田莎莎 楊曉鵬 郭琿
[摘要] 糖尿病腎?。―N)是糖尿病微血管病變的主要并發(fā)癥之一,已成為我國(guó)導(dǎo)致慢性腎臟疾病的首要原因,深入了解DN的發(fā)病機(jī)制,尋找新的診斷及治療靶點(diǎn)至關(guān)重要。微小RNA(miRNA)作為一種普遍存在的非編碼小分子RNA,廣泛參與基因轉(zhuǎn)錄后調(diào)節(jié)及表觀遺傳調(diào)節(jié)等過(guò)程,其表達(dá)或功能異常在DN的發(fā)生發(fā)展中起重要作用,介導(dǎo)了DN中腎組織纖維化、炎癥反應(yīng)、足細(xì)胞凋亡等病理生理改變。近年來(lái)miRNA對(duì)DN早期診斷及預(yù)后判斷的價(jià)值得到證實(shí),同時(shí)通過(guò)抑制或重建miRNA將其作為DN的治療靶點(diǎn)也逐步應(yīng)用于臨床。但是miRNA在DN的發(fā)病機(jī)制及臨床應(yīng)用中仍存在極大地挑戰(zhàn)。
[關(guān)鍵詞] 糖尿病腎病;微小RNA;生物標(biāo)志物;治療靶點(diǎn)
[中圖分類號(hào)] R587.2? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-7210(2020)09(c)-0058-04
Advancements of microRNA in diabetic nephropathy
TIAN Shasha1? ?YANG Xiaopeng1? ?GUO Hui1,2
1.Department of Nephrology, the Second Hospital of Shanxi Medical University, Shanxi Province, Taiyuan? ?030000, China; 2.Department of Nephrology, Shenzhen Baoan Shiyan People′s Hospital, Guangdong Province, Shenzhen? ?518005, China
[Abstract] Diabetic nephropathy (DN) is one of the main complications of diabetic microangiopathy and has been the leading cause of chronic kidney disease in China. It′s important to understand the pathogenesis and find new diagnostic and therapeutic targets of DN. MicroRNA (miRNA), as a ubiquitous non-coding small molecular RNA, is widely involved in gene post-transcriptional and epigenetic regulations. The expression or abnormal function play an important role in the occurrence and development of DN, mediating the pathophysiological changes such as the pathophysiological changes of renal tissue fibrosis, inflammation, podocyte apoptosis in DN. Recently, the value of miRNA in the early diagnosis and prognosis judgment of DN has been confirmed and it has been gradually used in clinical treatment as a therapeutic target for DN by inhibiting or reconstructing miRNA. However, there are great challenges of miRNA in the pathogenesis and clinical application for DN in the future.
[Key words] Diabetic nephropathy; MicroRNA; Biomarker; Therapeutic target
糖尿病腎?。╠iabetic nephropathy,DN)是糖尿病主要的微血管并發(fā)癥。流行病學(xué)調(diào)查顯示[1],到2045年全球糖尿病患者將達(dá)到6.93億人,其中30%~40%可能進(jìn)展至DN。一項(xiàng)關(guān)于我國(guó)2010—2015年慢性腎臟病(CKD)趨勢(shì)的研究顯示[2],CKD住院患者中與糖尿病相關(guān)的CKD住院人口比例為1.10%,已超過(guò)腎小球腎炎(0.75%),成為我國(guó)導(dǎo)致終末期腎病的首要原因。DN發(fā)病機(jī)制為在高糖環(huán)境下引起糖代謝紊亂、腎血流動(dòng)力學(xué)改變、氧化應(yīng)激、細(xì)胞因子激活[3]等,出現(xiàn)系膜細(xì)胞增生和肥大、細(xì)胞外基質(zhì)(ECM)積聚及腎小管間質(zhì)纖維化為特征的病理改變,最終導(dǎo)致腎纖維化及腎功能衰竭[4]。近年來(lái),隨著對(duì)微小RNA(miRNA)研究的深入,其參與腎相關(guān)細(xì)胞激活、增殖、凋亡以及信號(hào)通路轉(zhuǎn)導(dǎo)等基因?qū)W變化[5],在DN的病理過(guò)程中發(fā)揮重要作用,并可能作為DN新的生物標(biāo)志物及治療靶點(diǎn)。
1 miRNA參與DN的作用機(jī)制
miRNA是一類含19~25個(gè)核苷酸的單鏈小分子RNA,具有高度保守性、組織時(shí)序性和特異性。miRNA參與形成RNA誘導(dǎo)沉默復(fù)合體(RISC),與靶mRNA的3′UTR相識(shí)別對(duì)靶基因進(jìn)行負(fù)向調(diào)控,完全配對(duì)時(shí)降解靶mRNA,不完全配對(duì)時(shí)抑制靶mRNA翻譯[6]。此外,miRNA-mRNA結(jié)合位點(diǎn)(6~8個(gè)堿基對(duì))較短,每個(gè)miRNA能夠靶向多個(gè)不同的mRNA,因此,miRNA通過(guò)在轉(zhuǎn)錄后水平調(diào)控靶基因表達(dá)并參與機(jī)體各種生理與病理過(guò)程的調(diào)節(jié),對(duì)機(jī)體組織器官的生長(zhǎng)發(fā)育及疾病的發(fā)生發(fā)展起到重要調(diào)控作用[7]?,F(xiàn)已證明miR-192、miR-21、miR-29家族等在腎組織中呈特異性高表達(dá),且在腎小球基底膜和系膜的損傷、足細(xì)胞的損傷及腎間質(zhì)纖維化的調(diào)控方面都起到關(guān)鍵作用[8]。
1.1 miR-192
鏈脲菌素(STZ)糖尿病小鼠腎小球系膜細(xì)胞中轉(zhuǎn)化生長(zhǎng)因子(TGF)-β刺激miR-192表達(dá)升高,抑制轉(zhuǎn)錄抑制因子Smad作用蛋白-1(SIP1)表達(dá),導(dǎo)致TGF-β/Smad通路激活進(jìn)而促進(jìn)腎小球系膜細(xì)胞增殖及ECM合成[9]。相反,Liu等[10]在高糖培養(yǎng)的腎小管上皮細(xì)胞中發(fā)現(xiàn)miR-192表達(dá)減少,早期生長(zhǎng)反應(yīng)因子1(Egr1)表達(dá)升高并促進(jìn)腎小管上皮細(xì)胞上皮間質(zhì)轉(zhuǎn)化(EMT)等多種途徑參與腎纖維化的發(fā)生,而轉(zhuǎn)染miR-192模擬物可抑制Egr1表達(dá),減輕腎小管間質(zhì)纖維化。miR-192在系膜細(xì)胞和小管上皮細(xì)胞中的表達(dá)不同,考慮可能與模型和實(shí)驗(yàn)條件、細(xì)胞類型以及在特定細(xì)胞中表達(dá)量不同有關(guān)。
一項(xiàng)納入464例糖尿病患者的研究[11]發(fā)現(xiàn),在DN早期血清miR-192水平降低與尿白蛋白/肌酐比值(UACR)呈負(fù)相關(guān),且miR-192的降低伴隨TGF-β、纖維連接蛋白水平的升高,提示miR-192對(duì)DN的早期診斷及疾病監(jiān)測(cè)有一定價(jià)值。
1.2 miR-21
高糖誘導(dǎo)下腎細(xì)胞miR-21顯著升高,抑制其靶基因張力蛋白同源基因(PTEN)和軟脂肪?;椎鞍淄次铮⊿pry)表達(dá),間接活化TGF-β/PI3K/Akt信號(hào)通路,引起系膜細(xì)胞肥大及腎間質(zhì)纖維化[12]。此外,miR-21對(duì)足細(xì)胞的損傷通過(guò)抑制PTEN誘導(dǎo)血管內(nèi)皮生長(zhǎng)因子(VEGF)高表達(dá),調(diào)控基質(zhì)金屬蛋白酶抑制因子3(TIMP3)的表達(dá),繼而活化基質(zhì)金屬蛋白酶(MMPs),促進(jìn)足細(xì)胞凋亡及炎癥反應(yīng)[13]。而敲除miR-21可上調(diào)Smad7水平繼而阻斷TGF-β/Smad3/Akt及TGF-β/NF-κB信號(hào)通路,減輕小管上皮細(xì)胞EMT和腎小球纖維化[14]。
有報(bào)道稱[15],在DN不同階段患者的血清和腎臟樣本中miR-21-5p表達(dá)均上調(diào),這種miRNA與估算的腎小球?yàn)V過(guò)率(eGFR)呈負(fù)相關(guān),與血清肌酐水平(Scr)、腎小管間質(zhì)損傷和蛋白尿水平呈正相關(guān)。此外,在Scr水平快速上升或進(jìn)展到終末期腎病的DN患者中miR-21-5p表達(dá)上調(diào),其表達(dá)水平與腎功能惡化速度及腎纖維化程度密切相關(guān)[16]。
1.3 miR-29家族
miR-29家族中的不同分子存在功能及表達(dá)差異,其中miR-29a/b可能具有腎臟保護(hù)作用,而miR-29c則促進(jìn)DN的進(jìn)展。miR-29a可通過(guò)調(diào)節(jié)Wnt/β-catenin信號(hào)和Wnt拮抗蛋白(DKK1)的表達(dá)來(lái)保護(hù)系膜細(xì)胞免于纖維化和凋亡[17]。Bao等[18]研究發(fā)現(xiàn)高糖或TGF-β刺激可抑制miR-29b表達(dá),促進(jìn)膠原蛋白生成;miR-29b過(guò)表達(dá)則可抑制TGF-β/Smad3、Sp1/NF-κB信號(hào)通路激活,進(jìn)而抑制促炎因子的釋放,減緩ECM的積聚。此外,Sun等[19]在2型糖尿病db/db小鼠中發(fā)現(xiàn)依賴于Smad3的lncRNA表皮生長(zhǎng)因子4(Erbb4-IR)在DN中高表達(dá),通過(guò)Erbb4-IR/miR-29b軸抑制miR-29b的表達(dá),導(dǎo)致腎小球硬化及腎間質(zhì)纖維化,相反,沉默腎臟Eebb4-IR可上調(diào)miR-29b,從而保護(hù)腎臟免受進(jìn)行性腎損傷。高血糖條件下的miR-29c在足細(xì)胞中過(guò)表達(dá),通過(guò)抑制具有抗炎作用的TTP蛋白促進(jìn)炎癥介質(zhì)表達(dá)而放大炎癥反應(yīng),加速DN的病理?yè)p傷[20]。
在DN患者中,miR-29a-3p在血清、尿液和腎臟組織中均上調(diào),高表達(dá)的miR-29a-3p可降低DN向終末期腎病快速進(jìn)展的風(fēng)險(xiǎn),提示DN患者miR-29a上調(diào)可能是機(jī)體保護(hù)腎功能的一種代償方式[16]。此外,在DN小鼠模型中,抗糖尿病藥物DPP4抑制劑利格列汀可以上調(diào)miR-29a進(jìn)而延緩纖維化的進(jìn)展[21]。Chen等[22]研究發(fā)現(xiàn)腎miR-29b功能的缺失與蛋白尿及腎纖維化有關(guān),通過(guò)基因療法上調(diào)miR-29b可逆轉(zhuǎn)DN中腎小球系膜細(xì)胞膠原基質(zhì)的上調(diào),敲除miR-29b則會(huì)加重。以上顯示miR-29a/b在DN中發(fā)揮保護(hù)作用。
2 miRNA作為DN的生物標(biāo)志物
臨床上DN的診斷主要依賴于尿微量白蛋白、UACR、腎組織活檢等方式,從早期、特異性、敏感性及非侵入性檢測(cè)等方面來(lái)說(shuō),miRNA可能更具優(yōu)勢(shì)。
一項(xiàng)包含213例DN患者的腎活檢結(jié)合尿樣檢測(cè)分析發(fā)現(xiàn)[23],miR-2861、miR-1915-3p和miR-4532表達(dá)水平較健康對(duì)照組明顯下降,與eGFR呈正相關(guān),與蛋白尿、腎小管間質(zhì)纖維化和腎小管萎縮程度呈顯著負(fù)相關(guān)。提示這3種miRNA在DN纖維化形成中的作用。此外,對(duì)DN、糖尿病合并膜性腎病和正常組織學(xué)患者尿液中的miRNA檢測(cè)分析發(fā)現(xiàn)[24],miR-27b-3p和miR-1228-3p在DN患者尿液中特異性下調(diào),其水平與腎纖維化程度呈負(fù)相關(guān),而在其他兩組中無(wú)明顯變化。提示尿miR-27b-3p和miR-1228-3p可能在區(qū)分DN與2型糖尿病合并非糖尿病性腎損害存在一定價(jià)值。以上均體現(xiàn)了miRNA作為DN生物標(biāo)志物的特異性。
Eissa等[25]在DN患者中發(fā)現(xiàn)miR-133b、miR-342和miR-30a與尿蛋白呈正相關(guān),在出現(xiàn)異常蛋白尿(≥20 μg/min)之前即發(fā)生了改變,且miR-342-3在DN患者的尿液或腎活檢組織中上調(diào),與UACR和Scr水平呈正相關(guān),與eGFR呈負(fù)相關(guān),提示以上miRNAs可能作為DN早期的敏感性檢測(cè)指標(biāo)。Roux等[26]研究發(fā)現(xiàn)DN患者的血清miR-152-3p水平升高,且與2型糖尿病患者發(fā)生DN的風(fēng)險(xiǎn)有關(guān),提示其有望超越尿白蛋白成為DN早期診斷的生物標(biāo)志物。
此外,miRNA還有一定的預(yù)后價(jià)值,血清miR-126水平降低,與蛋白尿呈負(fù)相關(guān),與eGFR呈正相關(guān),并可增加出現(xiàn)大量蛋白尿(≥200 μg/min)的風(fēng)險(xiǎn),提示miR-126的表達(dá)減少預(yù)示DN進(jìn)展的風(fēng)險(xiǎn)增高。DN患者血清miR-130b與血清肌酐、尿蛋白排泄率及腎小管上皮間質(zhì)纖維化程度呈負(fù)相關(guān)[27],這些miRNA可作為評(píng)估DN進(jìn)展程度的生物標(biāo)志物。
3 miRNA作為DN的治療靶點(diǎn)
目前可通過(guò)miRNA“海綿”、小分子抑制劑及反義寡核苷酸(ASO)來(lái)抑制miRNA的活性,其中反義寡核苷酸是最常用來(lái)抑制miRNA的技術(shù)[28]。ASO主要通過(guò)提供完全匹配的反義核苷酸鏈來(lái)阻斷miRNA與目標(biāo)序列結(jié)合,其中ASO在細(xì)胞內(nèi)的穩(wěn)定性及有效遞送借助于化學(xué)修飾來(lái)實(shí)現(xiàn),如親和力及特異性均較強(qiáng)的鎖核苷酸(LNA),在糖尿病小鼠中注射LNA-antimiR-192可有效降低miR-192的表達(dá),減輕腎纖維化;使用LNA-antimiR-21阻斷miR-21表達(dá)可減弱單側(cè)輸尿管梗阻誘導(dǎo)的腎纖維化。此外,還有小分子化學(xué)抑制劑如LIN28(Let-7抑制劑)或HIPK2(miR-25抑制劑)也已經(jīng)被篩選和測(cè)試用于治療糖尿病并發(fā)癥[29]。重建miRNA活性則可通過(guò)miRNA模擬物來(lái)實(shí)現(xiàn),如miR-29作為一種抗纖維化的miRNA能夠抑制促纖維化蛋白的表達(dá),減輕ECM沉積,miR-29模擬物(MRG-201)已啟動(dòng)了Ⅰ期臨床試驗(yàn)[30]。因此,靶向特異性調(diào)控miRNA可能是治療DN的新方法。
4 小結(jié)與展望
綜上,目前對(duì)miRNA在DN中的作用機(jī)制及作為DN新的生物標(biāo)志物和治療靶點(diǎn)有了進(jìn)一步認(rèn)識(shí),但是實(shí)現(xiàn)miRNA對(duì)DN的診斷、治療仍有很多問(wèn)題亟待解決。如許多研究對(duì)同一miRNA對(duì)DN的作用存在爭(zhēng)議;作為生物標(biāo)志物,miRNA檢測(cè)的特異性及靈敏度還需驗(yàn)證,如有些miRNA在血清、尿液及腎組織中的表達(dá)水平不一致,以及在不同腎臟細(xì)胞內(nèi)的表達(dá)也存在差異;作為治療靶點(diǎn),保持miRNA靶向寡核苷酸穩(wěn)定性及有效遞送的技術(shù)尚不成熟,miRNA作為藥物其有效性及安全性等問(wèn)題仍待解決。相信隨著微陣列、高通量測(cè)序等技術(shù)的發(fā)展,可以明確更多的miRNA及其在腎臟生理和病理中的精準(zhǔn)調(diào)控機(jī)制,為DN的預(yù)防和精準(zhǔn)治療提供更多的可能。
[參考文獻(xiàn)]
[1]? Cho NH,Shaw JE,Karuranga S,et al. IDF Diabetes Atlas:Global estimates of diabetes prevalence for 2017 and projections for 2045 [J]. Diabetes Res Clin Pract,2018,138:271-281.
[2]? Zhang L,Long J,Jiang W,et al. Trends in Chronic Kidney Disease in China [J]. N Engl J Med,2016,375(9):905-906.
[3]? Badal SS,Danesh FR. New insights into molecular mechanisms of diabetic kidney disease [J]. Am J Kidney Dis,2014, 63(2 Suppl 2):S63-S83.
[4]? Shikata K,Makino H. Microinflammation in the Pathogenesis of Diabetic Nephropathy [J]. J Diabetes Investig,2013, 4(2):142-149.
[5]? Dewanjee S,Bhattach N. MicroRNA:A new generation therapeutic target in diabetic nephropathy [J]. Biochem Pharmacol,2018,155:32-47.
[6]? Palazzo AF,Lee ES. Non-coding RNA:what is functional and what is junk? [J]. Front Genet,2015,6:2.
[7]? Sankrit H,Kulk YA,Gaikwad AB. Diabetic nephropathy:The regulatory interplay between epigenetics and microRNAs [J]. Pharmacol Res,2019,141:574-585.
[8]? Assmann TS,Recamonde-Mendoza M,de Souza BM,et al. MicroRNAs and diabetic kidney disease:Systematic review and bioinformatic analysis [J]. Mol Cell Endocrinol,2018,477:90-102.
[9]? Kato M,Dang V,Wang M,et al. TGF-beta induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy[J]. Sci Signal,2013,6(278):ra43.
[10]? Liu F,Zhang ZP,Xin GD,et al. miR-192 prevents renal tubulointerstitial fibrosis in diabetic nephropathy by targeting Egr1 [J]. Eur Rev Med Pharmacol Sci,2018,22(13):4252-4260.
[11]? Ma X,Lu C,Lv C,et al. The Expression of miR-192 and Its Significance in Diabetic Nephropathy Patients with Different Urine Albumin Creatinine Ratio [J]. J Diabetes Res,2016,2016:6789402.
[12]? McClell AD,Herman-Edelstein M,Komers R,et al. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7 [J]. Clin Sci(Lond),2015, 129(12):1237-1249.
[13]? Chen X,Zhao L,Xing Y,et al. Down-regulation of microRNA-21 reduces inflammation and podocyte apoptosis in diabetic nephropathy by relieving the repression of TIMP3 expression [J]. Biomed Pharmacother,2018,108:7-14.
[14]? Liu L,Wang Y,Yan R,et al. BMP-7 inhibits renal fibrosis in diabetic nephropathy via miR-21 downregulation [J]. Life Sci,2019,238:116957.
[15]? Baker MA,Davis SJ,Liu P,et al. Tissue-Specific MicroRNA Expression Patterns in Four Types of Kidney Disease [J]. J Am Soc Nephrol,2017,28(10):2985-2992.
[16]? Pezzolesi MG,Satake E,McDonnell KP,et al. Circulating TGF-beta1-Regulated miRNAs and the Risk of Rapid Progression to ESRD in Type 1 Diabetes [J]. Diabetes,2015,64(9):3285-3293.
[17]? Hsu YC,Chang PJ,Ho C,et al. Protective effects of miR-29a on diabetic glomerular dysfunction by modulation of DKK1/Wnt/beta-catenin signaling [J]. Sci Rep,2016,6:30575.
[18]? Bao L,Li J,Zha D,et al. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-κB pathways [J]. Int Immunopharmacol,2018,54:245-253.
[19]? Sun SF,Tang PMK,F(xiàn)eng M,et al. Novel lncRNA Erbb4-IR Promotes Diabetic Kidney Injury in db/db Mice by Targeting miR-29b [J]. Diabetes,2018,67(4):731-744.
[20]? Guo J,Li J,Zhao J,et al. MiRNA-29c regulates the expression of inflammatory cytokines in diabetic nephropathy by targeting tristetraprolin [J]. Sci Rep,2017,7(1):2314.
[21]? Kanasaki K,Shi S,Kanasaki M,et al. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen [J]. Diabetes,2014,63(6):2120-2131.
[22]? Chen HY,Zhong X,Huang XR,et al. MicroRNA-29b inhibits diabetic nephropathy in db/db mice [J]. Mol Ther,2014,22(4):842-853.
[23]? Card-Gonzalez M,Srivastava A,Pavkovic M,et al. Identification,Confirmation,and Replication of Novel Urinary MicroRNA Biomarkers in Lupus Nephritis and Diabetic Nephropathy [J]. Clin Chem,2017,63(9):1515-1526.
[24]? Consez F,Barozzino M,Pesce F,et al. Urinary miRNA-27b-3p and miRNA-1228-3p correlate with the progression of Kidney Fibrosis in Diabetic Nephropathy [J]. Sci Rep,2019,9(1):11357.
[25]? Eissa S,Matboli M,Bek MM. Clinical verification of a novel urinary microRNA panal:133b,-342 and -30 as biomarkers for diabetic nephropathy identified by bioinformatics analysis [J]. Biomed Pharmacother,2016,83:92-99.
[26]? Roux M,Perret C,F(xiàn)eigerlova E. Plasma levels of hsa-miR-152-3p are associated with diabetic nephropathy in patients with type 2 diabetes [J]. Nephrol Dial Transplant,2018,33(12):2201-2207.
[27]? Barutta F,Bruno G,Matullo G. MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB Prospective Complications Study [J]. Acta Diabetol,2017,54(2):133-139.
[28]? Kato M. Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease [J]. Kidney Res Clin Pract,2018,37(3):197-209.
[29]? Roos M,Pradere U,Ngondo RP,et al. A Small-Molecule Inhibitor of Lin28 [J]. ACS Chem Biol,2016,11(10):2773-2781.
[30]? Liu R,Das B,Xiao W,et al. A Novel Inhibitor of Homeodomain Interacting Protein Kinase 2 Mitigates Kidney Fibrosis through Inhibition of the TGF-beta1/Smad3 Pathway [J]. J Am Soc Nephrol,2017,28(7):2133-2143.
(收稿日期:2020-03-12)