何麗橋 王俊利 李妹燕 陳發(fā)欽
【關(guān)鍵詞】 G6PD缺乏癥;基因突變;伴發(fā)疾病
中圖分類號(hào):R722.11 ? 文獻(xiàn)標(biāo)志碼:A ? DOI:10.3969/j.issn.1003-1383.2020.10.013
葡萄糖-6-磷酸脫氫酶(Glucose-6-phosphate dehydrogenase,G6PD)是催化磷酸戊糖途徑的一種限速酶,通過還原型輔酶Ⅱ(NADPH)調(diào)節(jié)細(xì)胞氧化還原穩(wěn)態(tài),以保護(hù)細(xì)胞免受氧化損傷。G6PD缺乏癥屬于X染色體連鎖不完全顯性遺傳,男性半合子酶活性呈顯著性缺乏,女性雜合子酶活性變化范圍較大,介于正常至重度降低之間[1]。臨床上表現(xiàn)多樣,包括蠶豆病、藥物性或感染性溶血、新生兒病理性黃疸進(jìn)而神經(jīng)系統(tǒng)損害甚至死亡,平時(shí)可無臨床癥狀。如何預(yù)防和避免溶血性疾病的發(fā)生和發(fā)展顯得尤為重要,本文就該病基因突變的區(qū)域分布與臨床伴發(fā)疾病關(guān)系的研究進(jìn)展作如下綜述。
1 G6PD缺乏癥基因突變區(qū)域分布特征
迄今為止,全球約有4億人受累,約200種G6PD基因變異型已被鑒定,G6PD缺乏癥高發(fā)地區(qū)與瘧疾流行地區(qū)具有高度一致性,在非洲、亞洲、地中海和中東等地區(qū),G6PD缺乏癥的發(fā)生率最高,達(dá)15%~26%[2]。
由于人群淵源不同和自然選擇、遺傳漂變等因素的作用,我國不同地域和民族群體之間的G6PD缺乏癥發(fā)生率相差甚遠(yuǎn),呈“南高北低”分布,以廣西、廣東、海南為高發(fā)區(qū),個(gè)別地區(qū)達(dá)40%以上[3]。G6PD缺乏癥在不同地區(qū)人群發(fā)生率和突變類型不盡相同,傣族(17.4%)和壯族(14.1%)的G6PD缺乏癥發(fā)生率最高,其中G6PD Kaiping(c.1388G>A)、Canton(c.1376G>T)和Gaohe(c.95A>G)是導(dǎo)致中國人G6PD缺乏癥的主要等位基因類型[4]。云南省相近地區(qū)的傣族、彝族、苗族和白族,彼此之間的G6PD缺乏癥發(fā)生率和突變譜相差甚遠(yuǎn):西雙版納州的傣族G6PD缺乏癥發(fā)生率9.73%,而大理的白族未發(fā)現(xiàn)該病存在;G6PD Valladilid(c.406C>T)僅發(fā)現(xiàn)于楚雄地區(qū)的彝族,而文山地區(qū)的苗族則可見高比例的G6PD Chinese-4(c.392G>T);在同一民族的不同群體中,如廣東中部和北部的漢族與江西南部贛州的漢族,G6PD缺乏癥突變譜相近,但發(fā)生率有明顯差異[5]。這些均提示我國人群G6PD缺乏癥發(fā)生率和突變譜跟人群的遺傳淵源有關(guān)。G6PD等位基因類型和種族起源的關(guān)聯(lián)一直是研究G6PD基因的熱點(diǎn)。
2 G6PD缺乏癥基因突變與臨床伴發(fā)疾病的關(guān)系
2.1 G6PD缺乏癥基因突變對(duì)伴發(fā)疾病的正向保護(hù)作用
2.1.1 G6PD缺乏與瘧疾 人類G6PD基因是受瘧疾正向選擇作用最明顯的基因之一。人類基因組上的多數(shù)變異是中性或接近中性,倘若某一變異受到強(qiáng)烈的選擇作用,與之相關(guān)的遺傳印記短時(shí)內(nèi)在中性背景中凸顯出來[6]。LIANG等學(xué)者[7]通過對(duì)非洲人群的G6PD基因檢測(cè),發(fā)現(xiàn)G6PD等位基因顯著降低該人群感染惡性瘧原蟲的危險(xiǎn)性,不同類型G6PD等位基因和不同G6PD酶活性水平個(gè)體對(duì)瘧原蟲感染密度亦有差異。在東南亞地區(qū)觀察到G6PD Mahidol(c.487G>A)和G6PD Viangchan(c.871G>A)等位基因突變發(fā)生率最高,推測(cè)這是該地區(qū)長期瘧疾選擇壓力的結(jié)果,同時(shí)發(fā)現(xiàn)降低了間日瘧原蟲感染的密度,受到間日瘧原蟲賦予選擇壓力作用的證據(jù)[8]。ZHANG等[9]在應(yīng)力不變情況下,G6PD缺陷紅細(xì)胞膜硬度增加及變形性降低,不利于瘧原蟲裂殖子的入侵,惡性瘧疾易感性降低。CHU等[10]在治療間日瘧過程,發(fā)現(xiàn)G6PD缺陷患者在服用氯喹后致嚴(yán)重貧血,提示氯喹在G6PD缺陷患者可能存在與其他相似的醫(yī)源性溶血潛能。在排除G6PD缺乏癥情況下,與單獨(dú)使用氯喹相比,聯(lián)合應(yīng)用伯氨喹治療和預(yù)防復(fù)發(fā)性瘧原蟲血癥,第42天后減少瘧疾藥物誘導(dǎo)溶血的風(fēng)險(xiǎn)[11]。這些數(shù)據(jù)的展示對(duì)G6PD缺乏癥是否作為瘧原蟲的一種保護(hù)因素有待更大的科研數(shù)據(jù)的支撐,同時(shí)為尋找新的靶向抗瘧藥物奠定了基礎(chǔ)。
2.1.2 G6PD缺乏與地中海貧血 G6PD在新生的紅細(xì)胞中活性較高。泰國的同行研究發(fā)現(xiàn)不同類型的地中海貧血與G6PD缺乏癥為共同遺傳,地中海貧血HbE雜合型(HbB:C.79G>A)和G6PD突變位點(diǎn)(c.871G>A)在該地區(qū)新生兒和成人中均占主導(dǎo)地位[12]。血紅蛋白H?。℉bH)組與重型地貧組的G6PD活性均比輕型地貧組顯著升高,HbH組與重型地貧組的G6PD活性比較卻無差異,說明G6PD酶在地貧患者慢性溶血體內(nèi),為刺激機(jī)體代償產(chǎn)生紅細(xì)胞而引起其活性升高[13]。PENGON等[14]發(fā)現(xiàn)合并G6PD缺乏癥的地中海貧血患者,比單純遺傳地中海貧血者更容易導(dǎo)致紅細(xì)胞病理性惡化。據(jù)此,G6PD可作為診斷地中海貧血的輔助指標(biāo),在地中海貧血高發(fā)區(qū)人群進(jìn)行G6PD檢測(cè),在一定程度上將可有效預(yù)防地中海貧血的發(fā)生,為降低出生人口缺陷、提高人口質(zhì)量提供新的途徑。
2.2 G6PD缺乏癥基因突變對(duì)伴發(fā)疾病的負(fù)面影響2.2.1 G6PD缺乏與溶血 越來越多的證據(jù)表明,已知一些藥物、食物和化學(xué)物質(zhì)等在G6PD缺乏個(gè)體中引發(fā)致命溶血性貧血。在鐮狀細(xì)胞病兒童輸血治療研究中,輸注G6PD缺乏的紅細(xì)胞可能會(huì)導(dǎo)致其存活期縮短進(jìn)而出現(xiàn)輸血療效下降[15]。通過G6PD不同狀態(tài)對(duì)紅細(xì)胞儲(chǔ)存和輸血結(jié)果的對(duì)比,于紅細(xì)胞冷藏期間,G6PD缺陷的紅細(xì)胞暴露于促氧化藥物和感染后發(fā)生急性溶血[16]。由此,為避免嚴(yán)重的溶血,在獻(xiàn)血或輸血前篩查了解G6PD基因型與酶缺乏的表型之間的關(guān)系顯得尤為重要。
2.2.2 G6PD缺乏與機(jī)體細(xì)胞生長、胚胎發(fā)育 研究表明,G6PD狀態(tài)的改變影響細(xì)胞代謝途徑,不足的G6PD活性導(dǎo)致細(xì)胞生長遲緩和死亡。G6PD活性的增加提高了NADPH水平和保護(hù)機(jī)體免受活性氧(ROS)的有害影響,實(shí)現(xiàn)保護(hù)小鼠免受氧化損傷,對(duì)衰老功能的衰退具有重要的保護(hù)作用,實(shí)現(xiàn)延長小鼠的健康壽命[17]。CHEN等[18]在小鼠、線蟲模型胚胎研究中,發(fā)現(xiàn)G6PD缺陷胚胎甘油磷脂代謝異常導(dǎo)致胚胎發(fā)育異常,當(dāng)胚胎完全缺乏G6PD活性時(shí),甚至出現(xiàn)線蟲胚胎致死,證明脂質(zhì)代謝紊亂是導(dǎo)致G6PD缺乏的線蟲胚胎發(fā)育異常的主要因素。由此,G6PD在促進(jìn)細(xì)胞生長、胚胎正常發(fā)育及抗氧化功能中起著舉足輕重的作用。
2.3 G6PD缺乏癥基因突變對(duì)伴發(fā)疾病的促進(jìn)/阻礙作用
2.3.1 G6PD缺乏與炎癥感染 既往研究已明確,NADPH在維持抗氧化防御具有極其重要的作用。YEN等[19]發(fā)現(xiàn)G6PD缺乏或G6PD基因敲除的機(jī)體致炎癥小體激活,細(xì)菌清除能力受損,對(duì)病原體易感性增強(qiáng)。G6PD的缺乏增加心血管疾病的風(fēng)險(xiǎn),盡管其潛在機(jī)制尚未明了,推測(cè)在動(dòng)脈粥樣硬化形成的早期階段,重要的氧化應(yīng)激保護(hù)通路的喪失,可能起著至關(guān)重要的作用[20]。G6PD抑制劑可降低小鼠氣道炎癥,表明G6PD的激活與急性肺損傷氧化炎癥的增強(qiáng)有關(guān)[21]。通過降低G6PD的表達(dá)和活性,進(jìn)而減輕氧化和炎癥應(yīng)激反應(yīng),從而達(dá)到減緩大鼠肝臟的脂肪變性[22]。以上研究表明,G6PD既是促炎又是抗炎介質(zhì),取決于它參與器官的表達(dá)。
2.3.2 G6PD缺乏與腫瘤 近年來研究發(fā)現(xiàn),調(diào)節(jié)G6PD水平的變化可以促進(jìn)腫瘤細(xì)胞增殖或凋亡。ZHANG等[23]研究發(fā)現(xiàn)G6PD的表達(dá)與結(jié)腸癌的增殖和侵襲性呈正相關(guān)。在肝細(xì)胞癌的研究中G6PD的上調(diào)與較高的腫瘤分級(jí)、腫瘤復(fù)發(fā)率升高和患者生存率下降相關(guān)[24]。抑制G6PD后,60%的體外侵襲被抑制,從而抑制體內(nèi)惡性腫瘤的增殖和轉(zhuǎn)移[25]。G6PD缺乏患者患內(nèi)皮源性癌癥(如胃、結(jié)腸和肝臟)的易感性風(fēng)險(xiǎn)比酶活性正常者降低,而對(duì)外胚層/中胚層來源癌癥無明顯危險(xiǎn)[26]。由此證明G6PD在腫瘤形成、增殖和分化中發(fā)揮了非常重要作用,提示臨床上可量化G6PD活性作為衡量腫瘤惡性程度的指標(biāo)。G6PD缺乏對(duì)腫瘤的影響需進(jìn)一步研究,以更好地了解和利用戊糖磷酸途徑對(duì)來源于不同胚層的癌細(xì)胞進(jìn)行調(diào)控。
3 G6PD缺乏癥基因突變成為伴發(fā)疾病的高危因素
3.1 G6PD缺乏與新生兒病理性黃疸 G6PD遺傳變異和缺乏是新生兒高膽紅素血癥的危險(xiǎn)因素[27]。同一基因位點(diǎn)的多態(tài)性與高膽紅素血癥在不同區(qū)域和人群有差異[28]。研究發(fā)現(xiàn)Mahidol(C.487G>A)導(dǎo)致急性核黃疸,甚至引起嬰兒死亡[29]。因此,研究G6PD基因突變對(duì)新生兒病理性黃疸的影響,有助于提高我們對(duì)該病的防控意識(shí),避免核黃疸等并發(fā)癥的發(fā)生。
3.2 G6PD缺乏與糖尿病 G6PD缺乏癥可能是糖尿病的危險(xiǎn)因素。高糖抑制G6PD的表達(dá)和活性,導(dǎo)致氧化應(yīng)激增加和β細(xì)胞凋亡,在G6PD缺乏的小鼠中觀察到較小的胰島和糖耐量受損,表明G6PD缺乏本身導(dǎo)致β細(xì)胞功能障礙和死亡,G6PD在β細(xì)胞功能和存活中起著重要作用[30]。通過對(duì)孕婦的研究表明,G6PD活性與空腹血糖呈正相關(guān),G6PD活性升高增加妊娠期糖尿病(GDM)發(fā)病風(fēng)險(xiǎn)[31]。G6PD缺乏的空腹血糖/糖化血紅蛋白(FG/HbA1c)比值明顯高于G6PD正常者,提示FG/HbA1c比值是糖尿病患者篩查G6PD缺乏的良好指標(biāo),但極端高血糖的情況除外[32]??梢?,理解G6PD在糖尿病發(fā)病機(jī)制中的作用及對(duì)G6PD調(diào)控的研究將是今后治療糖尿病的新靶點(diǎn)。
4 小結(jié)與展望
G6PD缺乏癥在瘧疾、地中海貧血等流行地區(qū)為高發(fā),G6PD基因突變?cè)谝欢ǔ潭壬峡勺鳛樵擃惣膊〉谋Wo(hù)因素,掌握G6PD等位基因類型與伴發(fā)疾病的調(diào)控機(jī)制,對(duì)治療和預(yù)防溶血性危機(jī)的發(fā)生和發(fā)展已被揭示。在研究機(jī)體細(xì)胞生長、胚胎發(fā)育中,G6PD缺乏癥的負(fù)面影響已成為研究學(xué)者們探索的方向。在與炎癥的感染和腫瘤的發(fā)生、發(fā)展及侵襲方面,G6PD缺乏癥基因突變是一把雙刃劍,如何通過不同的調(diào)節(jié)機(jī)制達(dá)到有效控制心血管疾病及源于不同胚層癌癥的增殖和轉(zhuǎn)移尚在探索階段,有待深入研究。G6PD缺乏癥是病理性黃疸、糖尿病的高危因素之一,世界衛(wèi)生組織已提倡對(duì)新生兒G6PD的廣泛篩查,以確保更早地發(fā)現(xiàn)G6PD缺乏癥患兒,相信在不斷的探索中,更好地預(yù)防觸發(fā)因素并及時(shí)采取良好的治療方法,人們生活質(zhì)量提高將會(huì)取得更大的進(jìn)展。
參 考 文 獻(xiàn)
[1] ?BELFIELD K D,TICHY E M.Review and drug therapy implications of glucose-6-phosphate dehydrogenase deficiency[J].Am J Health Syst Pharm,2018,75(3):97-104.
[2] ?ONG K I C,KOSUGI H,THOEUN S,et al.Systematic review of the clinical manifestations of glucose-6-phosphate dehydrogenase deficiency in the Greater Mekong Subregion: implications for malaria elimination and beyond[J].BMJ Glob Health,2017,2(3):e000415.
[3] ?WU H M,ZHU Q Y,ZHONG H,et al.Analysis of genotype distribution of thalassemia and G6PD deficiency among Hakka population in Meizhou City of Guangdong Province[J].J Clin Lab Anal,2019:e23140.
[4] ?YU F T,ZHANG S F,CHEN B H,et al.Evaluation of the diagnostic accuracy of the CareStart?e ?glucose-6-phosphate dehydrogenase deficiency rapid diagnostic test among Chinese newborns[J].J Trop Pediatr,2020:fmaa003.
[5] ?詹小芬,張芹,周露,等.云南省西雙版納州傣族G6PD缺陷癥發(fā)生率及突變譜研究[J].分子診斷與治療雜志,2015,7(2):83-86.
[6] ?DEPINA A J,PIRES C M,ANDRADE A J B,et al.The prevalence of glucose-6-phosphate dehydrogenase deficiency in the Cape Verdean population in the context of malaria elimination[J].PLoS One,2020,15(3):e0229574.
[7] ?LIANG X Y,CHEN J T,MA Y B,et al.Evidence of positively selected G6PD a-allele reduces risk of Plasmodium falciparum infection in African population on Bioko Island[J].Mol Genet Genomic Med,2020,8(2):e1061.
[8] ?BANCONE G,MENARD D,KHIM N,et al.Molecular characterization and mapping of glucose-6-phosphate dehydrogenase (G6PD) mutations in the Greater Mekong Subregion[J].Malar J,2019,18(1):20.
[9] ?ZHANG Z Q,CHEN X D,JIANG C R,et al.The effect and mechanism of inhibiting glucose-6-phosphate dehydrogenase activity on the proliferation of Plasmodium falciparum[J].Biochim Biophys Acta Mol Cell Res,2017,1864(5):771-781.
[10] ?CHU C S,BANCONE G,SOE N L,et al.The impact of using primaquine without prior G6PD testing:a case series describing the obstacles to the medical management of haemolysis[J].Wellcome Open Res,2019,4:25.
[11] ?COMMONS R J,SIMPSON J A,THRIEMER K,et al.The haematological consequences of Plasmodium vivax malaria after chloroquine treatment with and without primaquine:a WorldWide Antimalarial Resistance Network systematic review and individual patient data meta-analysis[J].BMC Med,2019,17(1):151.
[12] ?BANYATSUPPASIN W,JINDADAMRONGWECH S,LIMRUNGSIKUL A,et al.Prevalence of thalassemia and glucose-6-phosphate dehydrogenase deficiency in newborns and adults at the ramathibodi hospital,bangkok,Thailand[J].Hemoglobin,2017,41(4/5/6):260-266.
[13] ?葉偉強(qiáng),梁知銳,徐耀祥.G6PD活性水平與地中海貧血相關(guān)性分析[J].中國實(shí)用醫(yī)藥,2020,15(6):95-97.
[14] ?PENGON J,SVASTI S,KAMCHONWONGPAISAN S,et al.Hematological parameters and red blood cell morphological abnormality of Glucose-6-Phosphate dehydrogenase deficiency co-inherited with thalassemia[J].Hematol Oncol Stem Cell Ther,2018,11(1):18-24.
[15] ?SAGIV E,F(xiàn)ASANO R M,LUBAN N L C,et al.Glucose-6-phosphate-dehydrogenase deficient red blood cell units are associated with decreased posttransfusion red blood cell survival in children with sickle cell disease[J].Am J Hematol,2018,93(5):630-634.
[16] ?KARAFIN M S,F(xiàn)RANCIS R O.Impact of G6PD status on red cell storage and transfusion outcomes[J].Trasfusione Del Sangue,2019,17(4):289-295.
[17] ?NBREGA-PEREIRA S,F(xiàn)ERNANDEZ-MARCOS P J,BRIOCHE T,et al.G6PD protects from oxidative damage and improves healthspan in mice[J].Nat Commun,2016,7:10894.
[18] ?CHEN T L,YANG H C,HUNG C Y,et al.Impaired embryonic development in glucose-6-phosphate dehydrogenase-deficient Caenorhabditis elegans due to abnormal redox homeostasis induced activation of calcium-independent phospholipase and alteration of glycerophospholipid metabolism[J].Cell Death Dis,2017,8(1):e2545.
[19] ?YEN W C,WU YH,WU C C,et al.Impaired inflammasome activation and bacterial clearance in G6PD deficiency due to defective NOX/p38 MAPK/AP-1 redox signaling[J].Redox Biol,2020,28:101363.
[20] ?PES G M,PARODI G,DORE M P.Glucose-6-phosphate dehydrogenase deficiency and risk of cardiovascular disease:A propensity score-matched study[J].Atherosclerosis,2019,282:148-153.
[21] ?NADEEM A,AL-HARBI N O,AHMAD S F,et al.Glucose-6-phosphate dehydrogenase inhibition attenuates acute lung injury through reduction in NADPH oxidase-derived reactive oxygen species[J].Clin Exp Immunol,2018,191(3):279-287.
[22] ?MEJA S ,GUTMAN L A B,CAMARILLO C O,et al.Nicotinamide prevents sweet beverage-induced hepatic steatosis in rats by regulating the G6PD,NADPH/NADP+ and GSH/GSSG ratios and reducing oxidative and inflammatory stress[J].Eur J Pharmacol,2018,818:499-507.
[23] ?ZHANG X M,ZHANG X,LI Y,et al.PAK4 regulates G6PD activity by p53 degradation involving colon cancer cell growth[J].Cell Death Dis,2017,8(5):e2820.
[24] ?BARAJAS J M,REYES R,GUERRERO M J,et al.The role of miR-122 in the dysregulation of glucose-6-phosphate dehydrogenase (G6PD) expression in hepatocellular cancer[J].Sci Rep,2018,8(1):9105.
[25] ?MELE L,PAINO F,PAPACCIO F,et al.A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo[J].Cell Death Dis,2018,9(5):572.
[26] ?PES G M,ERRIGO A,SORO S,et al.Glucose-6-phosphate dehydrogenase deficiency reduces susceptibility to cancer of endodermal origin[J].Acta Oncol,2019,58(9):1205-1211.
[27] ?ZHOU J F,YANG C Y,ZHU W B,et al.Identification of genetic risk factors for neonatal hyperbilirubinemia in Fujian Province,southeastern China:a case-control study[J].Biomed Res Int,2018,2018:7803175.
[28] ?CHIDDARWAR A S,D'SILVA S Z,COLAH R B,et al.Genetic variations in bilirubin metabolism genes and their association with unconjugated hyperbilirubinemia in adults[J].Ann Hum Genet,2017,81(1):11-19.
[29] ?CHRISTENSEN R D,YAISH H M,WIEDMEIER S E,et al.Neonatal death suspected to be from Sepsis was found to be kernicterus with G6PD deficiency[J].Pediatrics,2013,132(6):e1694-e1698.
[30] ?ZHANG Z Y,LIEW C W,HANDY D E,et al.High glucose inhibits glucose-6-phosphate dehydrogenase,leading to increased oxidative stress and beta-cell apoptosis[J].FASEB J,2010,24(5):1497-1505.
[31] ?ASADI P,VESSAL M,KHORSAND M,et al.Erythrocyte glucose-6-phosphate dehydrogenase activity and risk of gestational diabetes[J].J Diabetes Metab Disord,2019,18(2):533-541.
[32] ?CHANG Y S,HSIAO L Y,LIN C Y,et al.Fasting glucose-to-HbA1c ratio is a good Indicator of G6PD deficiency,but not thalassemia,in patients with type 2 diabetes mellitus[J].Clin Chim Acta,2020,506:9-15.
(收稿日期:2020-03-23 修回日期:2020-04-15)
(編輯:潘明志)-±s)