黃蓉 范金財
[摘要]皮膚病理性瘢痕是皮膚結(jié)締組織的增生性疾病,病理改變主要以成纖維細胞大量增殖和細胞外基質(zhì)沉積為主,其發(fā)病機制錯綜復雜,至今尚未完全闡明。近年來,隨著對干細胞研究的不斷深入,脂肪來源干細胞(Adipose-derived stem cells,ADSCs)逐漸顯露出防治病理性瘢痕的潛力?,F(xiàn)對病理性瘢痕病理生理的研究進展進行簡單總結(jié),并對ADSCs參與病理性瘢痕抗纖維化的可能機制進行總結(jié)。ADSCs可能通過TGF-β1(Transforming growth factor-β1)及有關(guān)信號通路的調(diào)節(jié),免疫調(diào)節(jié),減輕炎癥反應,抑制成纖維細胞增殖及促進細胞外基質(zhì)重塑來防治病理性瘢痕的纖維化。
[關(guān)鍵詞]脂肪來源干細胞;病理性瘢痕;纖維化;炎癥;免疫調(diào)節(jié);細胞外基質(zhì)重塑;成纖維細胞
[中圖分類號]R619+.6? ? [文獻標志碼]A? ? [文章編號]1008-6455(2020)10-0181-05
Clinical Research Progress of Adipose-derived Stem Cells Inhibiting The Formation of Pathological Scars
HUANG Rong, FAN Jin-cai
(Department of 9th Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100144,China)
Abstract: Skin pathological scar is a proliferative disease of skin connective tissue. The pathological changes are mainly fibroblast proliferation and extracellular matrix deposition. The pathogenesis of skin pathological scar is complex and has not yet been fully elucidated. In recent years, with the deepening of stem cell research, adipose-derived stem cells (ADSCs) gradually show the potential of preventing and treating pathological scars. This article summarizes the research progress of pathophysiology of pathological scar, and summarizes the possible mechanism of ADSCs participating in anti-fibrosis of pathological scar. ADSCs may prevent and treat fibrosis of pathological scars by regulating TGF-β1(transforming growth factor-β1)and related signaling pathways, immune regulation, alleviating inflammation, inhibiting fibroblast proliferation and promoting extracellular matrix remodeling.
Keywords:ADSCs; pathologicalscar; fibrosis; inflammation; immunoregulation; extracellular matrix remodeling; fibroblasts
傷口愈合是一個動態(tài)而復雜的過程,分為四個連續(xù)且重疊的階段,包括止血期、炎癥期、肉芽組織形成期(增生期)和組織重塑期(瘢痕形成期)[1]。傷口愈合異??蓪е埋:圻^度增生,從而導致病理性瘢痕的形成,包括增生性瘢痕和瘢痕疙瘩,病理性瘢痕可導致患者外貌改變甚至病變部位的功能障礙,給患者帶來巨大的社會心理壓力[2]。目前,病理性瘢痕的發(fā)病機制尚未明確,盡管臨床有許多治療方法可供選擇,例如:類固醇注射、激光治療、放射治療及壓力治療等,然而這些手段無法完全避免瘢痕組織的過度形成,也無法再生健康的真皮組織[3],因此,病理性瘢痕的治療仍是一個挑戰(zhàn)。脂肪移植在整形外科領域應用廣泛。第一例脂肪移植始于1893年,Neuber[4]將脂肪移植應用于1例面部軟組織缺損的年輕男性患者。2001年,Zuk[5]等發(fā)現(xiàn)脂肪組織內(nèi)含有脂肪來源干細胞(Adipose-derived stem cells,ADSCs)。ADSCs分布于血管周圍,具有多能分化潛能,可分化為脂肪組織,成骨組織等[6]。近年來,隨著再生醫(yī)學的深入研究,ADSCs防治皮膚瘢痕形成的潛力得到了實驗室研究和臨床應用的驗證。但迄今為止,ADSCs的抗纖維化作用機制尚不明確。本文對近年來ADSCs在創(chuàng)傷愈合和病理性瘢痕中的研究進展綜述如下。
1? 病理性瘢痕的病理生理特征
研究表明病理性瘢痕以瘢痕內(nèi)成纖維細胞過度增殖[7]和細胞外基質(zhì)[8](Extracellular matrices,ECM)的異常積聚為特征,ECM降解不足、合成過多或兩者兼而有之都有可能導致病理性瘢痕的形成。
病理性瘢痕的網(wǎng)狀真皮層含有炎性細胞、增殖的成纖維細胞、新生血管和膠原沉積,Ogawa等[9]認為病理性瘢痕本質(zhì)上是由受損網(wǎng)狀真皮的慢性炎癥引起,瘢痕疙瘩和增生性瘢痕的臨床差異可能只是皮膚網(wǎng)狀真皮層炎癥的強度、頻率和持續(xù)時間的差異[10]。促炎因子白介素-1α(IL-1α)、白介素-1β(IL-1β)、白介素-6(IL-6)和腫瘤壞死因子-α(Tumor necrosis factor-α,TNF-α)在瘢痕疙瘩組織中上調(diào),Dong等[11]推測瘢痕疙瘩患者的促炎基因?qū)?chuàng)傷較敏感,在真皮損傷時更容易發(fā)生促炎因子上調(diào)。正常皮膚幾乎沒有氧化損傷,細胞可維持氧化應激和氧化還原能力之間的平衡。而當皮膚發(fā)生慢性炎癥時,中性粒細胞分泌活性氧(Reactive oxygen species,ROS),ROS具有高度細胞毒性,可促進膠原沉積,因此促進病理性瘢痕形成。Carney等[12]在增生性瘢痕的動物模型中發(fā)現(xiàn)ROS清除劑的基因表達明顯降低,推測在增生性瘢痕形成過程中,ROS的生成和清除受到干擾。
轉(zhuǎn)化生長因子β(Transforming growth factor-β,TGF-β)家族在病理性瘢痕形成中至關(guān)重要。TGF-β家族有三個主要亞型,分別為TGF-β1、TGF-β2和TGF-β3,每個亞型都密切參與細胞增殖、分化及遷移等過程[13]。三者雖具有結(jié)構(gòu)同源性,但在傷口愈合中的作用并不相同。與正常皮膚中的成纖維細胞相比,病理性瘢痕中的成纖維細胞表達過多的TGF-β及其受體[14-15]。TGF-β1是一種已知的促真皮纖維化因子,在病理性瘢痕的發(fā)病中起關(guān)鍵作用[16]。它可以直接或間接作用于細胞,發(fā)揮旁分泌和自分泌的作用,產(chǎn)生趨化遷移、增殖和分化等重要的生物學效應[17]。TGF-β1水平升高,信號通路激活導致肌成纖維細胞增殖,刺激上皮細胞向間質(zhì)細胞,同時內(nèi)皮細胞向間質(zhì)細胞轉(zhuǎn)化,導致過量的ECM合成,從而導致瘢痕外觀的形成[18]。TGF-β1可上調(diào)基質(zhì)金屬蛋白酶(Matrix metalloproteinase,MMPs)的表達,MMPs是一類參與ECM降解的蛋白水解酶,以ECM為靶點[19],在傷口收縮和ECM重塑中起重要作用[17]。組織金屬蛋白酶抑制劑1(Tissue inhibitor of metalloproteinases 1,TIMP1)是TIMP家族的一種糖蛋白[20],是ECM降解和重塑的重要調(diào)控因子之一。研究表明,瘢痕疙瘩成纖維細胞中TIMP1的siRNA敲除可導致I型膠原的降解[21]。同時,TGF-β1可將巨噬細胞和其他炎性細胞募集到傷口處,作為促炎介質(zhì)發(fā)揮促纖維化作用。然而,TGF-β3可能在胎兒傷口無瘢痕愈合中發(fā)揮作用[13]。
纖溶酶原激活物抑制物1(Plasminogen activator inhibitor 1,PAI-1)是纖溶酶原激活物/纖溶酶蛋白酶系統(tǒng)的主要生理抑制劑[22]。PAI-1活性升高是纖維化的內(nèi)在特征,其基因水平與膠原積聚程度有直接關(guān)系[23]。研究發(fā)現(xiàn)PAI-1通過異常細胞信號途徑在瘢痕疙瘩發(fā)病中起關(guān)鍵作用[24]。絲裂原活化蛋白激酶(Mitogen-activated protein kinases,MAPK)途徑也廣泛參與了增生性瘢痕的發(fā)病過程[16]。細胞外信號調(diào)節(jié)激酶(Extracellular signal regulated kinases,ERK)是MAPK成員之一,可被TGF-β1激活,參與細胞增殖、分化和凋亡。
2? ADSCs防治病理性瘢痕纖維化的可能機制
間充質(zhì)干細胞(mesenchymal stem cells,MSCs)可通過分泌多種細胞因子和抗纖維化因子抑制纖維化組織的形成[25]。ADSCs是MSCs的一種,與骨髓中的MSCs具有相同的特性[26],在眾多纖維化疾病中表現(xiàn)出治療潛力,其中包括肺纖維化、心肌梗死、腎纖維化和肝硬化等[27]。ADSCs同時具備供體發(fā)病率低、耐受長期保存等優(yōu)點[28]。研究表明,干細胞移植到皮膚瘢痕組織后,分化功能受到限制,而旁分泌特性發(fā)揮更大作用[29]。結(jié)合既往研究,將ADSCs在病理性瘢痕中可能的抗纖維化機制作如下歸納:
2.1 TGF-β1及其他信號通路的調(diào)節(jié):TGF-βs初始以二硫鍵連接的同二聚體前體多肽的形式存在,由潛伏相關(guān)肽(Latency associated peptide,Lap)結(jié)構(gòu)和成熟的TGF-β肽組成。TGF-β活化是指TGF-β與Lap解離,前者與受體結(jié)合誘導信號傳導。Lap的蛋白裂解參與該過程[30]。因此,抑制Lap裂解可能有助于ADSCs實現(xiàn)抗纖維化作用。TGF-β1與受體結(jié)合,導致TGF-βI型受體重新聚集,誘導下游靶點Smad2和Smad3磷酸化。后者磷酸化后介導TGF-β1刺激成纖維細胞向肌成纖維細胞分化的生物學效應[31]。體外研究表明,ADSCs可抑制TGF-β1對真皮成纖維細胞分化為肌成纖維細胞的促進作用[32]。同時,ADSCs可顯著降低黏膜下纖維化和I型膠原表達[33]。Wang等[34]發(fā)現(xiàn),ADSCs培養(yǎng)基可顯著降低瘢痕疙瘩中成纖維細胞TGF-β1和I型膠原基因表達。在纖維化模型中,瘢痕內(nèi)注射MSCs后,MSCs的廣泛凋亡可促進TNF-α刺激基因6(TSG-6)的分泌。TSG-6可誘導TGF-β1/TGF-β3的比值向抗纖維化的方向發(fā)展[35]。TGF-β1的促纖維化作用可被TGF-β3拮抗[13],研究表明,TGF-β3可能介導MSCs對人瘢痕疙瘩成纖維細胞和ECM的抑制作用[36]。但Liu等通過研究瘢痕疙瘩成纖維細胞在ADSCs條件培養(yǎng)基中的增殖、遷移和凋亡,發(fā)現(xiàn)TGF-β3在ADSCs培養(yǎng)基中表達水平較低,推測TGF-β3信號通路可能并不是ADSCs治療瘢痕疙瘩的關(guān)鍵途徑[37]。推測TGF-β1、β2和β3三者平衡的結(jié)果與最終纖維化程度一致 [38]。
在與ADSCs共培養(yǎng)的增生性瘢痕成纖維細胞中觀察到信號傳導與轉(zhuǎn)錄激活因子3(Signal transduction and activators of transcription 3, Stat3)減少。Stat3是一種轉(zhuǎn)錄因子,被酪氨酸磷酸化后激活下游靶向基因,下游靶向基因控制ECM的產(chǎn)生和細胞增殖。在增生性瘢痕中,Il-6反式信號通路可激活Stat3,前者可介導ECM的產(chǎn)生和成纖維細胞的增殖。ADSCs可降低Il-6表達,抑制Stat3信號傳導,實現(xiàn)病理性瘢痕纖維化抑制[39-40]。
2.2 減輕炎癥反應及促進免疫調(diào)節(jié):ADSCs的抗炎作用得到廣泛研究[41]。IL-10是ADSCs旁分泌的主要抗炎因子之一。ADSCs可下調(diào)IL-6和IL-8等促炎因子mRNA的水平[42],減少病理性瘢痕中的膠原沉積[43]。Oryan等[41]在大鼠燒傷模型中將ADSCs與50%的蘆薈凝膠混合后皮下注射在創(chuàng)面處,發(fā)現(xiàn)該組合可下調(diào)IL-1β和TGF-β1等促炎因子和生長因子而減輕炎癥反應,ADSCs介導促炎/抗炎細胞因子比率降低可能有助于其發(fā)揮抗纖維化作用。然而,Manning等[44]發(fā)現(xiàn),很少有證據(jù)支持ADSCs可直接抑制IL-1β的產(chǎn)生,認為ADSCs能夠調(diào)節(jié)巨噬細胞活性,促進其由M1型(促炎型)向M2型(抗炎型)轉(zhuǎn)變,減少巨噬細胞分泌IL-1β和TGF-β1。
病理性瘢痕中的炎癥微環(huán)境可刺激ADSCs發(fā)揮免疫調(diào)節(jié)作用。T、B淋巴細胞和巨噬細胞是慢性炎癥中主要的浸潤性炎癥細胞,炎性細胞浸潤可抑制傷口的修復和再生,導致瘢痕過度形成[45]。ADSCs可誘導巨噬細胞激活, 環(huán)氧合酶-2(cyclooxygenase-2,COX-2)在其中發(fā)揮關(guān)鍵作用[46]。此外,脂肪組織和軟骨組織可大量表達C1q/TNF相關(guān)蛋白3(C1q/TNF related protein 3,CTRP3),作為一種抗炎因子,CTRP3可抑制巨噬細胞聚集,促進ADSCs發(fā)揮免疫調(diào)節(jié)作用,體外實驗發(fā)現(xiàn),CTRP3對巨噬細胞分泌TNF-α無直接影響,但可抑制巨噬細胞分泌單核細胞趨化蛋白-1(CCL2)。CCL2是一種有效的趨化因子,可將機體中循環(huán)的單核細胞募集到瘢痕組織處[47]。YU等[48]研究發(fā)現(xiàn),CTRP3在ADSCs細胞膜片中上調(diào)超過200倍,ADSCs細胞膜片可通過增強CTRP3的生成,減少CCL2分泌,從而抑制巨噬細胞在傷口處的聚集。前列腺素E2(prostaglandin E2,PGE2)是ADSCs參與瘢痕內(nèi)免疫調(diào)節(jié)和減輕炎癥的主要可溶性介質(zhì)之一,小鼠實驗表明ADSCs可分泌大量PGE2,PGE2可抑制TGF-β1活化及成纖維細胞增殖,通過提高細胞內(nèi)cAPM水平減少α-SMA和膠原的生成[49]。
Liu等[50]分析ADSCs培養(yǎng)基的蛋白質(zhì)陣列后,發(fā)現(xiàn)在ADSCs培養(yǎng)基組的上清液中凋亡因子更多,其中包括Dkk-1(Dickkopf-1),Dkk-1可誘導瘢痕中成纖維細胞凋亡,例如Dkk-1可通過抑制Wnt/b-cateni信號通路抑制強直性脊柱炎中成纖維細胞的增殖和成骨潛能。然而, Liu等發(fā)現(xiàn)ADSCs培養(yǎng)基并未促進瘢痕疙瘩中成纖維細胞的實際凋亡。推測凋亡因子的升高與實際的細胞凋亡之間并無絕對相關(guān),或細胞凋亡的發(fā)生與凋亡因子的局部濃度成劑量依賴關(guān)系[37]。
2.3 抑制細胞增殖及促進ECM重塑:成纖維細胞的異常增殖和活化,ECM的過度沉積,成纖維細胞向肌成纖維細胞的轉(zhuǎn)化增強是病理性瘢痕的主要特征[51]。因此,有理由認為抑制成纖維細胞的生物活性,促進廣泛的ECM重塑可能是病理性瘢痕的治療關(guān)鍵。Deng等[39]通過共培養(yǎng)模型研究ADSCs對增生性瘢痕中成纖維細胞活性的抑制作用及其可能機制。研究發(fā)現(xiàn),ADSCs可抑制成纖維細胞的增殖和遷移,部分阻斷細胞周期,抑制ECM的基因表達,顯著抑制膠原收縮。Wang等[34]采用離體培養(yǎng)研究ADSCs條件培養(yǎng)基對瘢痕疙瘩組織的影響,發(fā)現(xiàn)ADSCs可顯著降低TIMP1及PAI-1的基因表達,考慮到PAI-1與膠原積累兩者關(guān)系是瘢痕疙瘩形成的重要機制[52],推測ADSCs培養(yǎng)基可能通過調(diào)節(jié)膠原降解和相關(guān)基因表達來減少瘢痕疙瘩中ECM的沉積。
Zhang等[3]在兔耳增生性瘢痕模型損傷處皮下注射ADSCs,發(fā)現(xiàn)瘢痕內(nèi)a-SMA和I型膠原表達減少,治療后瘢痕區(qū)域的膠原纖維排列也有所改善。推測ADSCs對病理性瘢痕中ECM的重塑是ADSCs治療瘢痕的機制之一,ADSCs可使ECM更加傾向于降解,而其具體機制是由于ADSCs對于ECM的影響,還是對瘢痕中肌成纖維細胞的直接作用還尚待研究[27]。同樣的,Oryan等[41]發(fā)現(xiàn)蘆薈凝膠與ADSCs混合治療傷口后TGF-β1的表達和羥脯氨酸含量降低,抑制過量羥脯氨酸的形成可能是ADSCs聯(lián)合蘆薈顯著降低傷口處膠原水平的原因之一。
最近,有學者提出ADSCs釋放的外泌體可介導抗纖維化作用。ADSCs的外泌體包含miRNA和蛋白質(zhì)組分,可介導內(nèi)吞作用或膜融合的靶細胞中的信號轉(zhuǎn)導[53],外泌體進入成纖維細胞細胞質(zhì)后,釋放活性物質(zhì),調(diào)節(jié)成纖維細胞的特性,促進成纖維細胞的遷移及增殖。
3 小結(jié)與展望
基于MSCs的瘢痕治療是一種新興的抗纖維化治療策略,據(jù)此,ADSCs在病理性瘢痕中的應用探索逐漸展開。從宏觀和微觀上來看,ADSCs在促進創(chuàng)面愈合和減輕瘢痕中皆展現(xiàn)了治療潛力,成為令人期待的防治病理性瘢痕的新方法。然而,盡管在動物研究和臨床治療中越來越多的證據(jù)表明ADSCs可抑制病理性瘢痕的組織纖維化,但其具體分子機制尚不清楚。基于當前研究,關(guān)鍵的細胞因子和旁分泌信號在病理性瘢痕病變形成與進展中起重要作用,因此,未來應朝向免疫調(diào)節(jié)可預測,細胞信號途徑可恰當使用等目標繼續(xù)深入研究。此外,為了避免ADSCs的致瘤性,應反復試驗,在皮膚瘢痕治療過程中充分驗證其安全性。另外,當前大部分研究都是基于動物實驗或是體外模型,ADSCs應用于病理性瘢痕的最佳時機及劑量等仍需更深一步的研究。
[參考文獻]
[1]Demidova-Rice TN,Hamblin MR,Herman IM.Acute and impaired wound healing:pathophysiology and current methods for drug delivery,part 1: normal and chronic wounds: biology,causes,and approaches to care [J].Adv Skin Wound Care,2012,25(7):304-314.
[2]Monstrey S,Middelkoop E,Vranckx JJ,et al.Updated scar management practical guidelines:non-invasive and invaslve measures[J].J Plast Reconstr Aesthet Surg,2014,67(8):1017-1025.
[3] Zhang Q,Liu LN,Yong Q,et al.Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model[J].Stem Cell Res Ther,2015,6(1):145.
[4] F N.Fettransplantation[J].Versh Etsch Ged,1893,22(1):66.
[5]Zuk PA,Zhu M,Mizuno H,et al.Multilineage cells from human adipose tissue:implications for cell-based therapies[J].Tissue Eng,2001,7(2):211-228.
[6] Guasti L,Vagaska B,Bulstrode NW,et al.Chondrogenic differentiation of adipose tissue-derived stem cells within nanocaged POSS-PCU scaffolds: a new tool for nanomedicine[J].Nanomedicine, 2014,10(2):279-289.
[7]Salibian AA,Widgerow AD,Abrouk M,et al.Stem cells in plastic surgery: a review of current clinical and translational applications [J].Arch Plast Surg,2013,40(6):666-675.
[8] Cho KA,Lim GW,Joo SY,et al.Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice[J].Liver Int,2011, 31(7):932-939.
[9]Ogawa R.Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis[J].Int J Mol Sci,2017,18(3):606.
[10]Ogawa R,Akaishi S.Endothelial dysfunction may play a key role in keloid and hypertrophic scar pathogenesis-Keloids and hypertrophic scars may be vascular disorders[J].Med Hypotheses,2016,96:51-60.
[11]Dong X,Mao S,Wen H.Upregulation of proinflammatory genes in skin lesions may be the cause of keloid formation (Review)[J].Biomed Rep, 2013,1(6):833-836.
[12]Carney BC,Chen JH,Kent RA,et al.Reactive oxygen species scavenging potential contributes to hypertrophic scar formation[J].J Surg Res, 2019,244:312-323.
[13]Lichtman MK,Otero-Vinas M,F(xiàn)alanga V.Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis[J].Wound Repair Regen,2016,24(2):215-222.
[14]Wang R,Ghahary A,Shen Q,et al.Hypertrophic scar tissues and fibroblasts produce more transforming growth factor-beta1 mRNA and protein than normal skin and cells[J].Wound Repair Regen,2000,8(2): 128-137.
[15]Schmid P,Itin P,Cherry G,et al.Enhanced expression of transforming growth factor-beta type I and type II receptors in wound granulation tissue and hypertrophic scar[J].Am J Pathol,1998,152(2):485-493.
[16]Chen JY,Zhang L,Zhang H,et al.Triggering of p38 MAPK and JNK signaling is important for oleanolic acid-induced apoptosis via the mitochondrial death pathway in hypertrophic scar fibroblasts [J]. Phytother Res,2014,28(10):1468-1478.
[17]Zhai XX,Tang ZM,Ding JC,et al.Expression of TGF-β1/mTOR signaling pathway in pathological scar fibroblasts[J].Mol Med Rep, 2017,15(6):3467-3472.
[18]Li Y,Zhang W,Gao J,et al.Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the p38/MAPK signaling pathway[J].Stem Cell Res Ther,2016,7(1):102.
[19]Visse R,Nagase H.Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry[J].Circ Res,2003,92(8):827-839.
[20]Stetler-Stevenson WG.Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities [J].Sci Signal,2008,1(27):re6.
[21]Aoki M,Miyake K,Ogawa R,et al.siRNA knockdown of tissue inhibitor of metalloproteinase-1 in keloid fibroblasts leads to degradation of collagen type I[J].J Invest Dermatol,2014,134(3):818-826.
[22]Cale JM,Lawrence DA.Structure-function relationships of plasminogen activator inhibitor-1 and its potential as a therapeutic agent[J].Curr Drug Targets,2007,8(9):971-981.
[23]Li WY,Chong SS,Huang EY,et al.Plasminogen activator/plasmin system: a major player in wound healing? [J].Wound Repair Regen,2003,11(4): 239-247.
[24]Ghosh AK,Vaughan DE.PAI-1 in tissue fibrosis[J].J Cell Physiol, 2012,227(2):493-507.
[25]Hocking AM,Gibran NS.Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair[J].Exp Cell Res, 2010,316(14):2213-2219.
[26]Puissant B,Barreau C,Bourin P,et al.Immunomodulatory effect of human adipose tissue-derived adult stem cells:comparison with bone marrow mesenchymal stem cells[J].Br J Haematol,2005,129(1):118-129.
[27]Spiekman M,Van Dongen JA,Willemsen JC,et al.The power of fat and its adipose-derived stromal cells: emerging concepts for fibrotic scar treatment[J].J Tissue Eng Regen Med, 2017,11(11):3220-3235.
[28]Gimble J,Guilak F.Adipose-derived adult stem cells: isolation, characterization, and differentiation potential[J].Cytotherapy,2003, 5(5):362-369.
[29]Li H,F(xiàn)u X.Mechanisms of action of mesenchymal stem cells in cutaneous wound repair and regeneration[J].Cell Tissue Res,2012, 348(3):371-377.
[30]De Araujo Farias V,Carrillo-Galvez AB,Martin F,et al. TGF-β and mesenchymal stromal cells in regenerative medicine,autoimmunity and cancer[J].Cytokine Growth Factor Rev,2018,43:25-37.
[31]Roach KM,F(xiàn)eghali-Bostwick C,Wulff H,et al.Human lung myofibroblast TGFβ1-dependent Smad2/3 signalling is Ca2+-dependent and regulated by KCa3.1 K+ channels[J].Fibrogenesis Tissue Repair,2015,8:5.
[32]Spiekman M,Przybyt E,Plantinga JA,et al. Adipose tissue-derived stromal cells inhibit TGF-β1-induced differentiation of human dermal fibroblasts and keloid scar-derived fibroblasts in a paracrine fashion[J].Plast Reconstr Surg,2014,134(4):699-712.
[33]Sangkum P,Yafi FA,Kim H,et al. Effect of adipose tissue-derived stem cell injection in a rat model of urethral fibrosis [J].Can Urol Assoc J,2016,10(5-6):E175-E180.
[34]Wang X,Ma Y,Gao Z,et al.Human adipose-derived stem cells inhibit bioactivity of keloid fibroblasts [J].Stem Cell Res Ther,2018,9(1): 40.
[35]Qi Y,Jiang D,Sindrilaru A,et al.TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds[J].J Invest Dermatol,2014,134(2):526-537.
[36]Wu Y,Peng Y,Gao D,et al.Mesenchymal stem cells suppress fibroblast proliferation and reduce skin fibrosis through a TGF-β3-dependent activation[J].Int J Low Extrem Wounds,2015,14(1):50-62.
[37]Liu J,Ren J,Su L,et al.Human adipose tissue-derived stem cells inhibit the activity of keloid fibroblasts and fibrosis in a keloid model by paracrine signaling[J].Burns,2018,44(2):370-385.
[38]Penn JW,Grobbelaar AO,Rolfe KJ.The role of the TGF-β family in wound healing,burns and scarring: a review[J].Int J Burns Trauma, 2012,2(1):18-28.
[39]Deng J,Shi Y,Gao Z,et al.Inhibition of pathological phenotype of hypertrophic scar fibroblasts via coculture with adipose-derived stem cells[J].Tissue Eng Part A,2018,24(5-6):382-393.
[40]Ray S,Ju X,Sun H,et al.The IL-6 trans-signaling-STAT3 pathway mediates ECM and cellular proliferation in fibroblasts from hypertrophic scar[J].J Invest Dermatol,2013,133(5):1212-1220.
[41]Oryan A,Alemzadeh E,Mohammadi AA,et al.Healing potential of injectable Aloe vera hydrogel loaded by adipose-derived stem cell in skin tissue-engineering in a rat burn wound model[J].Cell Tissue Res, 2019,377(2):215-227.
[42]Sabat R,Grutz G,Warszawska K,et al.Biology of interleukin-10[J].
Cytokine Growth Factor Rev,2010,21(5):331-344.
[43]Lim CP,Phan TT,Lim IJ,et al.Cytokine profiling and Stat3 phosphorylation in epithelial-mesenchymal interactions between keloid keratinocytes and fibroblasts[J].J Invest Dermatol,2009,129(4):851-861.
[44]Manning CN,Martel C,Sakiyama-Elbert SE,et al.Adipose-derived mesenchymal stromal cells modulate tendon fibroblast responses to macrophage-induced inflammation in vitro[J].Stem Cell Res Ther,2015, 6(1):74.
[45]Rosique RG,Rosique MJ,F(xiàn)arina Junior JA.Curbing inflammation in skin wound healing: a review[J].Int J Inflam,2015,2015:316235.
[46]Anderson P,Souza-Moreira L,Morell M,et al.Adipose-derived mesenchymal stromal cells induce immunomodulatory macrophages which protect from experimental colitis and sepsis[J].Gut,2013,62(8):1131-1141.
[47]Boniakowski AE,Kimball AS,Jacobs BN,et al.Macrophage-mediated inflammation in normal and diabetic wound healing[J].J Immunol,2017, 199(1):17-24.
[48]Yu J,Wang MY,Tai HC,et al.Cell sheet composed of adipose-derived stem cells demonstrates enhanced skin wound healing with reduced scar formation[J].Acta Biomater,2018,77:191-200.
[49]Hegyi B,Kudlik G,Monostori E,et al.Activated T-cells and pro-inflammatory cytokines differentially regulate prostaglandin E2 secretion by mesenchymal stem cells[J].Biochem Biophys Res Commun, 2012,419(2):215-220.
[50]Zou YC,Yang XW,Yuan SG,et al.Downregulation of dickkopf-1 enhances the proliferation and osteogenic potential of fibroblasts isolated from ankylosing spondylitis patients via the Wnt/β-catenin signaling pathway in vitro[J].Connect Tissue Res,2016,57(3):200-211.
[51]Wolfram D,Tzankov A,Pulzl P,et al.Hypertrophic scars and keloids--a review of their pathophysiology, risk factors, and therapeutic management[J].Dermatol Surg,2009,35(2):171-181.
[52]Syed F,Bagabir RA,Paus R,et al.Ex vivo evaluation of antifibrotic compounds in skin scarring: EGCG and silencing of PAI-1 independently inhibit growth and induce keloid shrinkage[J].Lab Invest,2013,93(8): 946-960.
[53]Hu L,Wang J,Zhou X,et al.Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts[J].Sci Rep,2016,6:32993.
[收稿日期]2019-10-09
本文引用格式:黃蓉,范金財.脂肪來源干細胞抑制病理性瘢痕形成的臨床研究進展[J].中國美容醫(yī)學,2020,29(10):181-185.