吳彩清?余敏斌?楊揚(yáng)帆
【摘要】藥物智能控釋系統(tǒng)又稱刺激-響應(yīng)型藥物控釋系統(tǒng),是近年藥物劑型研究的熱點(diǎn),通過(guò)外加磁場(chǎng)、超聲波、光等刺激,以及溫度、酸堿度等控制,結(jié)合相應(yīng)的高分子材料,達(dá)到藥物的靶向、實(shí)時(shí)可控、定量定向給藥。眼部的藥物智能控釋系統(tǒng)研究起步較晚,目前主要仍為基于原位凝膠給藥體系的控釋系統(tǒng),其他如磁場(chǎng)、超聲、光等外加刺激控釋系統(tǒng)仍在起步階段。精準(zhǔn)的靶向治療是醫(yī)學(xué)發(fā)展的必然要求,因此藥物精準(zhǔn)控釋也是未來(lái)較為理想的給藥方式。本文綜述眼部的藥物智能控釋研究,為眼部給藥研究提供參考。
【關(guān)鍵詞】眼部;刺激-響應(yīng)型;藥物控釋
Research progress on intelligent controlled drug release system for ophthalmic drug Wu Caiqing, Yu Minbin, Yang Yangfan. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
Corresponding author, Yang Yangfan, E-mail: yangyangfan@ gzzoc. com
【Abstract】The intelligent controlled drug release system, also known as the stimulus-responsive drug release system, has become a hotspot in the research of pharmaceutical dosage form in recent years. Through combining external magnetic field, ultrasound, light and other stimulants, as well as temperature and pH with corresponding polymer materials, targeted, real-time, quantitative and controlled drug release can be achieved. The research on the intelligent drug release system for ocular drugs has been conducted for a short period of time. The controlled release system based on the in-situ gel drug delivery system remains the major system. Other externally stimulated controlled release systems, such as magnetic field, ultrasound, and light, are still in their infancy. Precise targeted therapy is an inevitable requirement for medical development. Consequently, precise controlled release of drugs will become an ideal way of drug administration in the future. In this article, research progress on the intelligent controlled release for ophthalmic drugs was reviewed, aiming to provide reference for the research of ocular drug delivery.
【Key words】Ocular;Stimuli-responsive;Controlled drug release system
智能藥物控釋系統(tǒng)也稱為刺激-響應(yīng)型藥物控釋系統(tǒng)。智能控釋系統(tǒng)的藥物載體也稱為刺激-響應(yīng)型載體,能夠?qū)ν饨绱碳ぃㄈ鐪囟?、磁?chǎng)、pH等)產(chǎn)生快速和精確的應(yīng)答,發(fā)生物理結(jié)構(gòu)或者化學(xué)性質(zhì)變化。刺激-響應(yīng)型載體應(yīng)用于載藥,可實(shí)現(xiàn)控制藥物的呈遞和釋放。隨著材料化學(xué)與藥物載體設(shè)計(jì)的進(jìn)步,智能藥物控釋系統(tǒng)的應(yīng)用使定點(diǎn)、定量和實(shí)時(shí)控制藥物的釋放有望成為現(xiàn)實(shí)。根據(jù)刺激的來(lái)源,可將這些智能控釋系統(tǒng)的載體分為外源刺激響應(yīng)型、內(nèi)源刺激響應(yīng)型及復(fù)合刺激響應(yīng)型。外源性刺激是獨(dú)立于病變外的環(huán)境,具有可操作及重復(fù)性,但需要考慮生物相容性及外界人員操控問(wèn)題。內(nèi)源性刺激是通過(guò)人體內(nèi)局部反應(yīng)的改變激活相應(yīng)藥物載體而釋放藥物,不需要他人額外的操作,無(wú)需考慮生物相容性問(wèn)題,但為了激活相應(yīng)載藥系統(tǒng),載體需要與刺激相互作用,不同患者不同疾病內(nèi)源性刺激類別及強(qiáng)度不同,內(nèi)源性刺激的應(yīng)用需要局部病理改變?yōu)榛A(chǔ)[1]。近年來(lái),智能藥物控釋系統(tǒng)的眼部應(yīng)用研究取得一定進(jìn)展,本文就目前眼部研究相關(guān)的智能藥物緩釋系統(tǒng)進(jìn)行歸納和綜述。
一、外源刺激響應(yīng)型
1. 溫度響應(yīng)型
溫度響應(yīng)型載體含有使其在溫度改變時(shí)發(fā)生結(jié)構(gòu)變化的組分,引起相變,從而釋放所包載的藥物。眼部目前研究多為溫度響應(yīng)型原位凝膠控釋系統(tǒng),其在儲(chǔ)存溫度下是液態(tài),滴入眼內(nèi)后,由于眼部溫度相對(duì)高而使其發(fā)生相轉(zhuǎn)變,形成凝膠。溫度響應(yīng)型原位凝膠體系中藥物載體可由泊洛沙姆407(Poloxamer 407, 即Pluronic F-127)、殼聚糖(Chitosan, CS)、PNIPAAm等溫度響應(yīng)型聚合物構(gòu)成。該體系使用的載體及所載藥物多樣,見(jiàn)表1。溫度響應(yīng)型原位凝膠載藥系統(tǒng)不僅可用上述凝膠直接載藥,也可用凝膠與其他載藥體(如脂質(zhì)體) 結(jié)合進(jìn)行復(fù)合載藥,見(jiàn)表2。此外,其他溫度響應(yīng)型載體如溫控的彈性蛋白樣多肽的眼部應(yīng)用也可以延長(zhǎng)藥物的眼部作用時(shí)間,提高其生物利用度[2]。溫度響應(yīng)型載體眼部應(yīng)用范圍廣,可載多種眼藥,延長(zhǎng)藥物眼部作用時(shí)間,提高其生物利用度,也可與多種緩釋體系結(jié)合成復(fù)合體系,但其應(yīng)用會(huì)對(duì)患者視覺(jué)產(chǎn)生影響,只可在不需要用眼如睡眠時(shí)使用。
2. 磁響應(yīng)型
磁響應(yīng)型智能載藥系統(tǒng)是利用磁場(chǎng)作為載藥體的刺激,在磁響應(yīng)的載藥系中,可以通過(guò)恒定磁場(chǎng)對(duì)藥物進(jìn)行遠(yuǎn)程定向介導(dǎo),也能通過(guò)交變磁場(chǎng)使藥物局部升溫,或者兩者結(jié)合協(xié)同實(shí)現(xiàn)載藥體的磁響應(yīng)。眼部的磁響應(yīng)載藥體系還是處于相對(duì)初級(jí)階段,應(yīng)用磁場(chǎng)控制眼部藥物的釋放及眼內(nèi)手術(shù)操作的微型機(jī)器人是近年研究熱點(diǎn),磁場(chǎng)介導(dǎo)的載藥體系主要應(yīng)用于眼后段。
Wu等[14]應(yīng)用磁場(chǎng)介導(dǎo)納米硅和鎳結(jié)合形成的微型螺旋槳樣微車在玻璃體內(nèi)的定向移動(dòng),使其定向到達(dá)視盤附近的視網(wǎng)膜,并用光學(xué)相干斷層掃描監(jiān)視其眼內(nèi)運(yùn)動(dòng)及位置,見(jiàn)圖1。Yee等[15]應(yīng)用磁場(chǎng)驅(qū)動(dòng)無(wú)針注射器進(jìn)行體外玻璃體給藥研究,并應(yīng)用超聲成像對(duì)藥物進(jìn)行定位。Ullrich等[16]開(kāi)發(fā)了一種磁場(chǎng)控制眼內(nèi)手術(shù)的微型機(jī)器人,研究其在玻璃體介質(zhì)中進(jìn)行手術(shù)操作,顯示該微型機(jī)器人可應(yīng)用于眼底相關(guān)疾病的靶向藥物遞送及眼內(nèi)手術(shù)治療。Dogangil等[17]研究出使用微型機(jī)器人進(jìn)行體外視網(wǎng)膜藥物遞送,證實(shí)該可使用磁場(chǎng)控制微型機(jī)器人進(jìn)行眼內(nèi)靶向給藥。
磁控機(jī)器人在眼部靶向給藥及眼內(nèi)手術(shù)治療具有良好應(yīng)用前景。但仍有一些問(wèn)題需要解決,比如在相對(duì)弱的磁場(chǎng)中其作用的實(shí)施,特定環(huán)境使用時(shí)施加的力的大小以及速度,也就是磁場(chǎng)的大小及方向。在不干擾磁驅(qū)動(dòng)情況下人眼內(nèi)實(shí)時(shí)定位,以及磁控載體的安全性及其降解。
①將微型螺旋槳注射到眼內(nèi)玻璃體中; ②磁驅(qū)動(dòng)玻璃體內(nèi)的微螺旋槳向視網(wǎng)膜的遠(yuǎn)距離推進(jìn);③利用OCT觀察視網(wǎng)膜表面附近目標(biāo)區(qū)域的微螺旋槳
圖1 光滑的微型螺旋槳目標(biāo)輸送藥物三步示意圖[14]
3. 超聲響應(yīng)型
超聲波具有非侵入性、無(wú)電離輻射、可穿透到達(dá)深部組織等優(yōu)良特性,并能夠通過(guò)超聲頻率、速率、時(shí)間進(jìn)行便捷、靈活地調(diào)節(jié)。超聲波通過(guò)熱效應(yīng)、機(jī)械效應(yīng)產(chǎn)生的空化現(xiàn)象、能量輻射等效果觸發(fā)藥物從載體中釋放出來(lái)。超聲響應(yīng)型載體在眼部藥物控釋的應(yīng)用主要是經(jīng)鞏膜促進(jìn)蛋白質(zhì)等大分子的眼內(nèi)可控?cái)U(kuò)散。
Huang等[18]將透明質(zhì)酸包被的人血清白蛋白納米粒,以1 MHz的頻率、0.5 W/cm的強(qiáng)度和30 s的持續(xù)時(shí)間的超聲,通過(guò)鞏膜施用于離體牛眼,在預(yù)定的時(shí)間點(diǎn)分析玻璃體和視網(wǎng)膜中的人血清白蛋白的熒光強(qiáng)度。結(jié)果顯示低頻超聲可安全、顯著改善納米粒通過(guò)玻璃體的擴(kuò)散遷移率,以及促進(jìn)它們穿過(guò)神經(jīng)視網(wǎng)膜進(jìn)入視網(wǎng)膜色素上皮和脈絡(luò)膜的滲透型。Thakur等[19]評(píng)估了經(jīng)鞏膜或角膜超聲應(yīng)用對(duì)玻璃體內(nèi)注射的羅丹明標(biāo)記的納米氣泡分布影響,離體牛眼和豬眼實(shí)驗(yàn)證明超聲處理顯著增強(qiáng)了納米氣泡的定向遷移,多個(gè)角膜超聲循環(huán)促進(jìn)了染料向玻璃體后部的遷移。Cheung等[20]將兔眼浸入與異硫氰酸熒光素偶聯(lián)的牛血清白蛋白溶液中,測(cè)量超聲對(duì)血清白蛋白的眼內(nèi)滲透影響,結(jié)果顯示超聲增強(qiáng)了鞏膜內(nèi)蛋白的滲透,使擴(kuò)散率提高了1.6倍。
4. 光響應(yīng)型
應(yīng)用對(duì)特定波長(zhǎng)光照(紫外區(qū)、可見(jiàn)光區(qū)或近紅外區(qū))反應(yīng)的光敏系統(tǒng)可設(shè)計(jì)光響應(yīng)型載體,用于控制藥物釋放,實(shí)現(xiàn)按需給藥。光刺激響應(yīng)系統(tǒng)具有非侵入性、患者易接受、靈活性高、精確性高等優(yōu)勢(shì),能夠進(jìn)行非侵入性、遠(yuǎn)程、實(shí)時(shí)調(diào)控藥物釋放??赏ㄟ^(guò)精確調(diào)節(jié)激活光的多個(gè)參數(shù)進(jìn)行高精度的光敏系統(tǒng)的控制。這些參數(shù)包括光的波長(zhǎng)、強(qiáng)度和極性以及輻照的時(shí)間、頻率和位置。
Chen等[21]應(yīng)用沸石咪唑的8-聚丙烯酸酸酯骨架(ZIF-8-PAA)載光敏劑甲基苯銨藍(lán)(MB),而后用AgNO3/多巴胺將AgNO3原位還原為銀納米顆粒(AgNPs),最后用萬(wàn)古霉素/NH2-聚乙二醇(Van/NH2-PEG)進(jìn)行二次修飾,形成復(fù)合納米材料ZIF-8-PAA-MB @ AgNPs @ Van-PEG進(jìn)行眼部抗菌治療。結(jié)果表明在光的作用下,上述復(fù)合納米顆粒可安全有效地釋放出活性氧治療眼內(nèi)炎,可有效控制兔眼眼內(nèi)炎。Mu等[22]應(yīng)用光交聯(lián)的作用使噻嗎洛爾變構(gòu)與接觸鏡單體結(jié)合載于接觸鏡,自然光照作用下,藥量為滴眼液的5.7%時(shí),可持續(xù)釋放治療劑量的噻嗎洛爾達(dá)10 h,有效降低眼內(nèi)壓。Basuki等[23]應(yīng)用帶正電荷的聚(甲基丙烯酰氧基乙基三甲基氯化銨)[P(METAC)]修飾納米金粒子,將其和anti-VEGF藥物載于瓊脂糖凝膠,在可見(jiàn)光的作用下,納米金粒子吸收光產(chǎn)生熱使得凝膠升溫變軟,釋放出藥物,達(dá)到藥物的可控釋放。
光刺激響應(yīng)載藥系統(tǒng)雖然有其獨(dú)有的可控及易得優(yōu)勢(shì),但其仍面臨許多困難:①缺乏生物相容性和可生物降解的光反應(yīng)材料;②紫外光激活相應(yīng)緩釋體系對(duì)人體具有基因毒性且穿透力弱,近紅外光毒性低而組織穿透性強(qiáng)。因此,開(kāi)發(fā)使用長(zhǎng)波長(zhǎng)或雙光子響應(yīng)的新型光敏劑,能夠?qū)崿F(xiàn)更深的組織穿透和更小的組織傷害,近紅外光觸發(fā)藥物的可控載藥體系更具臨床應(yīng)用前景。
二、內(nèi)源刺激響應(yīng)型
1. pH響應(yīng)型
眼部應(yīng)用的pH響應(yīng)型載藥緩釋體系大都是原位凝膠系統(tǒng)。凝膠中的聚合物大分子含有可因pH改變而解離的基團(tuán),在眼表的pH改變作用下發(fā)生解離,使得聚合物發(fā)生相變形成凝膠。pH響應(yīng)型眼部原位凝膠緩釋系統(tǒng)載體主要是卡波姆、殼聚糖及HPMC構(gòu)成,見(jiàn)表3。pH響應(yīng)型原位凝膠載藥系統(tǒng)與溫度響應(yīng)型原位凝膠載藥系統(tǒng)的優(yōu)缺點(diǎn)相似。
2. 離子強(qiáng)度響應(yīng)型
離子強(qiáng)度響應(yīng)型藥物釋放體系,是應(yīng)用淚液中含有的陽(yáng)離子(如Na+、Ca2+等)與聚合物發(fā)生絡(luò)合反應(yīng)使得聚合物構(gòu)象發(fā)生改變而導(dǎo)致其相變形成凝膠。眼部離子強(qiáng)度響應(yīng)型載藥原位凝膠系統(tǒng)的響應(yīng)聚合物主要包括結(jié)冷膠、黃原膠、藻酸鹽等,見(jiàn)表4。離子強(qiáng)度響應(yīng)型原位凝膠載藥系統(tǒng)與溫度響應(yīng)型原位凝膠載藥系統(tǒng)的優(yōu)缺點(diǎn)相似。
3. 其他刺激響應(yīng)型
Kim等[33]應(yīng)用PEI包被的納米金剛石(ND)在噻嗎洛爾存在下與殼聚糖交聯(lián)形成納米凝膠而后載入接觸鏡,結(jié)果顯示沒(méi)有溶菌酶作用下無(wú)藥物釋放,溶菌酶作用下藥物持續(xù)釋放達(dá)24 h,見(jiàn)圖2。Pornpattananangkul等[34]報(bào)道了通過(guò)細(xì)菌毒素來(lái)誘發(fā)磷脂脂質(zhì)體釋放萬(wàn)古霉素治療耐甲氧西林金黃色葡萄球菌(MRSA)感染,在MRSA存在情況下,包載的萬(wàn)古霉素可在24 h內(nèi)持續(xù)作用抑制細(xì)菌的增殖,抑菌效用與未包載萬(wàn)古霉素相當(dāng)。眼部溶菌酶及細(xì)菌毒素響應(yīng)型藥物控釋系統(tǒng),可在眼部溫和條件下發(fā)揮作用,并有高度選擇性,由于刺激因素的持續(xù)存在,可以使得藥物持續(xù)釋放,但不同個(gè)體及部位的刺激的量及濃度不同,藥物釋放需要刺激響應(yīng)載體具有相對(duì)高的靈敏度。
三、復(fù)合刺激響應(yīng)型
復(fù)合刺激響應(yīng)型載體,是指其對(duì)藥物的釋放受兩種或以上刺激的控制。目前研究的眼部復(fù)合刺激響應(yīng)型藥物載體最為多的是溫度及pH雙敏感刺激響應(yīng)型凝膠。該類凝膠同時(shí)含有溫度及pH刺激響應(yīng)成分,即殼聚糖及泊洛沙姆407而產(chǎn)生雙刺激敏感響應(yīng),兩種刺激結(jié)合最合適時(shí)達(dá)藥物最佳釋放。Gupta[35]等應(yīng)用殼聚糖及結(jié)冷膠形成pH及離子強(qiáng)度雙敏感響應(yīng)型凝膠載噻嗎洛爾,可安全有效延長(zhǎng)其眼部作用時(shí)間。Rahanyan-K?gi等[36]使用單油精及3種脂質(zhì)合成新型刺激-反應(yīng)型納米材料主客體脂質(zhì)立方相(LCPs),結(jié)果表明其通過(guò)改變脂質(zhì)體的種類形成了pH及紫外光控的親水性緩釋體系,該新型LCPs體系具有生物相容性、穩(wěn)定、透明及非水溶性,可應(yīng)用于眼部控釋載藥。復(fù)合刺激響應(yīng)型系統(tǒng)可通過(guò)協(xié)同作用增強(qiáng)或持續(xù)遞送藥物,可以更好地控釋藥物。
四、小結(jié)與展望
如何有效地遞送藥物至靶組織,并高效釋放藥物治療疾病的同時(shí)對(duì)其他鄰近組織無(wú)毒性作用,這仍然是眼部給藥體系面臨的重要瓶頸,藥物智能控釋系統(tǒng)的載體是根據(jù)環(huán)境的變化而改變自身的物理行為或化學(xué)結(jié)構(gòu),從而實(shí)現(xiàn)定點(diǎn)、定量和定時(shí)的藥物釋放,達(dá)到藥物高效靶向的治療效果。現(xiàn)有的眼部智能控釋系統(tǒng)包括凝膠、聚合物納米粒、樹(shù)枝狀聚合物和無(wú)機(jī)納米粒子等。盡管其在根據(jù)目的及需求控釋藥物方面有許多優(yōu)勢(shì),但仍有一些問(wèn)題需要解決,控釋體系的毒性、穩(wěn)定性、生物相容性及生物降解性,以及將藥物有效遞送至靶目標(biāo)治療區(qū)。合成的聚合物通常因?yàn)槎拘韵拗屏似鋺?yīng)用,而無(wú)機(jī)納米材料通常由于生物不相容及不可降解(如Au、Ag納米粒, Au納米棒)而限制其應(yīng)用。構(gòu)建的智能藥物控釋系統(tǒng)的藥物載體需要具有生物相容和易降解、高載藥量,在遞送過(guò)程維持藥物穩(wěn)定不丟失等特性,并在各種環(huán)境刺激下釋放的藥物能夠優(yōu)先富集于病變部位[37]。此外,集成多種刺激響應(yīng)為一體的智能控釋系統(tǒng)藥物載體,可以更加靈敏地根據(jù)不同的環(huán)境做出相適應(yīng)的應(yīng)答,精確地按需控制藥物呈遞和釋放,是智能給藥系統(tǒng)研究中的未來(lái)方向。
參 考 文 獻(xiàn)
[1] Wehrung D, Chamsaz EA, Andrews JH, Joy A, Oyewumi MO. Engineering alkoxyphenacyl-polycarbonate nanoparticles for potential application in near-infrared light-modulated drug delivery via photon up-conversion process. J Nanosci Nanotechno, 2016,17(7):4867-4881.
[2] Wang W, Lee C, Pastuszka M, Laurie GW, MacKay JA. Thermally-responsive loading and release of elastin-like polypeptides from contact lenses. Pharmaceutics, 2019,11(5):221.
[3] Zhu M, Wang J, Li N. A novel thermo-sensitive hydrogel-based on poly(N-isopropylacrylamide)/hyaluronic acid of ketoconazole for ophthalmic delivery. Artif Cells Nanomed Biotechnol,2018,46(6):1282-1287.
[4] Shi H, Wang Y, Bao Z, Lin D, Liu H, Yu A, Lei L, Li X, Xu X. Thermosensitive glycol chitosan-based hydrogel as a topical ocular drug delivery system for enhanced ocular bioavailability. Int J Pharm, 2019,570:118688.
[5] Wei Y, Li C, Zhu Q, Zhang X, Guan J, Mao S. Comparison of thermosensitive in situ gels and drug-resin complex for ocular drug delivery: in vitro drug release and in vivo tissue distribution. Int J Pharm, 2020,578:119184.
[6] Li J, Liu H, Liu LL, Cai CN, Xin HX, Liu W. Design and evaluation of a brinzolamide drug-resin in situ thermosensitive gelling system for sustained ophthalmic drug delivery. Chem Pharm Bull (Tokyo),2014, 62(10):1000-1008.
[7] Luo Z, Jin L, Xu L, Zhang ZL, Yu J, Shi S, Li X, Chen H. Thermosensitive PEG-PCL-PEG (PECE) hydrogel as an in situ gelling system for ocular drug delivery of diclofenac sodium. Drug Deliv, 2016,23(1):63-68.
[8] Xi L, Wang T, Zhao F, Zheng Q, Li X, Luo J, Liu J, Quan D, Ge J. Evaluation of an injectable thermosensitive hydrogel as drug delivery implant for ocular glaucoma surgery. PLoS One, 2014,9(6):e100632.
[9] Phua JL, Hou A, Lui YS, Bose T, Chandy GK, Tong L, Venkatraman S, Huang Y. Topical delivery of senicapoc nanoliposomal formulation for ocular surface treatments. Int J Mol Sci, 2018,19(10):2977.
[10] He W, Guo X, Feng M, Mao N. In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels. Int J Pharm,2013,458(2):305-314.
[11] Liu R, Sun L, Fang S, Wang S, Chen J, Xiao X, Liu C. Thermosensitive in situ nanogel as ophthalmic delivery system of curcumin: development, characterization, in vitro permeation and in vivo pharmacokinetic studies. Pharm Dev Technol, 2016,21(5):576-582.
[12] Tan G, Yu S, Li J, Pan W. Development and characterization of nanostructured lipid carriers based chitosan thermosensitive hydrogel for delivery of dexamethasone. Int J Biol Macromol, 2017,103:941-947.
[13] Almeida H, Lob?o P, Frigerio C, Fonseca J, Silva R, Sousa Lobo JM, Amaral MH. Preparation, characterization and biocompatibility studies of thermoresponsive eyedrops based on the combination of nanostructured lipid carriers (NLC) and the polymer Pluronic F-127 for controlled delivery of ibuprofen. Pharm Dev Technol, 2017,22(3):336-349.
[14] Wu Z, Troll J, Jeong HH, Wei Q, Stang M, Ziemssen F, Wang Z, Dong M, Schnichels S, Qiu T, Fischer P. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci Adv, 2018,4(11):eaat4388.
[15] Yee MQY, Yeow BS, Ren H. Dispersion characterization of magnetic actuated needleless injections with particle image velocimetry. Med Biol Eng Comput, 2019,57(11):2435-2447.
[16] Ullrich F, Bergeles C, Pokki J, Ergeneman O, Erni S, Chatzipirpiridis G, Pané S, Framme C, Nelson BJ. Mobility experiments with microrobots for minimally invasive intraocular surgery. Invest Ophthalmol Vis Sci, 2013,54(4):2853-2863.
[17] Dogangil G, Ergeneman O, Abbott JJ, Pan S, Hall H, Mun-twyler S, Nelson BJ. Toward targeted retinal drug delivery with wireless magnetic microrobots // 2008 {IEEE/RSJ} International Conference on Intelligent Robots and Systems. Nice: IEEE, 2008: 1921-1926.
[18] Huang D, Chen YS, Thakur SS, Rupenthal ID. Ultrasound-mediated nanoparticle delivery across ex vivo bovine retina after intravitreal injection. Eur J Pharm Biopharm, 2017, 119:125-136.
[19] Thakur SS, Chen YS, Houston ZH, Fletcher N, Barnett NL, Thurecht KJ, Rupenthal ID, Parekh HS. Ultrasound-responsive nanobubbles for enhanced intravitreal drug migration: an ex vivo evaluation. Eur J Pharm Biopharm,2019,136:102-107.
[20] Cheung AC, Yu Y, Tay D, Wong HS, Ellis-Behnke R, Chau Y. Ultrasound-enhanced intrascleral delivery of protein. Int J Pharm,2010,401(1-2):16-24.
[21] Chen H, Yang J, Sun L, Zhang H, Guo Y, Qu J, Jiang W, Chen W, Ji J, Yang YW, Wang B. Synergistic chemotherapy and photodynamic therapy of endophthalmitis mediated by zeolitic imidazolate framework-based drug delivery systems. Small, 2019, 15(47): e1903880.
[22] Mu C, Shi M, Liu P, Chen L, Marriott G. Daylight-mediated, passive, and sustained release of the glaucoma drug timolol from a contact lens. ACS Cent Sci, 2018,4(12):1677-1687.
[23] Basuki JS, Qie F, Mulet X, Suryadinata R, Vashi AV, Peng YY, Li L, Hao X, Tan T, Hughes TC. Photo-modulated therapeutic protein release from a hydrogel depot using visible light. Angew Chem Int Ed Engl, 2017,56(4):966-971.
[24] Gupta S, Vyas SP. Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate. Sci Pharm,2010,78(4):959-976.
[25] Allam A, El-Mokhtar MA, Elsabahy M. Vancomycin-loaded niosomes integrated within pH-sensitive in-situ forming gel for treatment of ocular infections while minimizing drug irritation. J Pharm Pharmacol,2019,71(8):1209-1221.
[26] Singh J, Chhabra G, Pathak K. Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro. ex vivo evaluation and pharmacodynamic study. Drug Dev Ind Pharm, 2014,40(9):1223-1232.
[27] Maulvi FA, Choksi HH, Desai AR, Patel AS, Ranch KM, Vyas BA, Shah DO. pH triggered controlled drug delivery from contact lenses: addressing the challenges of drug leaching during sterilization and storage. Colloids Surf B Biointerfaces,2017,157:72-82.
[28] Geethalakshmi A, Karki R, Jha SK, Venkatesh DP, Nikunj B. Sustained ocular delivery of brimonidine tartrate using ion activated in situ gelling system. Curr Drug Deliv,2012,9(2):197-204.
[29] Morsi N, Ibrahim M, Refai H, EI Sorogy H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur J Pharm Sci, 2017,104:302-314.
[30] Li P, Wang S, Chen H, Zhang S, Yu S, Li Y, Cui M, Pan W, Yang X. A novel ion-activated in situ gelling ophthalmic delivery system based on κ-carrageenan for acyclovir. Drug Dev Ind Pharm, 2018,44(5):829-836.
[31] Kesavan K, Kant S, Pandit JK. Therapeutic effectiveness in the treatment of experimental bacterial keratitis with ion-activated mucoadhesive hydrogel. Ocul Immunol Inflamm, 2016,24(5):489-492.
[32] Rupenthal ID, Green CR, Alany RG. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 2: Precorneal retention and in vivo pharmacodynamic study. Int J Pharm, 2011,411(1-2):78-85.
[33] Kim HJ, Zhang K, Moore L, Ho D. Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release. ACS Nano, 2014,8(3):2998-3005.
[34] Pornpattananangkul D, Zhang L, Olson S, Aryal S, Obonyo M, Vecchio K, Huang CM, Zhang L. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Am Chem Soc,2011,133(11):4132-4139.
[35] Gupta H, Velpandian T, Jain S. Ion- and pH-activated novel in-situ gel system for sustained ocular drug delivery. J Drug Target,2010,18(7):499-505.
[36] Rahanyan-K?gi N, Aleandri S, Speziale C, Mezzenga R, Landau EM. Stimuli-responsive lipidic cubic phase: triggered release and sequestration of guest molecules. Chemistry, 2015,21(5):1873-1877.
[37] 黃守堅(jiān).藥物的控釋制劑.新醫(yī)學(xué),1996,27(10):556-557.
(收稿日期:2020-07-25)
(本文編輯:鄭巧蘭)