管小冬
教完“兩、三位數(shù)除以兩位數(shù)”后,我都會給學(xué)生們再上節(jié)“特殊”的復(fù)習(xí)課。課上,既沒有單元學(xué)習(xí)的回顧與梳理,也沒有日常復(fù)習(xí)課的對比練習(xí)、查錯(cuò)、析錯(cuò),而是讓學(xué)生們“忘記”已學(xué)的除法計(jì)算法則,從頭學(xué)起,重歷除法豎式算法的形成過程,在其間達(dá)成對除法的深度理解,感悟這看似尋常的除法豎式中所蘊(yùn)含的治學(xué)方法與精神。
【案例】復(fù)習(xí)課《我真的懂除法嗎?》教學(xué)片斷
播放視頻:記者街頭采訪一位外國朋友,請他計(jì)算8×7。外國朋友知道8×7 就是把7 個(gè)8 相加,于是便從8、16、24、32 一直往后加,可惜加到7 個(gè)8 時(shí)出現(xiàn)了錯(cuò)誤,得到答案55。
(觀看過程中,很多學(xué)生都忍不住笑了起來。隨后,教師組織學(xué)生交流自己的感受。略)
師:如果請這位外國朋友去算我們剛學(xué)過的“兩、三位數(shù)除以兩位數(shù)”,比如“823÷21”,想想,他會怎么算?
生:估計(jì)會用823 不斷去減21,看要減多少次,最后還余多少。
生:也可能不斷加21,看多少個(gè)21 最接近823。
師:看來大家都認(rèn)為這位外國朋友知道“823÷21”就是要算823 里有多少個(gè)21。不過,如果這么算的話,你們覺得他……
生:(笑著說)他會崩潰的。這也太麻煩了!
師:是啊,根據(jù)除法的意義可以得到上面這兩種基本方法。但如果每次都這么算,顯然太煩了!怎樣可以簡便?大家有什么適用于他的好建議嗎?
生:我覺得他可以先減210。因?yàn)殡m然他乘法計(jì)算能力不強(qiáng),但21×10=210 還是好算的。
師:那我們就用210 來試試。
師生交流后,教師板書:823-210-210-210=193。
師:接下去怎么辦?
生:再用193 去減21,看能減多少次。
師:減多少次,大家知道嗎?
生:193÷21=9……4,要減9次,還余4。
(板書:193-21-21……-21=4)
師:最后答案是多少?
生:39 余4。上面減了30 個(gè)21,下面還有9 個(gè),一共就是39個(gè),還余4。
師:哎呀,真不簡單!在大家的幫助下,這回確實(shí)簡便了不少。如果他想把除法計(jì)算的本領(lǐng)再提高些,有什么好建議嗎?
生:那他就得去學(xué)除法豎式。
生:學(xué)除法豎式前,還得先背乘法口訣表。因?yàn)槌ㄘQ式計(jì)算離不開乘法。
師:(出示823÷21 的除法豎式,如下圖)這是我們熟悉的除法豎式,與剛才的計(jì)算過程相比,有聯(lián)系嗎?
生:除法豎式是把剛才相同的步驟合在了一起。比如,第一步其實(shí)就是減去了30 個(gè)21,第二步再減去9 個(gè)21。
師:大家看出來了嗎?除法豎式就是把原來分步減的過程又進(jìn)行了優(yōu)化。這樣我們計(jì)算除法時(shí)就方便多了。不過,這么便捷易用的除法豎式,究竟是怎么來的呢?想知道嗎?
教師逐步呈現(xiàn)歷史上不同階段的除法豎式。(如下圖)
學(xué)生閱讀后交流自己的理解與感受。感悟除法豎式計(jì)算就是一個(gè)在反復(fù)嘗試、調(diào)整中,不斷逼近、尋找結(jié)果的過程。今天所用的除法豎式算法,是一代代數(shù)學(xué)人不斷思考、優(yōu)化后的智慧結(jié)晶。
【思考】重歷,為了尋找遺失的美好!
可能會有教師要問,學(xué)完“兩、三位數(shù)除以兩位數(shù)”后,學(xué)生已經(jīng)基本掌握了除法豎式的算理與算法,為何還要專門花一節(jié)課的時(shí)間來讓學(xué)生重歷算法形成過程呢?以下是我一段時(shí)間以來在除法教學(xué)過程中的一些自我追問與反思,這節(jié)復(fù)習(xí)課正是在此基礎(chǔ)上生成的。
除法是四則運(yùn)算中公認(rèn)最難的一種運(yùn)算。一方面,除法豎式的書寫形式與學(xué)生經(jīng)驗(yàn)系統(tǒng)中加、減、乘的豎式計(jì)算形式不同,因而學(xué)生在學(xué)習(xí)除法豎式時(shí),前序知識帶來的負(fù)遷移使其需要花費(fèi)更多時(shí)間與精力去理解、掌握;另一方面,除法計(jì)算其實(shí)是一個(gè)逐次乘、減的過程。特別是當(dāng)除數(shù)是兩位數(shù)及以上時(shí),要順利且較為熟練地完成計(jì)算,對學(xué)生在口算、估算、判斷、決策、短時(shí)記憶等方面均有不低的要求。
為了讓學(xué)生理解除法豎式的算理,掌握算法,各版本教材多按照“表內(nèi)除法——有余數(shù)除法——除數(shù)是一位數(shù)——除數(shù)是兩位數(shù)”的脈絡(luò)進(jìn)行編排,于螺旋上升中逐步培養(yǎng)學(xué)生的運(yùn)算技能,發(fā)展運(yùn)算能力。在上述各章節(jié)內(nèi)容的具體編排時(shí),編寫組專家也是精心設(shè)計(jì)、煞費(fèi)苦心。以蘇教版《兩、三位數(shù)除以兩位數(shù)》單元為例,依次就有“除數(shù)是整十?dāng)?shù)商是一位數(shù)的除法口算和筆算”“除數(shù)是整數(shù)十?dāng)?shù)商是兩位數(shù)的筆算”“把除數(shù)看作與它接近的整十?dāng)?shù)試商”“四舍調(diào)商”“五入調(diào)商”等內(nèi)容。然而,即使是在這樣精細(xì)、周密的安排下,學(xué)生在除法計(jì)算中仍然會出現(xiàn)各種形式的錯(cuò)誤。經(jīng)過教師精心設(shè)計(jì)的練習(xí)與鞏固,情況雖然開始逐漸好轉(zhuǎn),但當(dāng)五年級繼續(xù)學(xué)習(xí)小數(shù)除法時(shí),之前我們熟悉的那些整數(shù)除法中的典型錯(cuò)誤又卷土重來。
由此,我們是否應(yīng)該做出類似這樣的追問:“在整數(shù)除法的教學(xué)中,我們?nèi)笔Я耸裁??”“學(xué)生真的懂除法嗎?”
在《現(xiàn)代漢語詞典》中,“懂”義為“知道、了解”。那么,對于除法,學(xué)生應(yīng)該“知道、了解”什么?僅僅知道除法計(jì)算法則及相應(yīng)的算理,行嗎?
顯然,當(dāng)下我們所使用的除法豎式,是在既往研究的基礎(chǔ)上對尋求除法結(jié)果所經(jīng)歷步驟的簡約數(shù)學(xué)表達(dá)。但如果僅僅將這樣的演算視為一種程序性運(yùn)算,那么時(shí)間久了,操練過度了,學(xué)生們是否如機(jī)械一般,只知運(yùn)作,不懂思考?如此,作為促進(jìn)學(xué)生思維發(fā)展的數(shù)學(xué)教學(xué),作用又何在?
更進(jìn)一步,身處“百度一下就能知道”的時(shí)代,身處“計(jì)算器”隨處可見的當(dāng)下社會,學(xué)生為什么還要花費(fèi)很長時(shí)間去學(xué)習(xí)、掌握這樣的計(jì)算方法呢?
教學(xué)中,我們在重視、突出規(guī)范書寫格式的同時(shí),是否弱化了學(xué)生對“嘗試、調(diào)整、優(yōu)化”這一數(shù)學(xué)學(xué)習(xí)、數(shù)學(xué)研究中極為重要的解決問題的方法與精神的感悟?相較于那些能完美進(jìn)行除法豎式計(jì)算的學(xué)生,我們是否更應(yīng)夸贊那些能及時(shí)調(diào)整、修正直至尋找到正確結(jié)果的學(xué)生?
基于以上追問,我以為,我們必須再次審視、剖析作為基本運(yùn)算的除法,尤其是于現(xiàn)在的我們看來,極具數(shù)學(xué)簡約美與形式美的除法豎式,除其外顯的程序性算法外,其間還蘊(yùn)含著怎樣的數(shù)學(xué)思想、方法與精神。
“已知兩個(gè)因數(shù)的積與其中一個(gè)非零因數(shù),求另一個(gè)因數(shù)的運(yùn)算,叫做除法?!憋@然,除法的定義源自于乘法,即除法是乘法的逆運(yùn)算。《數(shù)學(xué)課程標(biāo)準(zhǔn)(2011版)》對第二學(xué)段“數(shù)的運(yùn)算”部分的教學(xué)也提出了這樣的要求——“在具體運(yùn)算和解決簡單實(shí)際問題的過程中,體會加與減、乘與除的互逆關(guān)系。”
回顧除法豎式的發(fā)展歷程,(見前圖)不難發(fā)現(xiàn),當(dāng)下我們所學(xué)習(xí)的除法豎式,正是先輩們對“如何高效、簡潔地‘求另一個(gè)因數(shù)’”這一問題反復(fù)思考、不斷優(yōu)化后的智慧結(jié)晶。除法,特別是除法豎式,是一個(gè)不斷嘗試(估算、對比、調(diào)整)并逼近結(jié)果的過程。
是的,除法的豎式計(jì)算仍然只是一個(gè)尋找結(jié)果的過程。既然是過程,我們就不應(yīng)也不能對其間的書寫、首次正確率提出過高的要求。而這,往往又會被熟悉教材、熟稔教學(xué)過程的我們所忽視。其實(shí),凡事總可能會出錯(cuò),沒有錯(cuò)又哪來的對?或者說,沒有經(jīng)歷過“錯(cuò)”的對,往往會來得不夠深刻。
我想,如果我們允許學(xué)生在除法豎式計(jì)算的過程中“錯(cuò)”,鼓勵他們在“錯(cuò)”上繼續(xù)調(diào)整、完善,在這樣的過程中,他們是否更易理解除法豎式為何要寫成這樣,更能感悟于嘗試、對比、調(diào)整的往復(fù)中不斷逼近真相的治學(xué)方法,體會豎式中所蘊(yùn)含的孜孜不倦、精益求精的治學(xué)精神。亦如老子所說,“天下難事,必作于易。天下大事,必作于細(xì)。”
于是,就有了上面這樣一節(jié)“特殊”的復(fù)習(xí)課。其實(shí),不僅僅在學(xué)完除法后我會上這樣的復(fù)習(xí)課,在平面圖形面積計(jì)算、運(yùn)算律、數(shù)的認(rèn)識……學(xué)習(xí)之后,我都會上一節(jié)“特殊”的復(fù)習(xí)課。因?yàn)?,很多時(shí)候,學(xué)生的數(shù)學(xué)學(xué)習(xí)都是站在前人的肩膀上,理解、掌握那些歷經(jīng)幾百甚至是幾千年探索總結(jié)出的數(shù)學(xué)成果。教材的編排、教師的教學(xué)總是竭力將這些數(shù)學(xué)成果掰開、揉碎,力圖用最恰當(dāng)?shù)姆绞?、最短的時(shí)間、最高的效率讓學(xué)生掌握。然而方法易得,思想難悟,如果經(jīng)歷不充分、思考不深入、理解不透徹,學(xué)生是很難深刻感悟這些數(shù)學(xué)成果的優(yōu)越性以及其間蘊(yùn)含的思想、方法、意志、品質(zhì)與精神的。
那么,不妨帶著學(xué)生在此駐足,回首吧!正所謂“眾里尋他千百度,驀然回首,那人卻在,燈火闌珊處!”
小學(xué)教學(xué)設(shè)計(jì)(數(shù)學(xué))2020年11期