閆平玉 王鵬 楊維滿 張含國(guó)
摘 要:為探索紅松無(wú)性系結(jié)實(shí)性狀變異規(guī)律并選擇優(yōu)良無(wú)性系,對(duì)林口縣青山紅松無(wú)性系種子園25個(gè)無(wú)性系的一個(gè)年度的3個(gè)營(yíng)養(yǎng)成分性狀、兩個(gè)年度的6個(gè)種實(shí)性狀及連續(xù)4個(gè)年度的3個(gè)產(chǎn)量性狀進(jìn)行方差分析、變異分析、性狀相關(guān)分析及穩(wěn)定性分析。結(jié)果顯示:無(wú)性系間各性狀均有較大變異,2016、2019年各性狀平均變異系數(shù)分別為14.47%、16.73%,2016年空殼率變異系數(shù)較大,為42.52 %,2019年含水率變異系數(shù)較大,為37.47%。紅松無(wú)性系間各性狀均存在顯著差異,2019年球果數(shù)量、種子重、出仁率最高的無(wú)性系分別高出無(wú)性系平均值235.03%、31.56%、9.8%。LK18油脂含量、蛋白質(zhì)含量、多糖含量性狀分別大于無(wú)性系均值21.28%、48.40%、46.10%,LK79-5油脂含量、蛋白質(zhì)含量、多糖含量性狀分別大于無(wú)性系均值7.59%、48.40%、29.87%。結(jié)論:紅松種實(shí)性狀間相關(guān)關(guān)系較為緊密,營(yíng)養(yǎng)性狀間也存在顯著相關(guān)關(guān)系,30粒種仁重、30粒種子重、含水率、出仁率和多糖含量間相關(guān)性顯著,可間接選擇,而產(chǎn)量性狀與種實(shí)性狀、營(yíng)養(yǎng)性狀間相關(guān)性不顯著,可獨(dú)立進(jìn)行選擇。LK79-9、LK26兩個(gè)無(wú)性系結(jié)實(shí)性狀好,豐產(chǎn)穩(wěn)定性高,屬高產(chǎn)穩(wěn)產(chǎn)無(wú)性系,LK18、LK79-5為營(yíng)養(yǎng)成分好、豐產(chǎn)穩(wěn)定性高的優(yōu)良無(wú)性系。
關(guān)鍵詞:紅松;結(jié)實(shí)性狀;營(yíng)養(yǎng)性狀;無(wú)性系;選擇
中圖分類號(hào):S791??? 文獻(xiàn)標(biāo)識(shí)碼:A? ?文章編號(hào):1006-8023(2020)06-0019-11
Analysis of Seeding Characters of Korean Pine Seed Orchard
and Selection of Excellent Clones
YAN Pingyu1, WANG Peng2, YANG Weiman3, ZHANG Hanguo1*
(1.State Key Laboratory of Forest Tree Genetics and Breeding, Northeast Forestry University, Harbin 150036, China;
2.Qingshan National Larch Seed Base in Linkou County, Mudanjiang 157623, China;
3.Forest Resources Management Unit of Forestry and Grassland Administration in Linkou County, Mudanjiang 157600, China)
Abstract:In order to explore the variation law of clones of Korean pine clones and select excellent clones, ANOVA, variance analysis, trait correlation analysis and stability analysis were conducted on the 3 nutrient traits in a year, 6 planting traits in two years, and 3 yield traits in four consecutive years of 25 clones in Qingshan Pinus koraiensis clone orchard in Linkou County. The results showed that the clones had large variations in their solid traits among clones. The average coefficients of variation of each trait in 2016 and 2019 were 14.47% and 16.73%, respectively. In 2016, the coefficient of variation of the empty shell rate was large, at 42.52%, and in 2019, the coefficient of variation of the water content was large, at 37.47%. There were significant differences among the traits of Korean pine clones. The clones with the highest number of cones, seed weight, and kernel yield in 2019 were higher than the average clones by 235.03%, 31.56%, 9.8% respectively. The oil content, protein content and polysaccharide content of LK18 clones were higher than the average values of 21.28%, 48.40%, 46.10%, and the oil content, protein content and polysaccharide content of LK79-5 clones were higher than the average values of 7.59%, 48.40%, 29.87%, respectively. Conclusion: The correlation between the solid traits of Pinus koraiensis was relatively close, and there was also a significant correlation between the nutritional traits. The correlation between the weight of 30 seed kernels, the weight of 30 seeds, the moisture content, the yield of kernels, and the content of polysaccharides was significant, which can be selected indirectly. The correlations between traits, seed traits and nutritional traits are not significant and can be selected independently. LK79-9 and LK26 had good traits and high yield stability. They were high-yield and stable-yielding clones. LK18 and LK79-5 were excellent clones with good nutrition and high yield stability.
2 結(jié)果與分析
2.1 紅松無(wú)性系營(yíng)養(yǎng)性狀及種實(shí)性狀差異分析
對(duì)2019年?duì)I養(yǎng)性狀進(jìn)行變異分析,結(jié)果顯示(表1):3個(gè)營(yíng)養(yǎng)性狀在各無(wú)性系間均存在明顯變異,油脂含量、蛋白質(zhì)含量、多糖含量變異系數(shù)分別為11.14%、29.53%、27.2%。
對(duì)2016及2019年種實(shí)性狀進(jìn)行變異分析,結(jié)果顯示(表2):2016年出仁率、30粒種子質(zhì)量 、30粒種仁質(zhì)量 、出種率、空殼率的平均值分別為33.48%、23.38 g、7.84 g、44.54%、5.80%,2019年出仁率、30粒種子質(zhì)量、30粒種仁質(zhì)量 、種子長(zhǎng)寬比、含水率的平均值分別為32.68%、18.99 g、6.27 g、1.63、6.04%。
紅松無(wú)性系各種實(shí)性狀在兩個(gè)年度均存在較大變異,2016、2019年各性狀平均變異系數(shù)分別為14.47%、16.73%,其中2016年空殼率變異系數(shù)最大,為42.52%;2019年含水率變異系數(shù)最大,為37.47%;兩個(gè)年度出仁率均變異系數(shù)最小,分別為5.04%、4.57%。
對(duì)紅松無(wú)性2016、2019年各性狀進(jìn)行方差分析,結(jié)果表明各性狀在無(wú)性系間差異均達(dá)到了極顯著的水平。見表3。
2019年多重比較結(jié)果顯示(表4,主要以性狀為例):無(wú)性系LK79-36球果數(shù)量、30粒種子重、30粒種仁重最高,分別高出無(wú)性系平均值235.03%、25.29%、36.03%,比球果數(shù)量最低的LK20無(wú)性系高出640.4%,比30粒種子重和30粒種仁重最低的LK79-1無(wú)性系分別高出58.58%、70.41%。無(wú)性系LK79-9球果重、種子重最高,分別比無(wú)性系平均值高出31.77%、31.56%,球果重分別比表現(xiàn)較差的LK79-37、LK16無(wú)性系高出66.63%、77.53%。出仁率最高的LK79-4無(wú)性系比無(wú)性系平均值高出9.8%,比最低的LK27無(wú)性系高出21.2%。油脂含量最高的LK18無(wú)性系比無(wú)性系平均值高出21.28%,比油脂含量最低的LK5無(wú)性系高出68.69%。LK13無(wú)性系蛋白質(zhì)含量、多糖含量最高,分別比無(wú)性系平均值高出49.52%、56.45%,分別比蛋白質(zhì)含量、多糖含量最低的LK17、LK79-9無(wú)性系高出201.04%、169.58%。
2.2 無(wú)性系產(chǎn)量性狀差異分析及豐產(chǎn)穩(wěn)產(chǎn)性分析
對(duì)2016及2019年產(chǎn)量性狀進(jìn)行變異分析,結(jié)果顯示(表5):2016年球果數(shù)量、球果質(zhì)量、種子重的平均值分別為18.60個(gè)、231.77 g、93.29 g,2019年球果數(shù)量、球果質(zhì)量、種子質(zhì)量的平均值分別為27.92個(gè)、229.74 g、120.00 g。紅松無(wú)性系產(chǎn)量性狀在兩個(gè)年度均存在較大變異,2016、2019年各產(chǎn)量性狀平均變異系數(shù)分別為21.4%、18.11%,其中2016年種子重變異系數(shù)最大,為23.77%;2019年球果數(shù)量變異系數(shù)最大,為23%。
對(duì)2016—2019年 4個(gè)年度的球果數(shù)量、球果重和種子重3個(gè)產(chǎn)量性狀進(jìn)行穩(wěn)定性分析,結(jié)果表明(表6):球果數(shù)量豐產(chǎn)性、穩(wěn)定性綜合評(píng)價(jià)為“好”或“較好”的無(wú)性系有LK17、LK6、LK79-36、LK18、LK27、LK10、LK79-9、LK26和LK79-5共9個(gè),球果重豐產(chǎn)性、穩(wěn)定性綜合評(píng)價(jià)為“好”或“較好”的無(wú)性系為L(zhǎng)K79-9、LK3、LK10、LK16,種子重豐產(chǎn)性、穩(wěn)定性綜合評(píng)價(jià)為“好”或“較好”的無(wú)性系為L(zhǎng)K13、LK25、LK26、LK79-11、LK79-9。其中無(wú)性系LK79-9球果數(shù)量、球果重和種子重3個(gè)性狀的豐產(chǎn)性、穩(wěn)定性綜合評(píng)價(jià)均為“好”或“較好”,無(wú)性系LK10球果數(shù)量、球果重2個(gè)性狀的豐產(chǎn)性、穩(wěn)定性綜合評(píng)價(jià)均為“好”或“較好”,無(wú)性系LK26球果數(shù)量、種子重2個(gè)性狀的豐產(chǎn)性、穩(wěn)定性綜合評(píng)價(jià)均為“好”或“較好”,屬于高產(chǎn)穩(wěn)產(chǎn)無(wú)性系。
2.3 無(wú)性系結(jié)實(shí)性狀及營(yíng)養(yǎng)性狀間相關(guān)分析
對(duì)紅松無(wú)性系2019年豐年的各性狀進(jìn)行相關(guān)性分析,結(jié)果顯示(表7):球果數(shù)量、球果重和種子重3個(gè)產(chǎn)量性狀間相關(guān)性均不顯著,營(yíng)養(yǎng)性狀間蛋白質(zhì)含量與多糖含量顯著相關(guān),種實(shí)性狀間30粒種子重與出仁率相關(guān)性顯著,與含水率相關(guān)性極顯著,30粒種仁重與30粒種子重、含水率、出仁率均呈極顯著的正相關(guān)關(guān)系,且與多糖含量呈顯著正相關(guān)關(guān)系,因此在無(wú)性系選擇中可通過30粒種子重間接選擇出30粒種仁重、含水率、出仁率兼優(yōu)的無(wú)性系,營(yíng)養(yǎng)性狀中,多糖含量與蛋白質(zhì)含量間存在極顯著相關(guān)關(guān)系,在無(wú)性系選擇中對(duì)這兩個(gè)性狀應(yīng)當(dāng)共同考慮,但產(chǎn)量性狀與種實(shí)性狀、營(yíng)養(yǎng)性狀間相關(guān)性不顯著,說明紅松種子的產(chǎn)量與種實(shí)性狀、營(yíng)養(yǎng)成分可以獨(dú)立選擇。
2.4 紅松無(wú)性系多性狀綜合選擇
2.4.1 無(wú)性系產(chǎn)量及種實(shí)性狀綜合選擇
對(duì)紅松無(wú)性系2016、2019年產(chǎn)量性狀及種實(shí)性狀進(jìn)行主成分分析,見表8。第1主成分貢獻(xiàn)率達(dá)到24.71%,第2主成分貢獻(xiàn)率為20.44%,第3主成分貢獻(xiàn)率為13.26%,第4主成分貢獻(xiàn)率為9.92%,第5主成分貢獻(xiàn)率為7.86%,第六主成分貢獻(xiàn)率為7.17%,前6個(gè)成分累積貢獻(xiàn)率達(dá)到83.36%。
以每個(gè)主成分對(duì)應(yīng)的特征值占所提取主成分總的特征值之和的比例為得分系數(shù)權(quán)重得出主成分綜合模型為:
F=0.06X1+0.04X2+0.03X3+0.03X4+0.10X5+0.05X6-0.03X7-0.01X8+0.03X9-0.04X10-0.04X11+0.12X12+0.14X13+0.06X14+0.03X15+0.12X16。
式中:X1、X2、X3、X4、X5、X6、X7、X8分別為2016年球果數(shù)量、球果重、種子重、出種率、出仁率、1-空殼率、30粒種子重、30粒種仁重;X9、X10、X11、X12、X13、X14、X15、X16分別為2019年球果數(shù)量、球果重、種子重、30粒種仁重、30粒種子重、種子長(zhǎng)寬比、含水率、出仁率標(biāo)準(zhǔn)化后的變量數(shù)據(jù)。
綜合以上紅松無(wú)性系種子基本性狀與質(zhì)量性狀分析結(jié)果,按照10%的入選比率選擇優(yōu)良無(wú)性系,入選的無(wú)性系為L(zhǎng)K79-9、LK26和LK13。綜合穩(wěn)定性分析結(jié)果,LK79-9、LK26兩個(gè)無(wú)性系高產(chǎn)性狀受環(huán)境影響較小,在連續(xù)4個(gè)年度均有良好表現(xiàn),屬高產(chǎn)穩(wěn)產(chǎn)無(wú)性系,LK79-9無(wú)性系球果重、種子重、出仁率性狀大于無(wú)性系均值31.59%、25.22%、1.55%,LK26無(wú)性系球果數(shù)量、種子重、30粒種子重、30粒種仁重、出仁率性狀大于無(wú)性系均值9.55%、40.56%、2.77%、2.26%、0.81%。
2.4.2 無(wú)性系2019年產(chǎn)量及營(yíng)養(yǎng)性狀綜合選擇
對(duì)紅松無(wú)性系2019年產(chǎn)量性狀及營(yíng)養(yǎng)性狀進(jìn)行主成分分析,結(jié)果見表9:第1主成分貢獻(xiàn)率達(dá)到33.24%,第2主成分貢獻(xiàn)率為19.49%,第3主成分貢獻(xiàn)率為17.91%,第4主成分貢獻(xiàn)率為14.60%,前4個(gè)成分累積貢獻(xiàn)率達(dá)到85.23%。
以每個(gè)主成分對(duì)應(yīng)的特征值占所提取主成分總的特征值之和的比例為權(quán)重得出主成分綜合模型為:
F=0.25X1-0.10X2+0.18X3+0.09X4+0.21X5+0.19X6。
式中:X1、X2、X3、X4、X5、X6分別表示球果數(shù)量、球果重、種子重、油脂含量、蛋白質(zhì)含量、多糖含量標(biāo)準(zhǔn)化后的變量數(shù)據(jù)。
綜合以上紅松無(wú)性系種子產(chǎn)量性狀與營(yíng)養(yǎng)性狀分析結(jié)果,按照10%的入選比率選擇優(yōu)良無(wú)性系,入選的無(wú)性系為L(zhǎng)K18、LK79-11和LK79-5。其中LK18、LK79-5為營(yíng)養(yǎng)成分含量高、球果數(shù)量較多,且在穩(wěn)定性分析中有良好表現(xiàn),LK18油脂含量、蛋白質(zhì)含量、多糖含量性狀分別大于無(wú)性系均值21.28%、48.40%、46.10%,LK79-5油脂含量、蛋白質(zhì)含量、多糖含量性狀分別大于無(wú)性系均值7.59%、48.40%、29.87%。
3 結(jié)論與討論
兩個(gè)年度紅松各無(wú)性系結(jié)實(shí)性狀均有較大變異,2016、2019年各性狀平均變異系數(shù)分別為14.47%和16.73%,而云南省思茅松(P. kesiya var.langbianensis)天然群體各性狀平均變異系數(shù)為16.62%[26],白皮松(P.bungeaan)天然群體種實(shí)平均變異系數(shù)為12.09%[27]。2016年空殼率變異系數(shù)較大,為42.52%,2019年含水率變異系數(shù)較大,為37.47%,表明紅松種質(zhì)資源具有較大的變異性;種質(zhì)資源數(shù)量性狀變異越大,遺傳多樣性程度越高[28-29],因此紅松無(wú)性系結(jié)實(shí)性狀遺傳多樣性程度較高,有較大的遺傳改良潛力。兩個(gè)年度30粒種子重、30粒種仁重及出仁率平均變異系數(shù)相差不大,與張振等[19]報(bào)道的種仁重、出仁率平均變異系數(shù)相當(dāng)。2016年各無(wú)性系間結(jié)實(shí)性狀變異與2019年各無(wú)性系間結(jié)實(shí)性狀變異相比差異小,表明了紅松無(wú)性系在不同年度間存在著性狀變異,為紅松優(yōu)良種質(zhì)資源選育提供了基礎(chǔ)條件。不同性狀在不同年度表現(xiàn)不同,2019年結(jié)實(shí)性狀在不同無(wú)性系間具有更顯著的差異,因此通過對(duì)2019年各性狀相關(guān)性進(jìn)行分析以探究不同性狀間相關(guān)關(guān)系。紅松各性狀在無(wú)性系間的差異極顯著,這與那冬晨[30]初步對(duì)紅松堅(jiān)果型無(wú)性系進(jìn)行選擇研究中的指標(biāo)結(jié)果一致,是對(duì)無(wú)性系進(jìn)行選擇的必要條件。
性狀相關(guān)分析顯示紅松種實(shí)性狀間相關(guān)關(guān)系較為緊密,這與馬尾松(Pinus massoniana)種實(shí)性狀研究結(jié)果基本一致[31],這為通過表型間接選擇結(jié)實(shí)性狀好的無(wú)性系提供了依據(jù)。種子營(yíng)養(yǎng)性狀間蛋白質(zhì)含量與多糖含量間相關(guān)性達(dá)到了極顯著水平,可以作為不同特性優(yōu)良無(wú)性系間接選擇的依據(jù),在無(wú)性系選擇中對(duì)這兩個(gè)性狀應(yīng)當(dāng)共同考慮,但產(chǎn)量性狀與種實(shí)性狀、營(yíng)養(yǎng)性狀間相關(guān)性不顯著,與對(duì)華山松(P. armandii Franch.)的研究結(jié)果一致[32],證明了根據(jù)經(jīng)濟(jì)需要單獨(dú)選擇具有不同特性的優(yōu)良無(wú)性系的必要性。30粒種仁重與30粒種子重、含水率、出仁率均呈極顯著的正相關(guān)關(guān)系,與多糖含量呈顯著正相關(guān)關(guān)系,因此在無(wú)性系選擇中可通過30粒種仁重間接選擇出30粒種仁重、30粒種子重、含水率、出仁率、多糖含量兼優(yōu)的無(wú)性系,與張振等[19]研究結(jié)果基本一致,但其研究結(jié)果表明出仁率指標(biāo)與所測(cè)性狀均無(wú)顯著的相關(guān)性,出仁率可以做獨(dú)立選擇;這可能是由于不同的地點(diǎn)和遺傳背景會(huì)影響紅松種子性狀間相關(guān)關(guān)系[33-35]。
本研究通過紅松無(wú)性系種實(shí)多性狀主成分分析,結(jié)合不同年度無(wú)性系豐產(chǎn)穩(wěn)定性分析結(jié)果,最終選擇LK79-9、LK26兩個(gè)無(wú)性系為產(chǎn)量?jī)?yōu)良無(wú)性系。紅松種仁營(yíng)養(yǎng)成分豐富,其營(yíng)養(yǎng)成分含量的高低是松仁的重要經(jīng)濟(jì)指標(biāo),但目前其作用及效益遠(yuǎn)沒有充分發(fā)揮[36],本研究在選擇出高產(chǎn)穩(wěn)產(chǎn)紅松無(wú)性系之外,通過對(duì)紅松種仁的營(yíng)養(yǎng)性狀的分析,最終選擇LK18、LK79-5為營(yíng)養(yǎng)優(yōu)良無(wú)性系。
【參 考 文 獻(xiàn)】
[1]張巍,王清君,郭興.紅松不同種源的遺傳多樣性分析[J].森林工程,2017,33(2):17-21.
ZHANG W, WANG Q J, GUO X. Genetic diversity analysis of different provenances of Korean pine[J]. Forest Engineering, 2017, 33(2): 17-21.
[2]Nguyen Thanh Tuan,沈海龍,王琴香,等.截頂后紅松幼樹光合生理響應(yīng)研究[J].森林工程,2017,33(4):1-7.
NGUYEN T T, SHEN H L, WANG Q X, et al. Photosynthetic physiological response of young Korean pine trees after truncation[J]. Forest Engineering, 2017, 33(4):1-7.
[3]LIM T K. Pinus koraiensis[M]. Canberra: Edible Medicinal and Non-Medicinal Plants, 2012.
[4]馬建路,莊麗文,陳動(dòng),等.紅松的地理分布[J].東北林業(yè)大學(xué)學(xué)報(bào),1992,20(5):40-48.
MA J L, ZHUANG L W, CHEN D, et al. Geographic distribution of Pinus koraiensis in the world[J]. Journal of Northeast Forestry University, 1992, 20(5): 40-48.
[5]張鵬,沈海龍,林存學(xué).關(guān)于紅松果用林培育幾個(gè)問題的討論[J].森林工程,2016,32(3):7-11.
ZHANG P, SHEN H L,LIN C X. Discussion on several problems about the cultivation of fruit forests of Korean pine[J]. Forest Engineering, 2016, 32(3): 7-11.
[6]NERGIZ C, DOE NMEZ I. Chemical composition and nutritive value of Pinus pinea L. seeds[J]. Food Chemistry, 2004, 86(3): 365-368.
[7]YANG J, LIU R H, HALIM L. Antioxidant and antiproliferative activities of common edible nut seeds[J]. LWT - Food Science and Technology, 2009, 42(1): 1-8.
[8]BAGINSKY C, PEA-NEIRA , CCERES A, et al. Phenolic compound composition in immature seeds of fava bean (Vicia faba L.) varieties cultivated in Chile[J]. Journal of Food Composition and Analysis, 2013, 31(1): 1-6.
[9]SU X Y, WANG Z Y, LIU J R. In vitro and in vivo antioxidant activity of Pinus koraiensis seed extract containing phenolic compounds[J]. Food Chemistry, 2009, 117(4): 681-686.
[10]王振宇,牛之瑞.紅松仁多不飽和脂肪酸研究進(jìn)展[J].糧油加工,2007,38(2):58-61.
WANG Z Y, NIU Z R. Advance in the polyunsaturated fatty acids of Korean pine nut[J]. Cereals and Oils Processing, 2007, 38(2): 58-61.
[11]韓寧林.值得重視的松籽資源[J].林業(yè)科技開發(fā),1996,10(4):12-13.
HAN N L. Worthy pine seed resources [J]. China Forestry Science and Technology, 1996, 10(4): 12-13.
[12]YOON T H, IM K J, KOH E T, et al. Fatty acid compositions of Pinus koraiensis seed[J]. Nutrition Research, 1989, 9(3): 357-361.
[13]ZHANG Z, ZHANG H G, YANG C P, et al. Clonal variations in nutritional components of Pinus koreansis seeds collected from seed orchards in Northeastern China[J]. Journal of Forestry Research, 2016, 27(2): 295-311.
[14]張振.紅松無(wú)性系種子形態(tài)及營(yíng)養(yǎng)成分變異研究[D].哈爾濱:東北林業(yè)大學(xué),2015.
ZHANG Z. Variation of seed morphology and nutrient composition of Korean pine clones[D]. Harbin: Northeast Forestry University, 2015.
[15]王行軒,張利民,龐志慧.紅松結(jié)實(shí)性狀的選擇效果[J].東北林業(yè)大學(xué)學(xué)報(bào),2001,29(3):31-36.
WANG (H|X)(X), ZHANG L M, PANG Z H. Effect of selection for fruition characters of Pinus koraiensis[J]. Journal of Northeast Forestry University, 2001, 29(3): 31-36.
[16]李艷霞,楊凱.我國(guó)紅松堅(jiān)果良種選育研究現(xiàn)狀[J].林業(yè)勘查設(shè)計(jì),2015,44(3):72-75.
LI Y X, YANG K. Breeding research status of Korean pine nuts[J]. Forest Investigation Design, 2015, 44(3): 72-75.
[17]莫遲.不同紅松雜交組合種實(shí)性狀變異研究[D].哈爾濱:東北林業(yè)大學(xué),2017.
MO C. Variation of solid traits of different Korean pine hybrid combinations [D]. Harbin: Northeast Forestry University, 2017.
[18]王瑋槐,陳雨桐,黨乾順,等.紅松無(wú)性系和優(yōu)樹種子性狀及營(yíng)養(yǎng)成分分析[J].森林工程,2019,35(2):11-20.
WANG W H, CHEN Y T, DANG Q S, et al. Analysis of characters and nutritional components of Pinus koraiensis seeds on clones and superior trees[J]. Forest Engineering, 2019, 35(2): 11-20.
[19]張振,張磊,張含國(guó),等.鐵力紅松種子園無(wú)性系種子形態(tài)及營(yíng)養(yǎng)成分變異研究[J].植物研究,2014,34(3):356-363.
ZHANG Z, ZHANG L, ZHANG H G, et al. Variations in nutrition compositions and morphology characteristics of pine-nuts in Korean pine (Pinus koraiensis) seed orchard of Tieli[J]. Bulletin of Botanical Research, 2014, 34(3): 356-363.
[20]許家春.紅松無(wú)性系結(jié)實(shí)性狀及種子營(yíng)養(yǎng)成分的遺傳變異研究[J].林業(yè)勘查設(shè)計(jì),2019,48(1):118-120.
XU J C. Genetic variation study on fruiting characters and seeds nutrition components of Pinus koraiensis sieb. et zucc. clones[J]. Forest Investigation Design, 2019, 48(1): 118-120.
[21]李光森.紅松多無(wú)性系群體的種實(shí)性狀變異研究[J].農(nóng)業(yè)開發(fā)與裝備,2018,24(6):110.
LI G S. Variation of seed-solid traits of polyclonal populations of Pinus koraiensis[J]. Agricultural Development and Equipments, 2018, 24(6): 110.
[22]楊柏林,張振,張磊,等.鶴崗和鐵力紅松種子園種子形態(tài)特征的比較研究[J].吉林林業(yè)科技,2014,43(1):1-5.
YANG B L, ZHANG Z, ZHANG L, et al. Comparative study of seed morphological and characteristics in seed orchard of Pinus koraiensis[J]. Jilin Forestry Science and Technology, 2014, 43(1): 1-5.
[23]劉德棟.我國(guó)紅松良種選育研究進(jìn)展[J].防護(hù)林科技,2017,35(3):96-99.
LIU D D. Research progress in selection and breeding of Korean pine in my country[J]. Shelterbelt Science and Technology, 2017, 35(3): 96-99.
[24]賈慶彬,王曉偉,鄒建軍,等.大青楊無(wú)性系材性分析與優(yōu)良無(wú)性系選擇[J].森林工程,2020,36(2):12-19.
JIA Q B, WANG X W, ZOU J J, et al. Analysis of variance in wood properties of Populus ussuriensis clones and superior clones selection[J]. Forest Engineering, 2020, 36(2): 12-19.
[25]周宇,張振,馮萬(wàn)舉,等.林口青山紅松種子園優(yōu)良無(wú)性系選擇[J].林業(yè)實(shí)用技術(shù),2015,58(11):17-21.
ZHOU Y, ZHANG Z, FENG W J, et al. Selection of excellent clones in the seeding orchard of Pinus koraiensis in Linkou[J]. Practical Forestry Technology, 2015, 58(11): 17-21.
[26]李帥鋒,蘇建榮,劉萬(wàn)德,等.思茅松天然群體種實(shí)表型變異[J].植物生態(tài)學(xué)報(bào),2013,37(11):998-1009.
LI S F, SU J R, LIU W D, et al. Phenotypic variations in cones and seeds of natural Pinus kesiya var. langbianensis populations in Yunnan Province, China[J]. Chinese Journal of Plant Ecology, 2013, 37(11): 998-1009.
[27]李斌,顧萬(wàn)春,盧寶明.白皮松天然群體種實(shí)性狀表型多樣性研究[J].生物多樣性,2002,10(2):181-188.
LI B, GU W C, LU B M. A study on phenotypic diversity of seeds and cones characteristics in Pinus bungeana[J]. Biodiversity Science, 2002, 10(2): 181-188.
[28]王昆,劉鳳之,肖艷宏,等.蘋果種質(zhì)資源果實(shí)數(shù)量性狀評(píng)價(jià)分析[J].中國(guó)果樹,2007,49(5):14-17.
WANG K, LIU F Z, XIAO Y H, et al. Analysis of fruit quantity characteristic in apple germ plasms[J]. China Fruits, 2007, 49(5): 14-17.
[29]王曉蕾,崔曉坤,張鵬,等.裸層積處理方式和時(shí)間對(duì)紅松種子萌發(fā)狀態(tài)的影響[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,44(4):37-46.
WANG X L, CUI X K, ZHANG P, et al. Effects of naked stratification patterns and period on seed germination of Pinns koraiensis sieb. et zucc.[J]. Jourral of Nanjing Forestry University(Natural Soience Edition), 2020,44(4):374-46.
[30]那冬晨.紅松堅(jiān)果型優(yōu)良無(wú)性系選擇的研究[D].哈爾濱:東北林業(yè)大學(xué),2002.
NA D C. Study on Selection of Pinus koraiensis nut-type excellent clones[D]. Harbin: Northeast Forestry University, 2002.
[31]徐進(jìn),王章榮,陳亞斌,等.馬尾松種子園無(wú)性系結(jié)實(shí)量、種實(shí)性狀及遺傳參數(shù)的分析[J].林業(yè)科學(xué),2004,40(4):201-205.
XU J, WANG Z R, CHEN Y B, et al. An analysis of genetic parameters, characters of seed and cone, and cone yield of clones grown in a seed orchard for Pinus massoniana[J]. Scientia Silvae Sinicae, 2004, 40(4): 201-205.
[32]朱曉丹,李桐森,劉小珍,等.華山松無(wú)性系種子園結(jié)實(shí)量與種實(shí)性狀的關(guān)系[J].西南林學(xué)院學(xué)報(bào),2006,26(2):48-51.
ZHU X D, LI T S, LIU X Z, et al. Studies on fruiting quantity of Pinus armandii clones in the seed orchard and the seed quality[J]. Journal of Southwest Forestry College, 2006, 26(2): 48-51.
[33]莫遲,張海嘯,張磊,等.紅松不同雜交組合種實(shí)形態(tài)與營(yíng)養(yǎng)成分變異研究[J].植物研究,2017,37(5):700-708.
MO C, ZHANG H X, ZHANG L,et al. Genetic diversity analysis on individual of Pinus koraiensis in seed orchard based on ISSR-PCR[J]. Forestry Science & Technology, 2020, 45(2): 17-20.
[34]谷麗萍,李思廣,鄭畹,等.云南松種內(nèi)雜交組合的球果和種子表型性狀變異分析[J].西部林業(yè)科學(xué),2018,47(2):26-31.
GU L P, LI S G, ZHENG W, et al. Variation analysis of seeds and cones phenotypic traits of pinus yunnanensis hybrids[J].Journal of West China Forestry Science,2018,47(2):26-31.
[35]陳強(qiáng),車?guó)P仙,劉永剛,等.彌渡云南松無(wú)性系種子園子代生長(zhǎng)量遺傳分析[J].西部林業(yè)科學(xué),2020,49(4):8-15.
CHEN Q, CHE F X, LIU Y G, et al. Genetic analysis of progeny growth traits in midu clonal seed orchard of pinus yunnanensis[J].Journal of West China Forestry Science,2020,49(4):8-15.
[36]王振宇,楊立賓,魏殿文.紅松松仁中天然產(chǎn)物的研究進(jìn)展[J].國(guó)土與自然資源研究,2008,30(2):90-91.
WANG Z Y, YANG L B, WEI D W. Research advance of natural product in Korean pine nut[J]. Territory & Natural Resources Study, 2008,30(2): 90-91.