模態(tài)耦合,誘發(fā)體自由度顫振。僅采用機(jī)翼后緣控制面作為控制輸入,其控制效果并不理想。將機(jī)身升降舵也作為控制輸入,對(duì)翼尖加速度和機(jī)體俯仰率分別設(shè)計(jì)回路,可有效提高體自由度顫振抑制效果。
2)從根軌跡與時(shí)域響應(yīng)的效果來看,本文提出的多輸人/多輸出自抗擾控制器具有優(yōu)越的體自由度顫振抑制效果,可將顫振速度提升101.89%,且具有很好的魯棒性能。
3)當(dāng)考慮飛行器在實(shí)際飛行過程中存在的不確定性與外界擾動(dòng),在保證足夠魯棒性的前提下,全機(jī)模型的顫振速度仍能提高約45.3%,這個(gè)結(jié)果也達(dá)到了作者的預(yù)期。
此外,作者計(jì)劃后期進(jìn)行一些風(fēng)洞實(shí)驗(yàn)與飛行實(shí)驗(yàn)來進(jìn)一步驗(yàn)證基于線性ADRC的AFS技術(shù)。