張憲堂,余 輝,秦文彬,申彥兵,孫國富,聶瑞鋒
(1.山東科技大學(xué) 山東省土木工程防災(zāi)減災(zāi)重點(diǎn)實(shí)驗(yàn)室,山東 青島266590;2.山東科技大學(xué) 土木工程與建筑學(xué)院,山東 青島266590;3.山東交通學(xué)院 交通土建工程學(xué)院,山東 濟(jì)南250357)
斜拉橋是由塔、梁、索三種結(jié)構(gòu)元件組成的高次超靜定結(jié)構(gòu)體系,以其自重小、柔度大、跨越能力大和造型美觀等優(yōu)點(diǎn),成為現(xiàn)代橋梁工程中發(fā)展最快的橋型之一[1-3]。但是,斜拉橋施工過程是一個(gè)復(fù)雜的系統(tǒng)工程,地基環(huán)境復(fù)雜、結(jié)構(gòu)轉(zhuǎn)換體系復(fù)雜、施工周期較長、施工工藝多等因素對(duì)橋梁結(jié)構(gòu)產(chǎn)生嚴(yán)重影響,使實(shí)際橋梁結(jié)構(gòu)參數(shù)與設(shè)計(jì)值存在一定的誤差[1,4]。
斜拉橋施工控制的最終目標(biāo)是使結(jié)構(gòu)處于安全范圍內(nèi),成橋狀態(tài)最大程度上與理想設(shè)計(jì)狀態(tài)一致[5-7]。在實(shí)際工程中,橋梁施工誤差受到橋梁材料性能差異、施工荷載變化、周圍大氣溫度等因素影響[8-9],造成實(shí)際狀態(tài)與理想狀態(tài)出現(xiàn)差異。因此需要對(duì)結(jié)構(gòu)進(jìn)行參數(shù)敏感性分析,確定對(duì)結(jié)構(gòu)產(chǎn)生影響的參數(shù)以及其可能的偏差范圍,研究其對(duì)結(jié)構(gòu)響應(yīng)的影響程度,為橋梁施工誤差修正提供科學(xué)依據(jù)[10]。本研究以某跨海斜拉橋?yàn)檠芯繉?duì)象,通過有限元模型計(jì)算分析,對(duì)該橋施工過程關(guān)鍵結(jié)構(gòu)參數(shù)進(jìn)行敏感性分析,得到結(jié)構(gòu)參數(shù)變化對(duì)成橋狀態(tài)結(jié)構(gòu)行為的影響,主要包括主梁線形、主梁應(yīng)力以及斜拉索索力的變化。
圖1 結(jié)構(gòu)橋型布置圖Fig.1 Bridge type layout of main bridge structure
某跨海斜拉橋?yàn)殡p塔雙索面鋼箱梁斜拉橋,跨徑布置為(70+105+400+105+70)m。結(jié)構(gòu)體系采用半漂浮體系,如圖1所示。
主梁采用流線型扁平鋼箱梁,采用懸臂拼裝施工;梁全寬34 m(含風(fēng)嘴),梁高3.5 m,標(biāo)準(zhǔn)節(jié)段為16 m,鋼箱梁橫隔板采用實(shí)腹式,檢修道、風(fēng)嘴與主梁同時(shí)加工、架設(shè),但不參與主梁受力,僅承受其自身重量及行人荷載。主塔為鉆石型混凝土塔,索塔高度為160.0 m,采用C50混凝土。斜拉索全橋共88根斜拉索,每個(gè)索塔分別布置22對(duì)斜拉索,呈扇形對(duì)稱布置。索塔向邊跨側(cè)斜拉索分別為B1~B11,索塔向跨中側(cè)斜拉索分別為Z1~Z11。斜拉索在主塔上采用鋼錨梁錨固,主梁上采用錨拉板錨固。
采用橋梁有限元軟件Midas Civil,建立橋梁結(jié)構(gòu)空間桿系分析模型(如圖2)。鋼主梁均采用梁單元模擬,斜拉索采用桁架單元模擬,鋼主梁自重通過施加梁單元均布荷載方式進(jìn)行修正,永久壓重采用均布荷載形式加重。全橋共計(jì)1 302個(gè)單元,其中桁架單元88個(gè)。
圖2 結(jié)構(gòu)有限元模型圖Fig.2 Structural finite element model
在斜拉橋的施工過程和成橋狀態(tài)下,有許多影響結(jié)構(gòu)行為的參數(shù)。結(jié)合工程實(shí)際情況以及相關(guān)文獻(xiàn)資料[11-13],選取主梁自重、施工臨時(shí)荷載、主梁剛度、斜拉索彈性模量以及斜拉索索力變化等5個(gè)參數(shù)作為結(jié)構(gòu)敏感性分析參數(shù),計(jì)算時(shí)僅給定單一參數(shù)的變化幅度,其他參數(shù)均保持不變[14-15],分別計(jì)算得到結(jié)構(gòu)成橋狀態(tài)下主梁線形、主梁應(yīng)力、斜拉索索力的變化情況,從而辨別確定敏感性參數(shù)和非敏感性參數(shù)。
考慮鋼箱梁廠家的制造和拼裝誤差,難以避免出現(xiàn)梁段重量超重或者超輕的情況。選取鋼箱梁自重參數(shù),按設(shè)計(jì)值基礎(chǔ)上變化±2%、±5%,其他參數(shù)不變,計(jì)算得到成橋狀態(tài)下主梁線形、主梁應(yīng)力以及斜拉索索力的變化。
由表1、圖3可知,主梁自重變化對(duì)結(jié)構(gòu)成橋狀態(tài)的影響程度較大。主梁自重變化±2%時(shí),主梁上下緣應(yīng)力變化值在-4.31~4.29 MPa,最大變化幅度為15.89%;主梁自重變化±5%時(shí),主梁上下緣應(yīng)力變化值在-10.76~10.74 MPa,最大變化幅度為39.8%。主梁自重變化±2%和±5%時(shí),主梁線形的變化波動(dòng)趨勢(shì)基本一致,且中跨的位移變化值明顯大于邊跨。當(dāng)主梁自重變化±2%時(shí),主梁線形的累計(jì)位移最大變化值為31.2 mm,變化幅度為80.0%;當(dāng)主梁自重變化±5%時(shí),主梁線形的累計(jì)位移的最大變化值為78.2 mm,變化幅度為200.5%。位置均出現(xiàn)在靠近中跨1/4跨、3/4跨處。主梁自重變化±2%時(shí),拉索索力最大差值為55.7 kN,變化幅度為1.9%;當(dāng)主梁自重變化±5%時(shí),拉索索力最大差值為139.2 kN,變化幅度為4.7%。
表1 主梁自重變化下的主梁應(yīng)力變化值Tab.1 Stress change value of main girder under variation of main girder's self-weight
圖3 主梁自重變化對(duì)成橋線形和索力的影響Fig.3 Effect of main girder self-weight change on alignment and cable force of completed bridge
本工程橋梁跨徑比較大,考慮斜拉索的垂度效應(yīng)以及制造誤差因素,造成其軸向剛度出現(xiàn)差異,可利用彈性模量進(jìn)行換算修正[16]。取斜拉索彈性模量設(shè)計(jì)值E=1.95×105MPa,在其設(shè)計(jì)值基礎(chǔ)上變化±2%、±5%,其他參數(shù)不變,計(jì)算得到成橋狀態(tài)下主梁線形、主梁應(yīng)力以及斜拉索索力的變化。
由表2、圖4可知,斜拉索彈性模量變化對(duì)主梁應(yīng)力影響不大。當(dāng)彈性模量變化±2%時(shí),主梁應(yīng)力的變化值在-1.82~1.79 MPa,最大變化幅度為2.8%;當(dāng)彈性模量變化±5%時(shí),主梁應(yīng)力的變化值在-4.63~4.41 MPa,最大變化幅度為5.7%。斜拉索彈性模量變化對(duì)成橋主梁線形影響較大,當(dāng)彈性模量變化±2%和±5%時(shí),主梁線形的累計(jì)位移最大變化值分別為15.9和40.8 mm,其最大變化幅度分別是40.8%和125.1%。斜拉索彈性模量變化對(duì)于索力比較大的長索影響稍大,但相對(duì)于成橋索力值而言,彈性模量變化所引起的索力變化量仍然十分小。當(dāng)彈性模量變化±2%,索力最大差值30.5 k N;當(dāng)彈性模量變化±5%,索力最大差值76.3 k N,最大變化幅度1.9%。
表2 斜拉索彈性模量變化下的主梁應(yīng)力變化值Tab.2 Stress change value of main girder under variation of elastic modulus of cable
圖4 斜拉索彈性模量變化對(duì)成橋線形和索力的影響Fig.4 Effect of elastic modulus of cable change on alignment and cable force of completed bridge
鋼箱梁鋼材材質(zhì)均勻,彈性模量穩(wěn)定,但是由于梁段中加勁肋橫隔板等板件較多,造成剛度誤差。取主梁剛度為2.1×105MPa,在設(shè)計(jì)值基礎(chǔ)上變化±2%、±5%,其他參數(shù)不變,計(jì)算得到成橋狀態(tài)下主梁線形、主梁應(yīng)力以及斜拉索索力的變化。
由表3、圖5可知,主梁剛度變化對(duì)主梁應(yīng)力的影響很小。當(dāng)主梁剛度變化±2%時(shí),主梁應(yīng)力的最大變化值為0.46 MPa,最大變化幅度為1.6%;當(dāng)主梁剛度變化±5%時(shí),主梁應(yīng)力的最大變化值為1.17 MPa,最大變化幅度為4.8%;主梁上下緣應(yīng)力的絕對(duì)變化量近似且符號(hào)相反。主梁剛度變化時(shí),成橋主梁線形出現(xiàn)位移偏差,但是差值很小。當(dāng)主梁剛度變化±2%時(shí),主梁線形的位移最大變化值為3.1 mm,最大變化幅度為7.9%;當(dāng)主梁剛度變化±5%時(shí),主梁線形的位移最大變化值為8.2 mm,最大變化幅度為21.0%。主梁剛度的變化對(duì)斜拉索索力的影響也很小,當(dāng)主梁剛度變化±2%時(shí),索力最大差值為8.4 k N,當(dāng)主梁剛度變化±5%時(shí),索力最大差值為21.4 k N,最大變化幅度僅為0.99%。
表3 主梁剛度變化下的主梁應(yīng)力變化值Tab.3 Stress change value of main girder under variation of stiffness of main girder
圖5 主梁剛度變化對(duì)成橋線形和索力的影響Fig.5 Effect of main girder stiffness change on alignment and cable force of completed bridge
本工程施工臨時(shí)荷載主要包括橋面吊機(jī)、檢修車、臨時(shí)施工材料及設(shè)備等??紤]在橋梁施工過程中臨時(shí)荷載變化比較大,特別是鋼箱梁懸臂端部位置處。選取施工臨時(shí)荷載參數(shù),在橋面吊機(jī)設(shè)計(jì)值基礎(chǔ)上增減20和30 t來模擬吊機(jī)重量以及臨時(shí)荷載偏差,其他參數(shù)不變,計(jì)算得到成橋狀態(tài)下主梁線形、主梁應(yīng)力以及斜拉索索力的變化。
由表4、圖6可知,施工臨時(shí)荷載變化對(duì)主梁應(yīng)力的影響較大,當(dāng)施工臨時(shí)荷載增減20 t時(shí),主梁應(yīng)力的最大變化值為4.94 MPa,變化幅度為7.9%;當(dāng)施工荷載增減30 t時(shí),主梁應(yīng)力的最大變化值為7.41 MPa,變化幅度為12.7%。施工臨時(shí)荷載變化對(duì)成橋主梁線形的影響較大,當(dāng)施工臨時(shí)荷載增減20和30 t時(shí),主梁線形的位移最大差值分別為16.5和24.8 mm,最大變化幅度分別為42.3%和63.6%。位置變化均發(fā)生在中跨合龍?zhí)帯J┕づR時(shí)荷載變化對(duì)成橋索力的影響很小,當(dāng)施工荷載增減20 t時(shí),索力最大差值為27.7 k N;施工荷載增減30 t,索力最大差值為41.5 k N,最大變化幅度僅為1.2%。
表4 施工臨時(shí)荷載變化下的主梁應(yīng)力變化值Tab.4 Stress change value of main girder under construction temporary load change
圖6 主梁剛度變化對(duì)成橋線形和索力的影響Fig.6 Effect ofmain girder stiffness change on alignment and cable force of completed bridge
本工程斜拉索索力張拉共分兩次,采用的張拉索力控制方法為頻率法與千斤頂油壓法配合,但是考慮海上風(fēng)力、溫度[17]以及施工誤差等因素,容易造成張拉索力有一定的誤差。選取斜拉索二次張拉力參數(shù),在設(shè)計(jì)張拉力基礎(chǔ)上變化±2%、±5%,其他參數(shù)不變,計(jì)算得到成橋狀態(tài)下主梁線形、主梁應(yīng)力以及斜拉索索力的變化。
由表5、圖7可知,斜拉索二次張拉力變化對(duì)主梁應(yīng)力影響很大,且變化越大,主梁應(yīng)力變化范圍越大。當(dāng)二張索力變化±2%,主梁應(yīng)力的最大變化值為9.66 MPa,變化幅度為24.7%;當(dāng)二張索力變化±5%,主梁應(yīng)力的最大變化值為24.82 MPa,變化幅度為54.1%。二張索力的變化對(duì)成橋主梁線形影響非常大,且中跨影響遠(yuǎn)大于邊跨。二張索力變化±2%時(shí),主梁線形的位移最大差值為34.8 mm,變化幅度為89.2%;二張索力變化±5%時(shí),主梁線形的位移最大差值為87.3 mm,變化幅度為223.8%。成橋索力是由斜拉索張拉索力隨著施工階段一步一步變化而來,所以二張索力的變化對(duì)成橋索力影響較大。二張索力變化±2%時(shí),索力最大差值86.3 k N,變化幅度2.1%;二張索力變化±5%時(shí),索力最大差值為209.2 k N,變化幅度為5.2%。
表5 斜拉索索力變化下的主梁應(yīng)力變化值Tab.5 Stress change value of main girder under change of cable force
圖7 斜拉索索力變化對(duì)成橋線形和索力的影響Fig.7 Effect of cable force change on alignment and cable force of completed bridge
考慮橋梁施工階段,對(duì)上述5種結(jié)構(gòu)參數(shù)進(jìn)行敏感性研究,整合對(duì)比研究結(jié)果,得到成橋階段的主梁線形、主梁應(yīng)力以及斜拉索索力對(duì)各結(jié)構(gòu)參數(shù)變化的影響程度,同時(shí)對(duì)影響成橋結(jié)構(gòu)行為的各參數(shù)按影響程度大小進(jìn)行排序[18],從而確定影響結(jié)構(gòu)行為的主要敏感參數(shù),具體分析結(jié)果見表6~8??梢?,斜拉索二次張拉索力和主梁自重對(duì)成橋結(jié)構(gòu)行為的影響程度最大,屬于主要敏感參數(shù);拉索彈性模量和施工荷載次之,屬于較敏感參數(shù);而主梁剛度對(duì)成橋結(jié)構(gòu)行為的影響最小,屬于不敏感參數(shù)。
表6 成橋狀態(tài)主梁線形敏感性分析Tab.6 Sensitivity analysis of main girder alignment in completed state
表7 成橋索力敏感性分析Tab.7 Sensitivity analysis of cable force of completed bridge
表8 成橋主梁應(yīng)力敏感性分析Tab.8 Sensitivity analysis of main girder stress of completed bridge
以某跨海斜拉橋?yàn)槔⒂邢拊P湍M橋梁施工過程,對(duì)主梁自重、斜拉索彈性模量、施工臨時(shí)荷載等5種結(jié)構(gòu)參數(shù)及其變化進(jìn)行敏感性分析,分析不同參數(shù)變化對(duì)結(jié)構(gòu)成橋狀態(tài)的主梁線形、主梁應(yīng)力以及斜拉索索力的影響程度,得到以下結(jié)論:
1)鋼主梁自重和斜拉索二次張拉索力對(duì)成橋狀態(tài)的結(jié)構(gòu)行為有顯著影響,屬于敏感性參數(shù)。施工過程中應(yīng)重點(diǎn)關(guān)注上述各影響參數(shù)的變化,同時(shí)在節(jié)段安裝前獲取梁段實(shí)際重量,嚴(yán)格控制斜拉索張拉力值。
2)鋼主梁自重、斜拉索二次張拉索力對(duì)主梁線形影響最大,拉索彈性模量次之;主梁應(yīng)力和斜拉索索力對(duì)結(jié)構(gòu)參數(shù)的敏感程度低于主梁線形。施工過程中應(yīng)重點(diǎn)監(jiān)控主梁線形,當(dāng)結(jié)構(gòu)參數(shù)變化時(shí),通過改變安裝線形、調(diào)整斜拉索索力值等措施減小不利影響。
3)鋼主梁下緣應(yīng)力相比于主梁上緣應(yīng)力對(duì)結(jié)構(gòu)參數(shù)變化更加敏感,因此施工監(jiān)控過程中應(yīng)嚴(yán)格監(jiān)測(cè)主梁控制截面處下緣應(yīng)力的變化。