楊鑫 田字彬 張翠萍 張茜 趙文君 楊林
[摘要] 目的 研究高脂飲食性肥胖對(duì)豬螺桿菌感染后小鼠胃相關(guān)淋巴趨化因子表達(dá)與黏膜相關(guān)淋巴組織(MALT)形成影響及其機(jī)制。方法 將40只雌性C57BL/6小鼠隨機(jī)分為正常對(duì)照組(NC組)、豬螺桿菌感染組(HS組)、高脂飲食組(HFD組)、豬螺桿菌感染+高脂飲食組(HS+HFD組),每組10只。用普通飲食喂養(yǎng)NC組與HS組小鼠,而其余兩組小鼠普通飲食喂養(yǎng)3周后給予高脂飲食。按上述飲食喂養(yǎng)24周后,取小鼠胃組織,行蘇木精-伊紅染色分別檢測(cè)各組小鼠胃黏膜淋巴濾泡的數(shù)量與大小;行實(shí)時(shí)定量PCR,分別檢測(cè)各組小鼠胃黏膜相關(guān)淋巴趨化因子CXCL13、CCL19、CCL21和核轉(zhuǎn)錄因子-κB(NF-κB)信號(hào)通路的上游因子腫瘤壞死因子α(TNF-α)、淋巴毒素α(LTα)、淋巴毒素β(LTβ)的mRNA表達(dá)水平。結(jié)果 豬螺桿菌感染可誘導(dǎo)小鼠胃黏膜濾泡的形成,且HS+HFD組小鼠胃黏膜淋巴濾泡的數(shù)量與大小較HS組明顯增加(t=3.05、4.01,P<0.05)。HS+HFD組小鼠胃黏膜中TNF-α、LTα與LTβ的mRNA表達(dá)水平與HS組相比較明顯增加(F=117.261~306.855,P<0.05)。HS+HFD組小鼠胃黏膜相關(guān)淋巴趨化因子CXCL13、CCL19、CCL21的mRNA表達(dá)水平明顯高于HS組,差異具有統(tǒng)計(jì)學(xué)意義(F=68.461~252.398,P<0.05)。結(jié)論 高脂飲食誘導(dǎo)的肥胖可能通過(guò)激活NF-κB信號(hào)通路以及誘導(dǎo)上調(diào)胃內(nèi)淋巴趨化因子表達(dá),進(jìn)一步促進(jìn)豬螺桿菌感染后胃MALT的形成。
[關(guān)鍵詞] 小鼠,肥胖;膳食,高脂;海爾曼螺桿菌屬;黏膜相關(guān)淋巴組織;趨化因子類;NF-κB
[中圖分類號(hào)] R573.6 ?[文獻(xiàn)標(biāo)志碼] A ?[文章編號(hào)] 2096-5532(2020)06-0631-05
doi:10.11712/jms.2096-5532.2020.56.148 [開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版] https://kns.cnki.net/kcms/detail/37.1517.R.20200714.1202.001.html;
2020-07-16 09:01
[ABSTRACT] Objective To investigate the effect of high-fat diet-induced obesity on the expression of gastric lymphocyte chemokines and the formation of mucosa-associated lymphoid tissue (MALT) after Helicobacter suis (H. suis) infection and its possible mechanism. ?Methods A total of 40 female C57BL/6 mice were randomly divided into normal control group (NC group), H. suis infection group (HS group), high-fat diet group (HFD group), and H. suis infection+high-fat diet group (HS+HFD group), with 10 mice in each group. The mice in the NC group and the HS group were given a normal diet, and those in the other two groups were given high-fat diet after 3 weeks of normal diet. After the mice were given the above diet for 24 weeks, gastric tissue was collected and HE staining was used to measure the number and size of gastric mucosal lymphoid follicles; quantitative real-time PCR was used to measure the mRNA expression levels of gastric mucosa-associated lymphocyte chemokines (CXCL13, CCL19, and CCL21) and upstream factors of the nuclear factor-kappa B (NF-κB) signaling pathway (tumor necrosis factor-α (TNF-α), lymphotoxin α (LTα), and lymphotoxin β (LTβ)). Results H. suis infection induced the formation of gastric mucosal follicles in mice, and the HS+HFD group had significantly greater number and size of gastric mucosal lymphoid follicles than the HS group (t=3.05,4.01;P<0.05). Compared with the HS group, the HS+HFD group had significant increases in the mRNA expression levels of TNF-α, LTα, and LTβ in the gastric mucosa (F=117.261-306.855,P<0.05), as well as significantly higher mRNA expression levels of the gastric mucosa-associated lymphocyte chemokines CXCL13, CCL19, and CCL21 (F=68.461-252.398,P<0.05). Conclusion High-fat diet-induced obesity may further promote the formation of gastric MALT after H. suis infection by activating the NF-κB signaling pathway and inducing upregulation of the expression of gastric lymphocyte chemokines.
[KEY WORDS] mice,obese; diet,high-fat; Helicobacter heilmannii; mucosa associated lymphoid tissue; chemotactic factors; NF-κB
豬螺桿菌(Helicobacter suis,H. suis)是除幽門螺桿菌(Hp)外最常見(jiàn)的定植于人類胃黏膜的螺旋桿菌,其感染與萎縮性胃炎、胃潰瘍、胃黏膜相關(guān)淋巴樣組織(MALT)淋巴瘤甚至胃癌等發(fā)生存在相關(guān)性[1-5],值得臨床重視。近年來(lái),關(guān)于豬螺桿菌相關(guān)性胃MALT淋巴瘤的報(bào)道逐漸增多[6]。有研究結(jié)果表明,豬螺桿菌可定植于C57BL/6小鼠胃內(nèi),其機(jī)制主要是通過(guò)激活B細(xì)胞與輔助性T細(xì)胞(CD4+ T細(xì)胞),引起獲得性免疫反應(yīng),進(jìn)而誘導(dǎo)胃MALT形成,且CCL19、CXCL13等是豬螺桿菌感染后胃MALT形成的關(guān)鍵趨化因子[7-11]。肥胖是由不同炎癥因子誘導(dǎo)產(chǎn)生的一種全身慢性低度炎癥狀態(tài),能增加許多惡性腫瘤(包括胃MALT淋巴瘤)發(fā)生的風(fēng)險(xiǎn)[12],另外還有MALT淋巴瘤病人減體質(zhì)量術(shù)后淋巴瘤完全消退的報(bào)道[13],說(shuō)明肥胖可影響MALT淋巴瘤的發(fā)生發(fā)展。另有研究結(jié)果顯示,高脂飲食誘導(dǎo)的肥胖可增加小鼠淋巴結(jié)中CCL19、CCL21和脂肪組織中CXCL13的表達(dá)水平[14-15]。因此,我們推測(cè)肥胖可能會(huì)通過(guò)某種信號(hào)通路影響豬螺桿菌感染后MALT淋巴瘤的形成。本研究旨在初步探討高脂飲食誘導(dǎo)的肥胖對(duì)豬螺桿菌感染后小鼠胃MALT形成的影響及其可能的機(jī)制。
1 材料和方法
1.1 實(shí)驗(yàn)動(dòng)物
SPF級(jí)8周齡雌性C57BL/6野生型小鼠(體質(zhì)量18~20 g)40只購(gòu)自濟(jì)南朋悅實(shí)驗(yàn)動(dòng)物繁育有限公司,飼養(yǎng)于青島大學(xué)附屬醫(yī)院動(dòng)物實(shí)驗(yàn)室(SPF級(jí))。小鼠飼料、飲用水經(jīng)高溫高壓滅菌。動(dòng)物實(shí)驗(yàn)得到了青島大學(xué)實(shí)驗(yàn)動(dòng)物管理和使用委員會(huì)的批準(zhǔn)。
1.2 動(dòng)物分組及處理
將40只小鼠隨機(jī)分為正常對(duì)照組(NC組,A組)、豬螺桿菌感染組(HS組,B組)、高脂飲食組(HFD組,C組)以及豬螺桿菌感染+高脂飲食組(HS+HFD組,D組),每組10只。取本實(shí)驗(yàn)室已感染豬螺桿菌的供體小鼠(已證實(shí)其胃內(nèi)只有豬螺桿菌,沒(méi)有其他螺桿菌的定植[5])的胃黏膜勻漿,按每只0.2 mL給B組和D組小鼠灌胃,致其感染;A組和C組則給予同等量的非感染野生型小鼠胃黏膜勻漿灌胃。A組和B組小鼠給予普通飲食,C組和D組小鼠普通飲食喂養(yǎng)3周后給予高脂飲食(高脂飼料購(gòu)自Research Diets,Inc;其中脂肪占總熱量的45%)。各組小鼠每周測(cè)定體質(zhì)量1次。
1.3 標(biāo)本采集
喂養(yǎng)24周后,將各組小鼠麻醉后行頸椎脫臼處死,取全胃,沿胃大彎剪開(kāi),用無(wú)菌PBS溶液沖洗干凈。部分胃組織用于石蠟包埋,部分提取RNA。
1.4 組織學(xué)檢測(cè)
取1/2的小鼠胃組織,經(jīng)石蠟包埋后10 μm連續(xù)切片,行蘇木精-伊紅(HE)染色,檢測(cè)并比較不同組小鼠胃黏膜是否有淋巴濾泡生成及生成淋巴濾泡的數(shù)量和大小。
1.5 淋巴趨化因子和核轉(zhuǎn)錄因子-κB(NF-κB)信號(hào)通路上游因子mRNA表達(dá)的檢測(cè)
用實(shí)時(shí)定量PCR法。以Trizol試劑(TaKaRa)勻漿,從胃組織中提取總RNA,測(cè)定其純度和濃度后取1 μg的RNA進(jìn)行逆轉(zhuǎn)錄反應(yīng)得到cDNA,使用SYBR Green試劑盒(TaKaRa)進(jìn)行實(shí)時(shí)熒光定量PCR(real-time PCR)。利用比較CT(△△CT)的方法確定各樣本中H. suis 16S rRNA、CCL19、CCL21、CXCL13、腫瘤壞死因子α(TNF-α)、淋巴毒素α(LTα)、淋巴毒素β(LTβ)等mRNA的相對(duì)表達(dá)水平。各基因引物序列見(jiàn)表1。
1.6 統(tǒng)計(jì)學(xué)分析
應(yīng)用SPSS 24.0軟件進(jìn)行統(tǒng)計(jì)學(xué)處理。經(jīng)檢驗(yàn)各組計(jì)量數(shù)據(jù)均服從正態(tài)分布,組間方差齊,故數(shù)據(jù)以±s表示,采用二因素析因設(shè)計(jì)方差分析檢驗(yàn)高脂飲食與豬螺桿菌的主效應(yīng)和交互作用。
2 結(jié) ?果
2.1 各組小鼠體質(zhì)量的變化比較
高脂飲食主效應(yīng)具有統(tǒng)計(jì)學(xué)意義(F=353.365, P<0.01),豬螺桿菌感染主效應(yīng)無(wú)統(tǒng)計(jì)學(xué)意義(F=0.158,P>0.05),高脂飲食與豬螺桿菌感染不存在交互作用(F=0.037,P>0.05)。說(shuō)明高脂飲食是影響小鼠體質(zhì)量的主要因素,而豬螺桿菌感染并不會(huì)顯著影響小鼠的體質(zhì)量,且兩者之間無(wú)交互作用。在造模前,各組小鼠體質(zhì)量差異無(wú)統(tǒng)計(jì)學(xué)意義(F=1.425,P>0.05);喂養(yǎng)24周后,高脂飲食小鼠(C、D組)體質(zhì)量與非高脂飲食小鼠(A、B組)相比,差異有統(tǒng)計(jì)學(xué)意義(F=117.902,P<0.01)。見(jiàn)表2。
2.2 肥胖對(duì)豬螺桿菌感染后胃淋巴濾泡形成和細(xì)菌負(fù)荷的影響
喂養(yǎng)24周后,豬螺桿菌感染小鼠(B、D組)胃黏膜中均觀察到淋巴濾泡的形成,而非感染小鼠(A、C組)未見(jiàn)胃淋巴濾泡形成(圖1)。B組和D組小鼠胃組織中均檢測(cè)到H.suis 16S rRNA的表達(dá),兩組之間比較差異無(wú)顯著性(t=1.35,P>0.05);而與B組比較,D組小鼠單位長(zhǎng)度胃黏膜淋巴濾泡的數(shù)量明顯增加,且淋巴濾泡明顯增大,差異具有統(tǒng)計(jì)學(xué)意義(t=3.05、4.01,P<0.05)。見(jiàn)表3。
2.3 肥胖對(duì)豬螺桿菌感染后小鼠胃組織NF-κB信號(hào)通路上游因子表達(dá)的影響
喂養(yǎng)24周后,小鼠胃組織內(nèi)NF-κB信號(hào)通路的上游因子TNF-α、LTα、LTβ的mRNA表達(dá)水平,均在D組最高,B、C組次之,A組最低。析因設(shè)計(jì)的方差分析顯示,高脂飲食主效應(yīng)有統(tǒng)計(jì)學(xué)意義(F=8.001~55.725,P<0.01),豬螺桿菌感染主效應(yīng)亦有統(tǒng)計(jì)學(xué)意義(F=10.607~56.735,P<0.01),且二者存在交互作用(F=117.261~306.855,P<0.01)。提示高脂飲食和豬螺桿菌感染均對(duì)各因子表達(dá)有影響,二者存在交互作用,且由每組的最大合計(jì)數(shù)可知,該交互作用為正向協(xié)同作用。說(shuō)明在豬螺桿菌感染的小鼠胃組織中,NF-κB信號(hào)通路被激活,高脂飲食誘導(dǎo)的肥胖進(jìn)一步增強(qiáng)了NF-κB信號(hào)通路的活化。見(jiàn)表4。
2.4 肥胖對(duì)豬螺桿菌感染后小鼠胃黏膜相關(guān)淋巴趨化因子表達(dá)水平的影響
喂養(yǎng)24周后,小鼠胃黏膜相關(guān)淋巴趨化因子的表達(dá)水平,均在D組最高,B、C組次之,A組最低。析因設(shè)計(jì)方差分析結(jié)果顯示,高脂飲食主效應(yīng)有統(tǒng)計(jì)學(xué)意義(F=6.620~13.737,P<0.01),豬螺桿菌感染主效應(yīng)亦有顯著性(F=9.915~18.200,P<0.01),且二者存在交互作用(F=68.461~252.398,P<0.01)。提示高脂飲食和豬螺桿菌感染均對(duì)各因子表達(dá)有影響,二者存在交互作用,且由每組的最大合計(jì)數(shù)可知,該交互作用為正向協(xié)同作用。說(shuō)明高脂飲食誘導(dǎo)的肥胖明顯促進(jìn)了豬螺桿菌感染所致胃黏膜相關(guān)淋巴趨化因子的表達(dá)上調(diào)。見(jiàn)表5。
3 討 ?論
研究表明,C57BL/6J小鼠長(zhǎng)期感染豬螺桿菌后幾乎100%可以引起胃MALT淋巴瘤樣病變[6],且該菌與其他螺桿菌相比,與胃MALT淋巴瘤的發(fā)生關(guān)系更密切。因此,豬螺桿菌感染的小鼠是研究胃MALT形成機(jī)制以及胃MALT淋巴瘤發(fā)病機(jī)制的理想模型[9]。正常情況下胃黏膜不含有MALT,胃MALT作為異位淋巴組織,其形成是胃MALT淋巴瘤發(fā)生的組織學(xué)背景。螺桿菌感染的直接抗原刺激導(dǎo)致淋巴細(xì)胞的增殖與淋巴濾泡的形成,最終誘導(dǎo)MALT淋巴瘤的形成[16]。CXCL13及其受體CXCR5在Hp感染小鼠胃黏膜炎癥以及MALT形成中的作用已被證實(shí),且這些因子表達(dá)上調(diào)主要是由非經(jīng)典的NF-κB通路誘導(dǎo)活化的[17-18]。相關(guān)文獻(xiàn)報(bào)道,通過(guò)LTα1β2-LTβR-NIK-IKKα信號(hào)途徑激活NF-κB是MALT形成的關(guān)鍵步驟[19]。另一方面,腫瘤壞死因子受體(TNFR)傳遞信號(hào)誘導(dǎo)磷酸化和NF-κB抑制劑(IκB)下調(diào),并觸發(fā)RelA-P50復(fù)合物從細(xì)胞質(zhì)移位到細(xì)胞核(經(jīng)典途徑),引起廣泛的炎癥基因的表達(dá)。且淋巴毒素β受體(LTβR)觸發(fā)磷酸化并處理p100(NF-κB2基因產(chǎn)物)依次生成p52,并最終激活RelB-p52復(fù)合體(非經(jīng)典途徑)[20],調(diào)節(jié)CXCL13、CCL19、CCL21和CXCL12等基因表達(dá)[21-22]。近年來(lái),某些關(guān)鍵因子如腫瘤壞死因子和淋巴毒素α1β2(LTα1β2)在異位淋巴組織生成過(guò)程中的作用已被證實(shí)[23]。LTα1β2和TNF-α分別與各自的受體LTβR和TNFR1相結(jié)合,可激活NF-κB信號(hào)通路,誘導(dǎo)一系列趨化因子(CCL19、CCL21、CXCL12與CXCL13)表達(dá)增加,進(jìn)而調(diào)節(jié)淋巴細(xì)胞歸巢,參與異位淋巴組織的形成[24-25]。本文研究結(jié)果表明,豬螺桿菌感染小鼠NF-κB信號(hào)通路上游因子和相關(guān)淋巴趨化因子mRNA表達(dá)水平明顯高于NC組。說(shuō)明豬螺桿菌感染可能通過(guò)激活NF-κB信號(hào)通路以及上調(diào)胃內(nèi)淋巴趨化因子表達(dá)影響胃MALT的發(fā)生發(fā)展。
目前肥胖致瘤機(jī)制的相關(guān)研究主要集中在脂肪因子的直接作用上,而肥胖對(duì)組織中趨化因子表達(dá)以及慢性感染引起的獲得性MALT形成的影響仍知之甚少。肥胖作為一種慢性低度炎癥狀態(tài),主要表現(xiàn)為異常的細(xì)胞因子產(chǎn)生、免疫激活以及炎癥信號(hào)通路蛋白表達(dá)的增加[26]。在肥胖相關(guān)的慢性炎癥狀態(tài)下,脂肪細(xì)胞可表達(dá)多種主要由NF-κB調(diào)節(jié)的趨化因子如CCL19、CXCL12等[15,27]。此外,肥胖可以影響某些器官中免疫細(xì)胞對(duì)趨化因子的反應(yīng)。例如,肥胖可以增加肝臟中淋巴細(xì)胞對(duì)趨化因子的反應(yīng),增加CD4+T細(xì)胞和B細(xì)胞對(duì)趨化因子CXCL12和CXCL13的趨化性[28-29]。本研究結(jié)果表明,豬螺桿菌感染可誘導(dǎo)胃黏膜淋巴濾泡形成,激活胃組織中NF-κB經(jīng)典/非經(jīng)典信號(hào)通路,并上調(diào)相關(guān)淋巴趨化因子的表達(dá),而這種影響在不影響胃內(nèi)豬螺桿菌菌量的前提下可被高脂飲食誘導(dǎo)的肥胖進(jìn)一步加強(qiáng),說(shuō)明肥胖可能通過(guò)促進(jìn)豬螺桿菌感染后NF-κB信號(hào)通路的激活,并上調(diào)淋巴趨化因子,進(jìn)一步促進(jìn)了胃MALT的發(fā)生發(fā)展。本文結(jié)果初步揭示了肥胖對(duì)胃MALT淋巴瘤發(fā)生的影響及其可能的機(jī)制。
綜上所述,高脂飲食誘導(dǎo)的肥胖狀態(tài),促進(jìn)了豬螺桿菌感染后胃MALT的發(fā)生發(fā)展,這可能與NF-κB信號(hào)通路的激活以及胃內(nèi)淋巴趨化因子的表達(dá)上調(diào)有關(guān)。肥胖與腫瘤之間的關(guān)系涉及諸如炎癥變化、脂肪細(xì)胞因子譜改變、胰島素抵抗和脂肪組織低氧等多種機(jī)制,因此,肥胖相關(guān)性胃疾病確切的發(fā)病機(jī)制還需進(jìn)一步研究探討。
[參考文獻(xiàn)]
[1] PADRA M, ADAMCZYK B, BENKTANDER J, et al. Helicobacter suis binding to carbohydrates on human and porcine gastric mucins and glycolipids occurs via two modes[J]. Virulence, 2018,9(1):898-918.
[2] OKIYAMA Y, MATSUZAWA K, HIDAKA E, et al. Helicobacter heilmannii infection: clinical, endoscopic and histopathological features in Japanese patients[J]. Pathol Int, 2005,55(7):398-404.
[3] GOJI S, TAMURA Y, SASAKI M, et al. Helicobacter suis-infected nodular gastritis and a review of diagnostic sensitivity for Helicobacter heilmannii-like organisms[J]. Case Reports in Gastroenterology, 2015,9(2):179-187.
[4] DE WITTE C, DEVRIENDT B, FLAHOU B, et al. Helicobacter suis induces changes in gastric inflammation and acid secretion markers in pigs of different ages[J]. Vet Res, 2017,48(1):34.
[5] YANG L, YAMAMOTO K, NISHIUMI S, et al. Interferon-γ-producing B cells induce the formation of gastric lymphoidfollicles after Helicobacter suis infection[J]. Mucosal Immu- nol, 2015,8(2):279-295.
[6] NAKAMURA M, MURAYAMA S Y, SERIZAWA H, et al. “Candidatus Helicobacter heilmannii” from a cynomolgus monkey induces gastric mucosa-associated lymphoid tissue lymphomas in C57BL/6 mice[J]. Infect Immun, 2007,75(3):1214-1222.
[7] YAMAMOTO K, TANAKA H, NISHITANI Y, et al. Helicobacter suis KB1 derived from pig gastric lymphoid follicles induces the formation of gastric lymphoid follicles in mice through the activation of B cells and CD4 positive cells[J]. Microbes Infect, 2011,13(7):697-708.
[8] NISHIKAWA K, NAKAMURA M, TAKAHASHI S, et al. Increased apoptosis and angiogenesis in gastric low-grade mucosa-associated lymphoid tissue-type lymphoma by Helicobac-ter heilmannii infection in C57/BL6 mice[J]. FEMS Immunol Med Microbiol, 2007,50(2):268-272.
[9] 楊若明,楊林,田字彬,等. Helicobacter suis感染小鼠模型的建立及其意義[J]. 中國(guó)人獸共患病學(xué)報(bào), 2016,32(7):604-607,617.
[10] WINTER S, LODDENKEMPER C, AEBISCHER A, et al. The chemokine receptor CXCR5 is pivotal for ectopic mucosa-associated lymphoid tissue neogenesis in chronic Helicobacter pylori-induced inflammation[J]. Journal of Molecular Medicine, 2010,88(11):1169-1180.
[10] WINTER S, LODDENKEMPER C, AEBISCHER A, et al. The chemokine receptor CXCR5 is pivotal for ectopic mucosa-associated lymphoid tissue neogenesis in chronic Helicobacter pylori-induced inflammation[J]. Journal of Molecular Medicine, 2010,88(11):1169-1180.
[11] YAMAMOTO K, NISHIUMI S, YANG L, et al. Anti-CXCL13 antibody can inhibit the formation of gastric lymphoid follicles induced by Helicobacter infection[J]. Mucosal Immunology, 2014,7(5):1244-1254.
[12] 許松欣,鄧彬,陳姚生,等. 減重手術(shù)是否降低肥胖相關(guān)腫瘤發(fā)病風(fēng)險(xiǎn)的Meta分析[J]. 中華胃腸外科雜志, 2015,18(11):1144-1148.
[13] HELMAN R, TEIXEIRA P P, MENDES C J, et al. Gastric MALT lymphoma and grade Ⅱ obesity: gastric bypass surge-ry as a therapeutic option[J]. Obes Surg, 2011,21(3):407-409.
[14] JUNG J I, CHO H J, JUNG Y J, et al. High-fat diet-induced obesity increases lymphangiogenesis and lymph node metastasis in the B16F10 melanoma allograft model: roles of adipocytes and M2-macrophages[J]. Int J Cancer, 2015,136(2):258-270.
[15] KIM D, KIM J, YOON J H, et al. CXCL12 secreted from adipose tissue recruits macrophages and induces insulin resis-tance in mice[J]. Diabetologia, 2014,57(7):1456-1465.
[16] ZHAO W J, TIAN Z B, YAO S S, et al. High-fat-diet-induced obesity upregulates the expression of lymphoid chemokines and promotes the formation of gastric lymphoid follicles after Helicobacter suis infection[J]. Pathog Dis, 2017,75(8):1-8.
[17] SHOMER N H, FOX J G, JUEDES A E, et al. Helicobacter-induced chronic active lymphoid aggregates have characteristics of tertiary lymphoid tissue[J]. Infect Immun, 2003,71(6):3572-3577.
[18] HILL D G, YU L, GAO H, et al. Hyperactive gp130/STAT3-driven gastric tumourigenesis promotes submucosal tertiary lymphoid structure development[J]. Int J Cancer, 2018,143(1):167-178.
[19] KUCHARZEWKA P, MARACLE C X, HAMBURG J V, et al. NF-κB-inducing kinase regulates LTβR-DRIVEN NF-κB signaling and inflammatory activation of endothelium[J]. Annual European Congress of Rheumatology, 2017,19(5):14-17.
[20] DALLER B, MSCH W, RHRL J, et al. Lymphotoxin-β receptor activation by lymphotoxin-α(1)β(2) and LIGHT promotes tumor growth in an NFκB-dependent manner[J]. Int J Cancer, 2011,128(6):1363-1370.
[21] JANG S W, LIM S G, SUK K, et al. Activation of lymphotoxin-beta receptor enhances the LPS-induced expression of IL-8 through NF-κB and IRF-1[J]. Immunol Lett, 2015,165(2):63-69.
[22] DEJARDIN E, DROIN N M, DELHASE M, et al. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways[J]. Immunity, 2002,17(4):525-535.
[23] DEMETER J, PORZSOLT F, RMISCH S, et al. Polymorphism of the tumour necrosis factor-alpha and lymphotoxin-alpha genes in hairy cell leukaemia[J]. Br J Haematol, 1997,97(1):132-134.
[24] ALOISI F, PUJOL-BORRELL R. Lymphoid neogenesis in chronic inflammatory diseases[J]. Nature Reviews Immunology, 2006,6(3):205-217.
[25] WHARRY C E, HAINES K M, CARROLL R G, et al. Constitutive non-canonical NFkappaB signaling in pancreatic can-cer cells[J]. Cancer Biol Ther, 2009,8(16):1567-1576.
[26] ALEMN J O, EUSEBI L H, RICCIARDIELLO L, et al. Mechanisms of obesity-induced gastrointestinal neoplasia[J]. Gastroenterology, 2014,146(2):357-373.
[27] TOURNIAIRE F, ROMIER-CROUZET B, LEE J H, et al. Chemokine expression in inflamed adipose tissue is mainly mediated by NF-κB[J]. PLoS One, 2013,8(6):e66515.
[28] BIGORGNE A E, BOUCHET-DELBOS L, NAVEAU S, et al. Obesity-induced lymphocyte hyperresponsiveness to chemokines: a new mechanism of fatty liver inflammation in obese mice[J]. Gastroenterology, 2008,134(5):1459-1469.
[29] FERRERE G, LEROUX A, WRZOSEK L, et al. Activation of Kupffer cells is associated with a specific dysbiosis induced by fructose or high fat diet in mice[J]. PLoS One, 2016,11(1):e0146177.
(本文編輯 馬偉平)
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2020年6期