王翔 尹雅楠 孔姿莉 王顏剛
[摘要] 目的 研究分化型甲狀腺癌(DTC)免疫細(xì)胞亞群局部浸潤相關(guān)模式,探討腫瘤局部免疫細(xì)胞亞群與DTC復(fù)發(fā)的相關(guān)性。方法 TCGA數(shù)據(jù)庫下載DTC病人轉(zhuǎn)錄本及臨床相關(guān)數(shù)據(jù),應(yīng)用CIBERSORT軟件反卷積算法計(jì)算22種免疫細(xì)胞在DTC病人癌組織與癌旁組織中所占比例,Kaplan-Meier法繪制生存曲線,Log-rank檢驗(yàn)分析DTC病人腫瘤復(fù)發(fā)與免疫細(xì)胞亞群的關(guān)系。結(jié)果 TCGA數(shù)據(jù)庫中下載509例DTC樣本,根據(jù)病人無病生存期數(shù)據(jù)應(yīng)用CIBERSORT軟件以P<0.05為條件篩選出匹配樣本184例,其中癌旁組織17例,癌組織167例。Kaplan-Meier生存分析顯示,NK細(xì)胞高比例DTC病人1年無病生存率為98.7%,5年無病生存率為93.6%;而NK細(xì)胞低比例DTC病人1年無病生存率為92.0%,5年無病生存率為65.5%,兩組5年無病生存率差異有顯著性(χ2=7.591,P<0.05)。結(jié)論 DTC免疫細(xì)胞亞群與臨床結(jié)果密切相關(guān),活化的NK細(xì)胞比例增加可提高甲狀腺癌病人無病生存率,針對(duì)NK細(xì)胞的免疫療法可能成為預(yù)防DTC復(fù)發(fā)的選擇之一。
[關(guān)鍵詞] 甲狀腺腫瘤;腫瘤復(fù)發(fā),局部;免疫細(xì)胞
[中圖分類號(hào)] R736.1;R73-37 ?[文獻(xiàn)標(biāo)志碼] A ?[文章編號(hào)] 2096-5532(2020)05-0566-05
doi:10.11712/jms.2096-5532.2020.56.084 [開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[ABSTRACT] Objective To investigate the local infiltration pattern of immune cell subsets in differentiated thyroid carcinoma (DTC) and the relationship between DTC recurrence and subsets of tumor-infiltrating immune cells. ?Methods TCGA database was used to download the transcripts and clinical data of patients with DTC. The deconvolution algorithm in CIBERSORT software was used to calculate the proportion of 22 types of infiltrating immune cells in cancerous tissues and adjacent tissues of DTC patients. The Kaplan-Meier method was adopted to plot survival curves. The Log-rank test was used to analyze the relationship between tumor recurrence and infiltrating immune cell subsets in DTC patients. ?Results A total of 184 matched samples were screened out of 509 cases of DTC samples in the TCGA dataset using the CIBERSORT software according to the patients disease-free survival data under the condition of P<0.05, including 17 cases of adjacent tissues and 167 cases of cancerous tissues. The Kaplan-Meier survival analysis showed that for DTC patients with high NK cell proportion, the 1 year and 5 year disease-free survival rates were 98.7% and 93.6%, respectively, but for DTC patients with low NK cell proportion, the rates were 92.0% and 65.5%, respectively. There was a significant difference in 5 year disease-free survival rate between the two groups (χ2=7.591,P<0.05). Conclusion The subsets of tumor-infiltrating immune cells in DTC patients are closely related to the clinical outcome. Increased proportion of activated NK cells can significantly reduce DTC recurrence rate. In the future, immunotherapy based on NK cells may become one of the options for preventing the recurrence of DTC.
[KEY WORDS] thyroid neoplasms; neoplasm recurrence, local; immune cells
分化型甲狀腺癌(DTC)是最常見的頭頸部惡性腫瘤,占甲狀腺惡性腫瘤的90%[1]。DTC 病人有良好的預(yù)后,10年病死率僅為1.7%;然而其術(shù)后復(fù)發(fā)率達(dá)1.4%~35.0%[2-3],復(fù)發(fā)病人病死率高達(dá)48%[4]。目前預(yù)測DTC復(fù)發(fā)的指標(biāo)較少。腫瘤免疫細(xì)胞浸潤是指免疫細(xì)胞從血液移向腫瘤組織的過程,其在腫瘤的發(fā)生發(fā)展中發(fā)揮著重要作用[5-6]。既往研究表明,腫瘤組織內(nèi)部免疫細(xì)胞亞群的分布與腫瘤生長密切相關(guān),不同腫瘤有著不同的免疫細(xì)胞亞群的分布比例[7-9]。近年來研究顯示,免疫細(xì)胞療法能夠有效延長腫瘤病人的總體存活期[10-11]。而腫瘤免疫細(xì)胞亞群分布比例與臨床結(jié)果高度相關(guān),有可能成為提高DTC病人無病生存期治療的藥物靶點(diǎn)。CIBERSORT(單細(xì)胞類型分析方法)是一種從癌癥基因表達(dá)譜中計(jì)算出癌癥組織細(xì)胞組成的高分辨率分析方法,該方法通過反卷積算法可以預(yù)測癌組織中22種免疫細(xì)胞占比,其靈敏度≥94%,特異度≥95%,模型評(píng)估指標(biāo)受試者工作特征曲線下面積(AUC)≥0.98[12]。本文研究以腫瘤基因組圖譜(TCGA)中DTC轉(zhuǎn)錄本與臨床數(shù)據(jù)為基礎(chǔ),應(yīng)用R軟件聯(lián)合CIBERSORT軟件分析DTC病人腫瘤免疫細(xì)胞亞群與癌癥復(fù)發(fā)的相關(guān)性,為臨床預(yù)防DTC病人腫瘤復(fù)發(fā)提供參考?,F(xiàn)將結(jié)果報(bào)告如下。
1 材料與方法
1.1 數(shù)據(jù)來源與篩選
DTC病人轉(zhuǎn)錄本與臨床數(shù)據(jù)來源于公共數(shù)據(jù)庫TCGA(https://portal.gdc.cancer.gov/)截至2019年8月29日的數(shù)據(jù),臨床數(shù)據(jù)包括無病生存時(shí)間、復(fù)發(fā)狀態(tài)、性別、年齡、腫瘤Stage分期、腫瘤T分期、腫瘤N分期、腫瘤M分期。以P<0.05為條件應(yīng)用CIBERSORT軟件篩選樣本,將各病人無病生存期臨床數(shù)據(jù)與組織樣本相匹配,用于病人無病生存率(DFS)分析。病人無病生存期定義為從接受手術(shù)治療到癌癥復(fù)發(fā)所間隔的時(shí)間。
1.2 各樣本腫瘤免疫細(xì)胞的構(gòu)成分析
將校正后的轉(zhuǎn)錄本數(shù)據(jù)用CIBERSORT軟件(https://cibersort.stanford.edu/)以反卷積法計(jì)算,完成由各樣本轉(zhuǎn)錄本數(shù)據(jù)到22種免疫細(xì)胞表達(dá)比例數(shù)據(jù)的轉(zhuǎn)換,22種免疫細(xì)胞分別為:初始B細(xì)胞(B cells naive)、記憶性B細(xì)胞(B cells memory)、漿細(xì)胞(Plasma cells)、CD8+T細(xì)胞(T cells CD8)、初始CD4+T細(xì)胞(CD4 T cells naive)、活化的CD4記憶性T細(xì)胞(T cells CD4 memory activated)、未活化的CD4記憶性T細(xì)胞(T cells CD4 memory resting )、濾泡輔助性T細(xì)胞(T cells follicular helper)、調(diào)節(jié)性T細(xì)胞(T cells regulatory Tregs)、γδT細(xì)胞(T cells gamma delta)、未活化的自然殺傷細(xì)胞(NK cells resting)、活化的自然殺傷細(xì)胞(NK cells activated)、單核細(xì)胞(Monocytes)、M0巨噬細(xì)胞(Macrophages M0)、M1巨噬細(xì)胞(Macrophages M1)、M2巨噬細(xì)胞(Macrophages M2)、未活化的樹突狀細(xì)胞(Dendritic cells resting)、活化的樹突狀細(xì)胞(Dendritic cells activated)、未活化的肥大細(xì)胞(Mast cells resting)、活化的肥大細(xì)胞(Mast cells activated)、嗜酸性粒細(xì)胞(Eosinophils)、中性粒細(xì)胞(Neutrophils)。通過R barplot命令對(duì)數(shù)據(jù)繪制柱狀圖,展示各免疫細(xì)胞在各樣本中所占的比例;應(yīng)用R corrplot軟件包(版本號(hào)0.84)進(jìn)行DTC腫瘤組織中22種免疫細(xì)胞相關(guān)性熱圖的繪制;應(yīng)用R vioplot軟件包(版本號(hào)0.3.0)進(jìn)行小提琴圖繪制,展示22種免疫細(xì)胞在DTC樣本癌與癌旁組織間的表達(dá)差異。
1.3 腫瘤免疫細(xì)胞浸潤與DTC病人腫瘤復(fù)發(fā)之間相關(guān)性分析
從TCGA數(shù)據(jù)庫下載得到DTC病人臨床數(shù)據(jù),從中篩選出無病生存時(shí)間數(shù)據(jù)和病情復(fù)發(fā)數(shù)據(jù)。通過R merge命令將病人臨床數(shù)據(jù)與22種免疫細(xì)胞表達(dá)數(shù)據(jù)合并,剔除癌旁組織樣本數(shù)據(jù)后,繪制生存曲線并進(jìn)行病人DFS的比較。
1.4 統(tǒng)計(jì)學(xué)方法
數(shù)據(jù)應(yīng)用R軟件(版本號(hào)3.6.0)與Bioconductor(http://www.bioconductor.org)軟件包進(jìn)行統(tǒng)計(jì)分析。轉(zhuǎn)錄本數(shù)據(jù)應(yīng)用R limma軟件包(版本號(hào)3.38.3)、voom算法進(jìn)行處理前矯正。若缺少無病生存期數(shù)據(jù)則將該樣本從總體剔除。應(yīng)用R survival軟件包(版本號(hào)2.44.1.1)進(jìn)行Kaplan-Meier生存曲線繪制,Log-rank檢驗(yàn)進(jìn)行生存率的比較。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié) ?果
2.1 數(shù)據(jù)構(gòu)成與篩選情況
從TCGA數(shù)據(jù)庫下載得到509例DTC癌組織樣本與58例癌旁組織樣本轉(zhuǎn)錄本及臨床數(shù)據(jù),通過CIBERSORT軟件篩選得到206例樣本,其中189例DTC癌組織樣本,17例癌旁組織樣本。然后通過各病人無病生存期臨床數(shù)據(jù)與組織樣本相匹配,篩選出167例癌組織樣本。篩選流程見圖1。
2.2 DTC病人腫瘤免疫細(xì)胞浸潤分布情況
對(duì)189例DTC癌組織與17例癌旁組織樣本中22種免疫細(xì)胞分布數(shù)據(jù)分別進(jìn)行細(xì)胞相關(guān)性熱圖、柱狀圖與小提琴圖的繪制。細(xì)胞相關(guān)性熱圖顯示,CD8+T細(xì)胞與漿細(xì)胞(r=0.49,P<0.05)、M1巨噬細(xì)胞(r=0.48,P<0.05)呈正相關(guān),M0巨噬細(xì)胞與CD8+T細(xì)胞(r=-0.60,P<0.05)、漿細(xì)胞(r=-0.54,P<0.05)、M1巨噬細(xì)胞(r=-0.52,P<0.05)呈負(fù)相關(guān)。見圖2。柱狀圖可觀察到各樣本中免疫細(xì)胞所占比例,DTC癌組織中M0巨噬細(xì)胞占比最高,為(20.61±13.10)%,而在癌旁組織中僅占(8.60±4.90)%;CD8+T細(xì)胞在癌旁組織中占比最高,為(20.78±6.50)%,而在DTC癌組織中占比僅為(10.51±6.80)%。見圖3。小提琴圖可顯示癌組織與癌旁組織中免疫細(xì)胞比例差異的變化,癌旁組織M0巨噬細(xì)胞占比8.60%,而在癌組織中占比為20.61%;癌旁組織M2巨噬細(xì)胞占比5.75%,而在癌組織中占比11.75%;未活化的樹突狀細(xì)胞在癌旁組織占比0.52%,而在癌組織中占比4.95%;未活化的肥大細(xì)胞在癌旁組織占比0.76%,而在癌組織中占比3.70%。以上免疫細(xì)胞亞群在DTC癌組織樣本中呈高表達(dá)。CD8+T細(xì)胞在癌旁組織中占比20.78%,在癌組織中占比10.51%;初始B細(xì)胞在癌旁組織占比11.57%,在癌組織中占比4.10%;濾泡輔助性T細(xì)胞在癌旁組織占比8.42%,在癌組織中占比4.79%;γδT細(xì)胞在癌旁組織占比2.16%,在癌組織中占比0.42%。以上免疫細(xì)胞亞群在DTC癌組織樣本中低表達(dá)。見圖4。
2.3 腫瘤免疫細(xì)胞浸潤與DTC病人腫瘤復(fù)發(fā)之間相關(guān)性
將篩選得到167例DTC癌組織樣本免疫細(xì)胞占比與其臨床復(fù)發(fā)情況相匹配的數(shù)據(jù),根據(jù)中位值分為免疫細(xì)胞高占比組與低占比組,繪制Kaplan-Meier生存曲線。見圖5。Log-rank檢驗(yàn)結(jié)果顯示,NK細(xì)胞高占比DTC病人1年DFS為98.7%,5年DFS為93.6%;而NK細(xì)胞低占比DTC病人1年DFS為92.0%,5年DFS為65.5%,NK細(xì)胞高占比組與低占比組5年DFS相比較,差異有統(tǒng)計(jì)學(xué)意義(χ2=7.591,P<0.05)。而其他免疫細(xì)胞占比與腫瘤復(fù)發(fā)均無相關(guān)性(P>0.05)。
3 討 ?論
免疫細(xì)胞浸潤在腫瘤與腫瘤之間差異很大,并且隨著時(shí)間的推移不斷變化[13]。本研究應(yīng)用R分析與CIBERSORT對(duì)TCGA數(shù)據(jù)庫DTC病人轉(zhuǎn)錄本與臨床資料數(shù)據(jù)進(jìn)行分析,得出了以下結(jié)論:①CD8+T細(xì)胞與漿細(xì)胞、M1巨噬細(xì)胞之間可能存在共同正向效應(yīng);②DTC癌組織樣本中腫瘤相關(guān)巨噬細(xì)胞、未活化的樹突狀細(xì)胞較癌旁組織顯著增加,而初始B細(xì)胞、CD8+T細(xì)胞、濾泡輔助性T細(xì)胞、γδT細(xì)胞等顯著下調(diào),可能與腫瘤的發(fā)生發(fā)展存在緊密聯(lián)系;③NK細(xì)胞與DTC病人的復(fù)發(fā)有顯著相關(guān)性,活化的NK細(xì)胞可提高DTC病人DFS。
對(duì)甲狀腺癌免疫細(xì)胞浸潤的相關(guān)研究表明,晚期甲狀腺癌病人CD3+、CD4+和CD8+T細(xì)胞水平顯著降低,并且這種改變在老年病人中尤為顯著,其降低程度與癌癥的預(yù)后不良有顯著相關(guān)性[14-15]。本文研究結(jié)果與其一致。在癌癥發(fā)展過程中CD8+ T細(xì)胞可以活化成為細(xì)胞毒性T細(xì)胞,是抗感染與抑制癌癥的核心免疫細(xì)胞,其代謝活性與抗腫瘤免疫力相關(guān)[16]。有研究表明,漿細(xì)胞與CD8+T細(xì)胞對(duì)于腫瘤的抑制效應(yīng)相一致,并且可以增強(qiáng)CD8+T細(xì)胞抗腫瘤效應(yīng)[17]。M1型巨噬細(xì)胞具有抗原遞呈的作用,可間接激活CD8+T細(xì)胞轉(zhuǎn)變?yōu)榧?xì)胞毒性T細(xì)胞[18]。因此,DTC病人腫瘤組織中CD8+T細(xì)胞與漿細(xì)胞及M1型巨噬細(xì)胞有相關(guān)性。另有研究表明,樹突狀細(xì)胞可以刺激甲狀腺髓樣癌病人細(xì)胞毒性T細(xì)胞的抗腫瘤免疫應(yīng)答,在臨床試驗(yàn)中將帶有腫瘤抗原的樹突狀細(xì)胞接種到甲狀腺髓樣癌病人中可以發(fā)揮良好治療效果[19]。腫瘤相關(guān)巨噬細(xì)胞浸潤約占腫瘤免疫細(xì)胞浸潤的50%,且與癌癥預(yù)后不良相關(guān)[20]。M1與M2型巨噬細(xì)胞可通過極化作用相互轉(zhuǎn)變,M1型巨噬細(xì)胞通過分泌促炎性因子、趨化因子與遞呈抗原參與正向免疫應(yīng)答,發(fā)揮殺傷腫瘤細(xì)胞的作用[21];而M2型巨噬細(xì)胞是腫瘤預(yù)后的不利因素,可分泌血管內(nèi)皮生長因子、表皮細(xì)胞生長因子和轉(zhuǎn)化生長因子-β等促進(jìn)腫瘤成長[22],并表達(dá)免疫抑制因子如程序性死亡受體-配體1(PD-L1),抑制特異性CD8+T細(xì)胞對(duì)腫瘤的細(xì)胞毒性功能,并誘導(dǎo)其凋亡[23]。目前,誘導(dǎo)腫瘤組織中M2型巨噬細(xì)胞向M1型巨噬細(xì)胞轉(zhuǎn)化及M1型巨噬細(xì)胞相關(guān)外泌體表達(dá)已成為癌癥治療的新方向[24-25]。
本研究Kaplan-Meier生存分析顯示,NK細(xì)胞的活性顯著影響DTC病人的復(fù)發(fā)率。NK細(xì)胞是具有強(qiáng)效細(xì)胞溶解功能的天然淋巴細(xì)胞,其分泌的γ-干擾素可以通過激活M1型巨噬細(xì)胞發(fā)揮抗腫瘤作用[26]。針對(duì)NK細(xì)胞的腫瘤免疫治療也在不斷嘗試,目前面臨最大的問題是導(dǎo)入NK細(xì)胞后如何使其在不損傷自身正常細(xì)胞的情況下對(duì)腫瘤細(xì)胞實(shí)行精準(zhǔn)打擊[27]。有研究指出,NK細(xì)胞在甲狀腺癌組織中的表達(dá)較正常組織明顯下降[28];還有研究對(duì)肝癌免疫細(xì)胞浸潤及預(yù)后分析指出,活化的NK細(xì)胞比例高的病人預(yù)后更好[29]。針對(duì)NK細(xì)胞的免疫療法可能成為預(yù)防DTC病人腫瘤復(fù)發(fā)的一種新型治療手段。本研究同時(shí)存在一定的局限性:由于本研究是基于TGCA數(shù)據(jù)庫的回顧性研究,并不能避免地域、人種等差異因素的影響;Kaplan-Meier生存分析顯示22種免疫細(xì)胞中只有NK細(xì)胞的活性與DTC病人復(fù)發(fā)率相關(guān),而與其他免疫細(xì)胞均無相關(guān)性,這與樣本量較少且腫瘤分期分布不均有一定關(guān)系。
綜上所述,本文通過免疫細(xì)胞亞群組成與DTC病人轉(zhuǎn)錄本及臨床數(shù)據(jù)的分析,推測影響DTC病人預(yù)后的免疫細(xì)胞為NK細(xì)胞。針對(duì)NK細(xì)胞的免疫療法可能成為預(yù)防DTC復(fù)發(fā)的選擇之一。
[參考文獻(xiàn)]
[1] SEIB C D, SOSA J A. Evolving understanding of the epide-miology of thyroid cancer[J]. Endocrinology and Metabolism Clinics of North America, 2019,48(1):23-35.
[2] MAZZAFERRI E L, KLOOS R T. Clinical review 128: Current approaches to primary therapy for papillary and follicular thyroid cancer[J]. The Journal of Clinical Endocrinology and Metabolism, 2001,86(4):1447-1463.
[3] DURANTE C, MONTESANO T, TORLONTANO M, et al. Papillary thyroid cancer: time course of recurrences during postsurgery surveillance[J]. The Journal of Clinical Endocrinology and Metabolism, 2013,98(2):636-642.
[4] GRANT C S, HAY I D, GOUGH I R, et al. Local recurrence in papillary thyroid carcinoma: is extent of surgical resection important[J]? Surgery,1988,104(6):954-962.
[5] SATG D. A tumor profile in primary immune deficiencies challenges the cancer immune surveillance concept[J]. Frontiers in Immunology, 2018,9:1149.
[6] MESSERSCHMIDT J L, BHATTACHARYA P, MESSERSCHMIDT G L. Cancer clonal theory, immune escape, and their evolving roles in cancer multi-agent therapeutics[J]. Current Oncology Reports, 2017,19(10):66.
[7] HE T F, SUSAN E Y, FRANKEL P H, et al. Multi-panel immunofluorescence analysis of tumor infiltrating lymphocytes in triple negative breast cancer: evolution of tumor immune profiles and patient prognosis[J]. PLoS One, 2020,15(3):e0229955.
[8] MITCHELL K G, PARRA E R, NELSON D B, et al. Tumor cellular proliferation is associated with enhanced immune checkpoint expression in stage Ⅰ non-small cell lung cancer[J]. The Journal of Thoracic and Cardiovascular Surgery, 2019,158(3):911-919.
[9] FERRARI S M, FALLAHI P, GALDIERO M R, et al. Immune and inflammatory cells in thyroid cancer microenvironment[J]. International Journal of Molecular Sciences, 2019,20(18):4413.
[10] TOPALIAN S L, HODI F S, BRAHMER J R, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in can-cer[J]. New England Journal of Medicine, 2012,366(26):2443-2454.
[11] HODI F S, ODAY S J, MCDERMOTT D F, et al. Improved survival with ipilimumab in patients with metastatic melanoma[J]. New England Journal of Medicine, 2010,363(8):711-723.
[12] NEWMAN A M, LIU C L, GREEN M R, et al. Robust enumeration of cell subsets from tissue expression profiles[J]. Nature Methods, 2015,12(5):453-457.
[13] BINDEA G, MLECNIK B, TOSOLINI M, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer[J]. Immunity, 2013,39(4):782-795.
[14] RABOLD K, GIELEN P R, KERS-REBEL E D, et al. T-cell lymphopenia in patients with advanced thyroid carcinoma is associated with poor prognosis[J]. The Oncologist, 2019,24(3): e106-e110.
[15] SUGINO K. An analysis of lymphocyte subsets in the regional lymph nodes of patients with papillary thyroid carcinoma[J]. Surgery Today, 1994,24(4):323-327.
[16] KAMPHORST A O, ARAKI K, AHMED R. Beyond adjuvants: immunomodulation strategies to enhance T cell immunity[J]. Vaccine, 2015,33(Suppl 2): B21-B28.
[17] KROEGER D R, MILNE K, NELSON B H. Tumor-infiltrating plasma cells are associated with tertiary lymphoid structures, cytolytic T-cell responses, and superior prognosis in ovarian cancer[J]. Clinical Cancer Research, 2016,22(12):3005-3015.
[18] CHENG L F, WANG Y H, HUANG L. Exosomes from M1-polarized macrophages potentiate the cancer vaccine by creating a pro-inflammatory microenvironment in the lymph node[J]. Molecular Therapy: the Journal of the American Society of Gene Therapy, 2017,25(7):1665-1675.
[19] BACHLEITNER-HOFMANN T, STIFT A, FRIEDL J, et al. Stimulation of autologous antitumor T-cell responses against medullary thyroid carcinoma using tumor lysate-pulsed dendritic cells[J]. The Journal of Clinical Endocrinology and Metabolism, 2002,87(3):1098-1104.
[20] JACKAMAN C, TOMAY F, DUONG L, et al. Aging and cancer: the role of macrophages and neutrophils[J]. Ageing Research Reviews, 2017,36:105-116.
[21] WANG Piaopiao, WANG Huihui, HUANG Qianqian, et al. Exosomes from M1-Polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation[J]. Theranostics, 2019,9(6):1714-1727.
[22] YAMAGUCHI T, FUSHIDA S, YAMAMOTO Y, et al. Tumor-associated macrophages of the M2 phenotype contri-bute to progression in gastric cancer with peritoneal dissemination[J]. Gastric Cancer, 2016,19(4):1052-1065.
[23] GAJEWSKI T F, SCHREIBER H, FU Y X. Innate and adaptive immune cells in the tumor microenvironment[J]. Nature Immunology, 2013,14(10):1014-1022.
[24] ZHENG X, TURKOWSKI K, MORA J, et al. Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy[J]. Oncotarget, 2017,8(29):48436-48452.
[25] YE Yibiao, XU Yunxiuxiu, YU Lai, et al. Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage polarization[J]. Journal of Cellular Biochemistry, 2018,119(3):2951-2963.
[26] OSULLIVAN T, SADDAWI-KONEFKA R, VERMI W, et al. Cancer immunoediting by the innate immune system in the absence of adaptive immunity[J]. The Journal of Experimental Medicine, 2012,209(10):1869-1882.
[27] MUNTASELL A, OCHOA M C, CORDEIRO L, et al. Targeting NK-cell checkpoints for cancer immunotherapy[J]. Current Opinion in Immunology, 2017,45:73-81.
[28] SACK J, BAKER J R, WEETMAN A P, et al. Thyrocyte specific killer cell activity is decreased in patients with thyroid carcinoma[J]. Cancer,1987,59(11):1914-1917.
[29] 程熠,吳瑩瑩,劉東伯,等. 肝癌免疫細(xì)胞浸潤模式及與預(yù)后的相關(guān)性分析[J]. 華中科技大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2019,48(3):276-280.
(本文編輯 黃建鄉(xiāng))