程筱涵 齊靖 白玉華 鄭曉東
[摘要] 肺動(dòng)脈高壓(PAH)是以肺動(dòng)脈壓力和肺血管阻力升高為特征的致死性心血管疾病。野百合堿(MCT)引起的PAH病理特征和臨床患者十分相似。MCT可以通過炎癥反應(yīng)、內(nèi)皮途徑以及調(diào)節(jié)肺動(dòng)脈平滑肌細(xì)胞的增殖等因素誘導(dǎo)PAH的發(fā)生。因此本文對(duì)近幾年MCT誘導(dǎo)PAH動(dòng)物模型的作用機(jī)制以及在PAH新治療藥物靶點(diǎn)篩選中的應(yīng)用進(jìn)行簡要綜述。
[關(guān)鍵詞] 肺動(dòng)脈高壓;野百合堿;信號(hào)通路;藥物靶點(diǎn)
[中圖分類號(hào)] R322.1? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-7210(2020)09(c)-0040-04
Advanced mechanisms and potential clinical application value of monocrotaline-induced pulmonary artery hypertension animal model
CHENG Xiaohan1? ?QI Jing2? ?BAI Yuhua1? ?ZHENG Xiaodong2
1.College of Pharmacy, Harbin Medical University(Daqing), Heilongjiang Province, Daqing? ?163319, China; 2.College of Basic Medical Sciences, Harbin Medical University (Daqing), Heilongjiang Province, Daqing? ?163319, China
[Abstract] Pulmonary artery hypertension (PAH) is a fatal cardiovascular disease characterized by increases in pulmonary artery pressure and pulmonary vascular resistance. The pathological features of PAH induced by monocrotaline (MCT) are similar to those of clinical patients. MCT-induced PAH through multiple factors including inflammatory response, endothelium pathway, and regulation of pulmonary artery smooth muscle cells proliferation, et al. Therefore, this article briefly reviews the advances molecular mechanism of the MCT-induced PAH and the exploration in the novel therapeutic targets by using this animal model in recent years.
[Key words] Pulmonary arterial hypertension; Monocrotaline; Signal pathway; Drug target
肺動(dòng)脈高壓(pulmonary artery hypertension,PAH)是一類由多種病因和不同發(fā)病機(jī)制引起的以肺血管阻力增加為特點(diǎn),最終導(dǎo)致右心衰竭的心血管疾病[1]。PAH基本病理生理特征包括急性肺血管收縮和慢性肺血管重構(gòu)[2]。PAH患者預(yù)后較差,死亡率高,根據(jù)Koudstaal等[3]研究顯示患者5年的平均生存率為57%~59%。PAH常用的治療藥物包括前列環(huán)素途徑藥物(如前列醇)、NO途徑(如西地那非)以及內(nèi)皮素受體拮抗劑(如波生坦)[4],這些藥物通過改善患者血管收縮減輕患者癥狀,但并不能明顯降低患者死亡率,主要原因是已經(jīng)發(fā)生的肺血管重構(gòu)不能被逆轉(zhuǎn),因此新的有效阻斷、逆轉(zhuǎn)肺血管重構(gòu)的藥物靶點(diǎn)是該領(lǐng)域迫切需要解決的問題。
野百合堿(monocrotaline,MCT)誘導(dǎo)大鼠產(chǎn)生PAH模型(MCT-PAH)是研究PAH的常用動(dòng)物模型[5]。其制備方法是皮下注射MCT,2~3周后即可發(fā)生和臨床PAH患者相似的血流動(dòng)力學(xué)和病理學(xué)特征[5]。常用于PAH新型診斷和治療靶點(diǎn)的藥物研究。本文從MCT的分子機(jī)制和在PAH診斷和治療靶點(diǎn)篩選中的應(yīng)用兩個(gè)方面進(jìn)行文獻(xiàn)綜述。
1 MCT引起PAH的分子機(jī)制
1.1 核因子κB信號(hào)通路
促炎癥因子、生長因子、抗原受體通過核因子κB(nuclear factor κB,NF-κB)信號(hào)通路誘導(dǎo)靶基因表達(dá),參與免疫反應(yīng)調(diào)節(jié)、炎癥、應(yīng)激反應(yīng),同時(shí)參與細(xì)胞分化、增殖、凋亡、發(fā)育等過程。促炎性細(xì)胞因子白介素6(interleukin-6,IL-6)是引起PAH的關(guān)鍵因素之一[6],Pang等[7]實(shí)驗(yàn)證明NF-κB可以激活I(lǐng)L-6等炎癥因子并促進(jìn)MCT誘導(dǎo)的PAH大鼠模型中關(guān)鍵信號(hào)通路。
Gao等[8]研究顯示在慢性間接性低壓低氧的條件下可以通過抑制NF-κB/p38信號(hào)通路來減弱由MCT引起的PAH。Chen等[9-10]發(fā)現(xiàn)熱休克蛋白70(HSP70)的表達(dá)量在MCT-PAH動(dòng)物模型中增加,HSP70會(huì)增加Iκbα的磷酸化水平,進(jìn)而激活NF-κB信號(hào)通路。此外,Shi等[11]發(fā)現(xiàn)黃岑素可以通過抑制NF-κB信號(hào)通路,然后減弱MCT-PAH內(nèi)皮間質(zhì)化。
1.2 骨形態(tài)蛋白受體Ⅱ
骨形態(tài)蛋白受體Ⅱ(bone morphogenetic protein receptor type-2,BMPR2)與其配體骨形態(tài)發(fā)生蛋白(bone morphogenetic protein,BMP)相互結(jié)合參與細(xì)胞增殖、凋亡和內(nèi)皮間充質(zhì)化等與PAH發(fā)生密切相關(guān)過程[12]。BMPR2的基因突變存在于約75%的家族性PAH患者中,提示BMPR2是與家族性PAH的發(fā)病機(jī)制有關(guān)[13]。Zhang等[14]在MCT誘導(dǎo)的PAH大鼠模型中發(fā)現(xiàn),BMPR2蛋白的表達(dá)量亦是降低的。Chen等[15]研究顯示恢復(fù)BMPR2蛋白的表達(dá),降低Smad1/5的磷酸化,可以減輕MCT引起的PAH病理生理學(xué)改變。Cheng等[16]研究顯示在體注射腺病毒let-7a感染的間充質(zhì)干細(xì)胞,可以激活STAT3/BMPR2信號(hào)通路促進(jìn)PASMCs的凋亡,進(jìn)而逆轉(zhuǎn)MCT-PAH。Abdul-Salam等[17]研究發(fā)現(xiàn)靶向敲除肺血管內(nèi)皮細(xì)胞中氯化物細(xì)胞內(nèi)通道4,可以上調(diào)BMPR2表達(dá)上調(diào),減輕PAH內(nèi)皮損傷。
1.3 PI3K/Akt
蛋白激酶B即Akt,又被稱作PKB,在調(diào)控細(xì)胞增殖和凋亡等過程中起重要作用。PI3K是一種胞內(nèi)磷脂酰肌醇激酶,是Akt常見的上游蛋白。Yu等[18]研究提示,PI3K/Akt/mTOR信號(hào)通路參與調(diào)控由MCT誘導(dǎo)的PAH。Chang等[19]和Hsu等[20]研究證實(shí),抑制Akt/ERK1/2/GSK3β/β-catenin可以減弱內(nèi)皮素-1(ET-1)和其受體ETA受體的表達(dá),進(jìn)而治療MCT-PAH。Zhu等[21]發(fā)現(xiàn)在MCT-PAH模型中,磷酸酯酶與張力蛋白同源物(phosphatase and tensin homolog,PTEN)因泛素化引起表達(dá)水平降低,繼而Akt的磷酸化水平增加。抑制PTEN的泛素化,可以降低Akt蛋白的磷酸化水平,減輕肺血管重構(gòu)現(xiàn)象。Wang等[22]研究顯示MCT-PAH大鼠Akt的磷酸化增加,上調(diào)脂質(zhì)運(yùn)載蛋白2(lipocalin 2,LCN2)的表達(dá)。抑制Akt的磷酸化,降低LCN2的表達(dá)。
1.4 一氧化氮
一氧化氮(nitric oxide,NO)是一種內(nèi)皮依賴性血管舒張因子,通過激活平滑肌細(xì)胞中可溶性鳥苷酸環(huán)化酶增加環(huán)磷酸鳥苷(cyclic guanosine monophosphate,cGMP),活化PKG引起平滑肌舒張。血管內(nèi)皮NO主要由內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)產(chǎn)生。
Lee等[23]研究顯示在MCT-PAH模型動(dòng)物中eNOS表達(dá)量降低,利拉魯肽可以激活eNOS,增加NO的釋放,減緩PAH進(jìn)程。Li等[24]發(fā)現(xiàn)中藥單體淫羊藿苷通過增加eNOS表達(dá)和抑制5型磷酸二酯酶(phosphodiesterase 5,PDE5),增加NO和cGMP的表達(dá)含量,預(yù)防MCT-PAH。Yu等[25]研究顯示,Cav-1F92A基因可以上調(diào)eNOS并增加NO的產(chǎn)生,并且通過下調(diào)碳酸酐酶1/激肽原信號(hào),上調(diào)硒蛋白/14-3-3η蛋白信號(hào)逆轉(zhuǎn)MCT-PAH。
1.5 Notch信號(hào)通路
Notch信號(hào)通路對(duì)于調(diào)節(jié)PASMC增殖和分化至關(guān)重要,Guo等[26]研究發(fā)現(xiàn)在HIV誘導(dǎo)的PAH中,HIV的反式激活因子TAT可以通過Notch3/血管內(nèi)皮生長因子(VEGF-A)信號(hào)轉(zhuǎn)導(dǎo)進(jìn)而調(diào)節(jié)PASMCs的增殖。Chen等[27]研究顯示MCT可以激活Notch3通路,且通過其下游蛋白HES5誘導(dǎo)的PAH。
2 MCT-PAH動(dòng)物模型在藥物中的研究
MCT-PAH動(dòng)物模型被廣泛應(yīng)用于PAH防治藥物的研究和開發(fā)中。為此,我們將目前市場上用于治療PAH的藥物,以及利用MCT-PAH模型進(jìn)行臨床前研究的藥物,和其相應(yīng)的靶點(diǎn)和信號(hào)途徑作一綜述。表一中列舉出已上市的藥物和正處于基礎(chǔ)研究中藥物在該動(dòng)物模型中的研究情況。其中信號(hào)傳遞途徑和作用靶點(diǎn)有很多相似之處,進(jìn)一步證明了MCT-PAH動(dòng)物模型在抗PAH藥物靶點(diǎn)研究中的潛在應(yīng)用價(jià)值[28-34]。
3結(jié)語
MCT-PAH模型只是眾多PAH動(dòng)物模型中的一種,很多研究還利用缺氧以及Sugen缺氧模型來研究PAH[35]。其中缺氧模型也是一種常用的PAH模型,但是在缺氧形成PAH后,經(jīng)過長時(shí)間復(fù)氧后,PAH癥狀易消失,與臨床患者表現(xiàn)不符,且模型制備需要設(shè)備創(chuàng)造缺氧條件。Sugen缺氧模型是目前認(rèn)為最接近人類PAH末期的一種模型,形成PAH模型后再復(fù)氧2周后,經(jīng)檢測后發(fā)現(xiàn)PAH的相關(guān)指標(biāo)并未發(fā)生恢復(fù)現(xiàn)象[13]。但是缺點(diǎn)是費(fèi)用相對(duì)昂貴,且造模需要時(shí)間較長。
雖然我們發(fā)現(xiàn)了眾多信號(hào)途徑可以參與MCT誘導(dǎo)的PAH的形成,目前仍未能完全清楚各個(gè)通路的具體作用機(jī)制以及調(diào)控的關(guān)鍵靶蛋白。而且不同信號(hào)通路并非單獨(dú)作用,而是存在交互關(guān)系。比如Zheng等[36]研究提示Akt可以作為eNOS的上游對(duì)eNOS進(jìn)行調(diào)節(jié),從而影響MCT-PAH的形成。
LncRNA、miRNA等非編碼RNA也是治療PAH比較新的研究熱點(diǎn),目前研究發(fā)現(xiàn)一些lncRNA在MCT誘導(dǎo)的PAH中表達(dá)發(fā)生失調(diào)現(xiàn)象[37-38]。Zhu等[39]研究發(fā)現(xiàn)miRNA也可以通過PTEN/PI3K/Akt信號(hào)通路抑制MCT引起的PAH中內(nèi)皮細(xì)胞的凋亡。隨著精準(zhǔn)治療的不斷發(fā)展,以及測序技術(shù)的不斷提升,非編碼RNA可作為防治PAH的新策略,但因?yàn)榉蔷幋aRNA在不同種屬間的保守性問題,在初始實(shí)驗(yàn)設(shè)計(jì)階段應(yīng)充分考慮,為后續(xù)的轉(zhuǎn)化研究打好基礎(chǔ)??傊?,與缺氧模型和Sugen模型比較,MCT有著制備簡便,價(jià)格低廉,發(fā)病過程與人PAH接近等特點(diǎn),在新的PAH的診斷和防治藥物的靶點(diǎn)研究中具有較高價(jià)值。
[參考文獻(xiàn)]
[1]? Simonneau G,Montani D,Celermajer DS,et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension [J]. Eur Respir J,2019,53(1):1801913.
[2]? Bordenave J,Tu L,Savale L,et al. New insights in the pathogenesis of pulmonary arterial hypertension [J]. Rev Mal Respir,2019,36(4):433-437.
[3]? Koudstaal T,Boomars KA,Kool M. Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension: An Immunological Perspective [J]. J Clin Med,2020,9(2):561-582.
[4]? 馬美玲,劉文東,王芳.肺動(dòng)脈高壓藥物的臨床應(yīng)用及市場現(xiàn)狀[J].中國新藥雜志,2017,26(19):2245-2250.
[5]? Bueno-Beti C,Sassi Y,Hajjar RJ,et al. Pulmonary Artery Hypertension Model in Rats by Monocrotaline Administration [J]. Methods Mol Biol,2018,1816:233-241.
[6]? Durham GA,Palmer TM. Is there a role for prostanoid-mediated inhibition of IL-6 trans-signalling in the management of pulmonary arterial hypertension?[J]. Biochem Soc Trans,2019,47(4):1143-1156.
[7]? Pang Y,Liang MT,Gong Y,et al. HGF Reduces Disease Severity and Inflammation by Attenuating the NF-kappaB Signaling in a Rat Model of Pulmonary Artery Hypertension [J]. Inflammation,2018,41(3):924-931.
[8]? Gao L,Liu J,Hao Y,et al. Chronic intermittent hypobaric hypoxia attenuates monocrotaline-induced pulmonary arterial hypertension via modulating inflammation and suppressing NF-κB/p38 pathway [J]. Iran J Basic Med Sci,2018,21(3):244-252.
[9]? Chen F,Wang H,Zhao J,et al. Grape seed proanthocyanidin inhibits monocrotaline-induced pulmonary arterial hypertension via attenuating inflammation:in vivo and in vitro studies [J]. J Nutr Biochem,2019,67:72-77.
[10]? Chen F,Wang H,Yan J,et al. Grape seed proanthocyanidin reverses pulmonary vascular remodeling in monocrotaline-induced pulmonary arterial hypertension by down-regulating HSP70 [J]. Biomed Pharmacother,2018, 101:123-128.
[11]? Shi R,Zhu D,Wei Z,et al. Baicalein attenuates monocrotaline-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition [J]. Life Sci,2018,207:442-450.
[12]? Avecilla V. Effect of Transcriptional Regulator ID3 on Pulmonary Arterial Hypertension and Hereditary Hemorrhagic Telangiectasia [J]. Int J Vasc Med,2019,2019:2123906.
[13]? Dannewitz Prosseda S,Tian X,Kuramoto K,et al. FHIT,a Novel Modifier Gene in Pulmonary Arterial Hypertension [J]. Am J Respir Crit Care Med,2019,199(1):83-98.
[14]? Zhang C,Wang P,Mohammed A,et al. Function of Adipose-Derived Mesenchymal Stem Cells in Monocrotaline-Induced Pulmonary Arterial Hypertension through miR-191 via Regulation of BMPR2 [J]. Biomed Res Int,2019,2019:2858750.
[15]? Chen YC,Yuan TY,Zhang HF,et al. Salvianolic acid A attenuates vascular remodeling in a pulmonary arterial hypertension rat model [J]. Acta Pharmacol Sin,2016,37(6):772-782.
[16]? Cheng G,Wang X,Li Y,et al. Let-7a-transfected mesenchymal stem cells ameliorate monocrotaline-induced pulmonary hypertension by suppressing pulmonary artery smooth muscle cell growth through STAT3-BMPR2 signaling [J]. Stem Cell Res Ther,2017,8(1):34-44.
[17]? Abdul-Salam VB,Russomanno G,Chien-Nien C,et al. PDE5/Arf6 Pathway [J]. Circ Res,2019,124(1):52-65.
[18]? Yu X,Zhao X,Zhang J,et al. Dacomitinib,a new pan-EGFR inhibitor, is effective in attenuating pulmonary vascular remodeling and pulmonary hypertension [J]. Eur J Pharmacol,2019,850:97-108.
[19]? Chang H,Chang CY,Lee HJ,et al. Magnolol ameliorates pneumonectomy and monocrotaline-induced pulmonary arterial hypertension in rats through inhibition of angiotensinⅡand endothelin-1 expression [J]. Phytomedicine,2018,51:205-213.
[20]? Hsu WL,Lin YC,Jeng JR,et al. Baicalein Ameliorates Pulmonary Arterial Hypertension Caused by Monocrotaline through Downregulation of ET-1 and ETAR in Pneumonectomized Rats [J]. Am J Chin Med,2018,46(4):769-783.
[21]? Zhu Y,Wu Y,Shi W,et al. Inhibition of ubiquitin proteasome function prevents monocrotaline-induced pulmonary arterial remodeling [J]. Life Sci,2017,173(Complete):36-42.
[22]? Wang G,Ma N,Meng L,et al. Activation of the phosphatidylinositol 3-kinase/Akt pathway is involved in lipocalin-2-promoted human pulmonary artery smooth muscle cell proliferation [J]. Mol Cell Biochem,2015, 410(1/2):207-213.
[23]? Lee MY,Tsai KB,Hsu JH,et al. Liraglutide prevents and reverses monocrotaline-induced pulmonary arterial hypertension by suppressing ET-1 and enhancing eNOS/sGC/PKG pathways [J]. Sci Rep,2016,6:31788.
[24]? Li LS,Luo YM,Liu J,et al. Icariin Inhibits Pulmonary Hypertension Induced by Monocrotaline through Enhancement of NO/cGMP Signaling Pathway in Rats [J]. Evid Based Complement Alternat Med,2016,2016:7915415.
[25]? Yu WC,Chen HY,Yang HL,et al. rBMSC/Cav-1(F92A) Mediates Oxidative Stress in PAH Rat by Regulating SelW/14-3-3eta and CA1/Kininogen Signal Transduction [J]. Stem Cells Int,2019,2019:6768571.
[26]? Guo ML,Kook YH,Shannon CE,et al. Notch3/VEGF-A axis is involved in TAT-mediated proliferation of pulmonary artery smooth muscle cells: Implications for HIV-associated PAH [J]. Cell Death Discov,2019,5:22-34.
[27]? Chen X,Zhou W,Hu Q,et al. Exploration of the Notch3-HES5 signal pathway in monocrotaline-induced pulmonary hypertension using rat model [J]. Congenit Heart Dis,2019,14(3):396-402.
[28]? Rashid J,Alobaida A,Al-Hilal TA,et al. Repurposing rosiglitazone, a PPAR-gamma agonist and oral antidiabetic, as an inhaled formulation, for the treatment of PAH [J]. J Control Release,2018,280:113-123.
[29]? Liu WH,Xu XH,Luo Q,et al. Inhibition of the RhoA/Rho-associated,coiled-coil-containing protein kinase-1 pathway is involved in the therapeutic effects of simvastatin on pulmonary arterial hypertension [J]. Clin Exp Hypertens,2018,40(3):224-230.
[30]? Nikitopoulou I,Manitsopoulos N,Kotanidou A,et al. Orotracheal treprostinil administration attenuates bleomycin-induced lung injury, vascular remodeling,and fibrosis in mice [J]. Pulm Circ,2019,9(4):2045894019881954.
[31]? Lee H,Kim KC,Cho MS,et al. Modafinil improves monocrotaline-induced pulmonary hypertension rat model [J]. Pediatr Res,2016,80(1):119-127.
[32]? Wu F,Yao W,Yang J,et al. Protective effects of aloperin on monocroline-induced pulmonary hypertension via regulation of Rho A/Rho kinsase pathway in rats [J]. Biomed Pharmacother,2017,95:1161-1168.
[33]? Liu J,Hu S,Zhu B,et al. Grape seed procyanidin suppresses inflammation in cigarette smoke-exposed pulmonary arterial hypertension rats by the PPAR-gamma/COX-2 pathway [J]. Nutr Metab Cardiovasc Dis,2020, 30(2):347-354.
[34]? Wisutthathum S,Demougeot C,Totoson P,et al. Eulophia macrobulbon extract relaxes rat isolated pulmonary artery and protects against monocrotaline-induced pulmonary arterial hypertension [J]. Phytomedicine,2018,50:157-165.
[35]? Budas GR,Boehm M,Kojonazarov B,et al. ASK1 Inhibition Halts Disease Progression in Preclinical Models of Pulmonary Arterial Hypertension [J]. Am J Respir Crit Care Med,2018,197(3):373-385.
[36]? Zheng Z,Yu S,Zhang W,et al. Genistein attenuates monocrotaline-induced pulmonary arterial hypertension in rats by activating PI3K/Akt/eNOS signaling [J]. Histol Histopathol,2016,32(1):11768.
[37]? Su H,Xu X,Yan C,et al. LncRNA H19 promotes the proliferation of pulmonary artery smooth muscle cells through AT1R via sponging let-7b in monocrotaline-induced pulmonary arterial hypertension [J]. Respir Res,2018,19(1):254.
[38]? Cao Y,Yang Y,Wang L,et al. Analyses of long non-coding RNA and mRNA profiles in right ventricle myocardium of acute right heart failure in pulmonary arterial hypertension rats [J]. Biomed Pharmacother,2018, 106:1108-1115.
[39]? Zhu G,Zhang W,Liu Y,et al.? miR371b5p inhibits endothelial cell apoptosis in monocrotaline induced pulmonary arterial hypertension via PTEN/PI3K/Akt signaling pathways [J]. Mol Med Rep,2018,18(6):5489-5501.
(收稿日期:2020-01-15)