黨李蘋,周雯馨,劉瑞芳,白云,王哲鵬
略陽烏雞體重和產蛋數(shù)性狀遺傳參數(shù)估計
黨李蘋,周雯馨,劉瑞芳,白云,王哲鵬
(西北農林科技大學動物科技學院,陜西楊凌 712100)
【】略陽烏雞是陜西省特有的家禽品種,該品種具有體型大、肉質好、氨基酸含量豐富、對林地散養(yǎng)適應性強的優(yōu)點,但也存在生長緩慢,產蛋性能差的不足。為此,在系統(tǒng)測定略陽烏雞生產性能的基礎上,開展對體重和產蛋性狀遺傳參數(shù)的估計,闡明遺傳效應對上述性狀的調控作用及性狀間的遺傳關系,期望為這些性狀的選育奠定理論基礎。對略陽烏雞蛋用系一世代71個半同胞家系799只公雞和804只母雞6、10、14、20周齡和開產日齡體重進行測定,以個體為單位記錄從開產到31、35和40周齡產蛋數(shù),以四分位數(shù)±1.5倍四分位距為界刪除異常值,更正性別記錄錯誤。以性別為固定效應,育種值為隨機效應用單變量動物模型估計各性狀遺傳力,用雙變量動物模型估計性狀間遺傳相關,用逆伽瑪分布指定育種值和殘差項方差先驗分布,用貝葉斯算法執(zhí)行130 000次迭代,棄去前30 000次迭代結果,以100為間隔抽取1 000個估計值獲得方差和協(xié)方差后驗分布,計算各性狀遺傳力和性狀間遺傳相關。用R語言PerformanceAnalytics軟件包chart.Correlation命令計算性狀間表型相關。略陽烏雞6、10、14、20周齡公雞體重為(0.56±0.07)、(1.07±0.13)、(1.56±0.19)、(1.97±0.21)kg,母雞體重為(0.47±0.06)、(0.86±0.12)、(1.18±0.16)、(1.48±0.19)kg,開產體重為(1.68±0.23)kg;31、35和40周產蛋數(shù)為(31.2±11.5)、(42.5±16.7)和(54.7±20.4)枚。體重遺傳力隨年齡逐漸減小,分別為0.74、0.76、0.63、0.54和0.52,置信區(qū)間在0.25—0.33之間。產蛋數(shù)遺傳力為0.27、0.25和0.26,置信區(qū)間在0.35—0.42之間。10、14、20周齡體重間維持中等偏上(0.52—0.68)的遺傳相關性,但6周齡體重(0.21—0.52)和開產體重(0.21—0.46)與各時間點體重遺傳相關性較弱。體重間遺傳相關系數(shù)置信區(qū)間在0.13—0.34之間。在3個時間點產蛋數(shù)間遺傳相關系數(shù)趨近于1,置信區(qū)間在0.03—0.06之間。體重和產蛋數(shù)間遺傳相關系數(shù)均不顯著。在時間維度上,各體重性狀間表型相關系數(shù)在0.43—0.90之間(<0.001),產蛋數(shù)性狀間表型相關系數(shù)在0.79—0.94之間(<0.001)。6—20周齡體重與產蛋數(shù)間維持了弱(0.023—0.15)正相關關系,但開產體重與產蛋數(shù)存在弱負相關關系(-0.17—-0.14)。首次估計了略陽烏雞品種特異性的遺傳參數(shù),發(fā)現(xiàn)略陽烏雞體重性狀主要受遺傳效應調控,而產蛋數(shù)性狀受環(huán)境影響更大,闡明了早期與晚期性狀間、體重與產蛋數(shù)間的遺傳關系,為早期選種和多性狀育種奠定了理論基礎。這些結果建議在略陽烏雞群體中對體重性狀表型選擇有望取得良好效果,但對產蛋數(shù)性狀應建立純系利用雜種優(yōu)勢;體重和產蛋數(shù)間不存在負遺傳相關關系,可同時對兩個性狀選育提高。
略陽烏雞; 體重; 產蛋數(shù); 遺傳力; 遺傳相關
【研究意義】略陽烏雞是陜西省特有的家禽品種。該品種具有體型大、肉質好、氨基酸含量豐富、對林地散養(yǎng)適應性強等優(yōu)點,但也存在生長速度緩慢、產蛋性能差的不足[1-3]。略陽烏雞生產性能差增大了養(yǎng)殖成本,降低了烏雞產品的市場競爭力,對烏雞資源的開發(fā)利用產生了極為不利的影響。選育是提高略陽烏雞生產性能的措施之一,而遺傳參數(shù)估計是制定適宜選育方案的基礎[4]?!厩叭搜芯窟M展】生長和產蛋作為現(xiàn)代家禽生產中兩個重要的經(jīng)濟性狀,已有大量研究對各時間點體重和產蛋數(shù)遺傳力及彼此間遺傳關系進行估計。但不同研究得出結果存在較大差異,以開產體重和開產后12周產蛋數(shù)為例,前者遺傳力范圍在0.32—0.57之間[4-7],而后者遺傳力在0.099—0.47之間[4,8-9]。體重和產蛋數(shù)性狀在時間維度上的遺傳關系盡管在數(shù)值上仍有較大差異,但在方向上卻保持了較為穩(wěn)定的正相關關系[4-6,10-13]。但在體重和產蛋數(shù)性狀間,不同研究得出的結論并不一致[6-12],主流觀點認為二者維持了負相關的關系[4,6,11-12],但也有少數(shù)研究發(fā)現(xiàn)二者相關性的方向并不固定[7,9],甚至有相反的結論得出[10]?!颈狙芯壳腥朦c】雞的體重和產蛋數(shù)受多基因調控[14-15],而且環(huán)境因素還可以通過影響表觀修飾水平影響基因的表型效應[16-17]。因此,不同品種的體重和產蛋性狀遺傳基礎可能各不相同,即使相同,在不同環(huán)境下也可能有不同的表型[18]。這種遺傳基礎的復雜性就決定了不同研究很難取得相同的結果,也使得遺傳參數(shù)跨品種應用受到很大限制?!緮M解決的關鍵問題】本研究以略陽烏雞蛋用系育種核心群1 603只一世代個體為對象,對6、10、14、20周齡和開產日齡5個時間點的體重及31、35和40周齡3個時間點的產蛋數(shù)進行測定,估計略陽烏雞特異性遺傳參數(shù),分析這些性狀的遺傳基礎和性狀間的遺傳關系,為略陽烏雞體重和產蛋性狀的選育奠定理論基礎。
略陽烏雞遺傳參數(shù)估計所用樣本為略陽烏雞蛋用系育種核心群一世代1 603只略陽烏雞,公雞799只,母雞804只。這些個體來自71個半同胞家系。一世代在2017年3月25日入孵,4月15日出雛,系譜孵化,出雛時佩戴翅號,記錄家系信息,在2018年2月14日淘汰。養(yǎng)殖地點為陜西略陽龍佳農業(yè)科技發(fā)展有限公司。1—3周飼養(yǎng)密度為60只/m2,4—6周密度為40只/m2。第一周育雛溫度為33—35℃,之后每周降低2—3℃,四周脫溫。第一周光照時間為18 h,之后每周減少1.5 h,7—14周維持9 h恒定光照,15周開始每周增加0.5—1 h,至25周光照時間達16 h,之后維持16 h恒定光照。籠養(yǎng)育雛,60日齡后轉入產蛋雞舍,單籠飼養(yǎng)。華秦全價料飼喂,自由采食、飲水。
在6、10、14、20周齡和開產測定烏雞體重,在開產后記錄每只雞每天產蛋情況,直到40周齡。各時間點體重以下四分位數(shù)(first quantile)-1.5×四分位距(interquantile range)為下限,以上四分位數(shù)(third quantile)+1.5×四分位距(interquantile range)為上限,刪除異常值。各時間點產蛋數(shù)除了按上述標準刪除異常值外,還刪除了各時間點產蛋數(shù)低于10枚的樣本。這些樣本產蛋數(shù)低可能因為疾病而非自身遺傳因素所致。
各性狀間表型相關系數(shù)用R語言PerformanceAnalytics軟件包chart.Correlation命令計算。
本研究共對1 603只略陽烏雞的體重和產蛋數(shù)進行測定,這些個體共來自71個半同胞家系、333個全同胞家系,各性狀實際測定樣本量及樣本所來自家系數(shù)量見表1。性別對體重的影響隨年齡而增大,在20周齡時略陽烏雞公雞體重比母雞大33%(表1),表明公雞有更強的生長勢。公雞屠體指標優(yōu)于母雞,且蒸煮損失、系水力、風味、多汁性等肉品質性別差異顯著[22-23]。因此,這些結果建議公雞的肉用潛力更為突出。略陽烏雞屬一種偏肉用型的地方雞。當前我國多數(shù)黃羽肉雞品種達2 kg以上上市體重在49—120 d左右。略陽烏雞14周齡公雞體重為(1.56±0.19)kg,母雞體重(1.18±0.16)kg,明顯低于當前多數(shù)黃羽肉雞同期體重。略陽烏雞達到2 kg上市體重,公雞至少需要20周,母雞至少需要25周以上。略陽烏雞除了生長速度慢、產蛋性能差以外,也表現(xiàn)出較大的群體變異性,各時間點體重的變異系數(shù)在10.7%—14.0%之間,而產蛋數(shù)性狀表現(xiàn)出更大的群體變異性,其變異系數(shù)在36.8%以上(表1)。
表1 5個時間點體重與3個時間點產蛋數(shù)描述統(tǒng)計
1)BW6-BWFE=body weight at 6, 10, 14, 20 weeks of age and first egg, EN31-EN40= number of eggs from age at first egg to 31, 35 and 40 weeks of age.2)公雞和母雞6-20周齡體重差異顯著性檢驗值。N/A表示對本性狀不適用Numbers in the column arevalues of significance test of body weight at 6, 10, 14 and 20 week between cocks and hens. N/A represents non applicable for the traits
略陽烏雞6、10、14、20周齡和開產體重遺傳力在0.52—0.76之間,屬中等偏上遺傳力性狀(圖1)。31、35和40周齡產蛋數(shù)遺傳力在0.25—0.27之間,屬低遺傳力性狀(圖1)。體重遺傳力隨周齡逐漸降低,但產蛋數(shù)遺傳力隨周齡變化不明顯(圖1)。在遺傳力估計精度方面,6、10、14和20周齡體重遺傳力估計置信區(qū)間(置信上限-置信下限)在0.25—0.33之間,要低于3個產蛋數(shù)遺傳力估計區(qū)間(0.35—0.42),表明本研究對體重遺傳力估計的精度要高于產蛋數(shù)性狀(圖1)。但是,開產體重遺傳力估計精度(0.81-0.33=0.48)不及其余4個體重性狀(圖1)。在6、10、14和20周齡體重遺傳力估計時所有的公雞、母雞樣本均被用到,遺傳力是以性別為固定效應被估計得來,而開產體重和產蛋數(shù)遺傳力估計僅有母雞樣本可用。因此,樣本量減少是遺傳力估計精度下降的一個主要原因。
各時間點體重均表現(xiàn)出正遺傳相關性,遺傳相關系數(shù)在0.21—0.68之間,置信區(qū)間在0.13—0.34之間,相關強度隨體重測定間隔的延長而減弱(表2)。10、14和20周齡體重間維持了中等偏上的相關性,但與6周齡體重的相關性相對較弱(表2)。開產體重與各時間點體重均呈現(xiàn)出較弱的遺傳相關性(表2)。31、35和40周齡產蛋數(shù)遺傳相關系數(shù)趨近于1,且相關強度不受時間間隔的影響,表明產蛋性狀調控基因的作用較為恒定(表2)。產蛋數(shù)和體重間遺傳相關系數(shù)95%置信區(qū)間均覆蓋0,表明二者遺傳相關關系未得到統(tǒng)計學證據(jù)的支持(表2)。
在時間維度上,體重和產蛋數(shù)表型相關的方向、隨測定間隔的變化趨勢與遺傳相關保持一致,但相關強度有所不同(表2)。體重表型相關強度均高于遺傳相關(表2),但產蛋數(shù)表型相關要略低于遺傳相關。體重與產蛋數(shù)間均顯示出弱正相關關系,但開產體重與產蛋數(shù)顯示出弱負相關關系(表2)。
圖中曲線描繪出1 000個后驗遺傳力概率分布,圖上數(shù)字指各性狀后驗遺傳力眾數(shù),括號中的數(shù)字給出各性狀后驗遺傳力95%置信區(qū)間
表2 5個時間點體重和3個時間點產蛋數(shù)間的遺傳和表型相關
左下角數(shù)字為不同性狀之間的遺傳相關系數(shù),括號中的數(shù)字為95%置信區(qū)間;右上角的數(shù)字為性狀之間表型相關系數(shù),括號中的數(shù)字為相關系數(shù)顯著性檢驗值
Numbers at below diagonal represent genetic correlation, and numbers in parentheses show 95% confidence intervals of genetic correlation. The ones at above diagonal are phenotypic correlation coefficients between pair-wise traits, and numbers in the parentheses arevalues of the significance test to correlation coefficients. BW6-BWFE=body weight at 6, 10, 14, 20 weeks old and first egg, EN31-EN40= number of eggs from first to 31, 35 and 40 weeks old
體重作為一個重要的經(jīng)濟性狀,眾多學者在不同品種中曾對各個時期的體重遺傳力進行估計。其中,6周齡體重遺傳力估計結果在0.15—0.24之間[10,24],8、12和16周齡體重遺傳力在0.16—0.43之間[4,5,9-12],20周齡遺傳力在0.3—0.68之間[11-12,24],開產體重遺傳力在0.37—0.57之間[4,6,7,11]。本研究估計的6、10和14周齡體重遺傳力在0.63—0.76之間,高于前人估計結果。20周齡遺傳力和開產體重遺傳力雖然在前人報道的范圍內,但仍高于多數(shù)結果[4,6-7,11-12,24]。略陽烏雞體重遺傳力高表明體重QTL的效應較大且處于分離狀態(tài),這為體重QTL定位提供了一個天然的性狀分離群體。
家禽體重遺傳力隨年齡有一定變化趨勢,但不同研究得出的結果并不相同。ADEYINKA等[5]在尼日利亞裸頸雞、SAATEI等[25]在日本鵪鶉中均發(fā)現(xiàn)體重遺傳力隨年齡有逐漸降低的趨勢,但SINGH等[24]在印度地方雞和ASLAM等[26]在火雞中卻發(fā)現(xiàn)體重遺傳力隨年齡有升高的趨勢。SANG等[6]發(fā)現(xiàn)不同的品種趨勢不同,而LWELAMIRA等[12]觀察到體重遺傳力隨年齡基本保持恒定。本研究發(fā)現(xiàn)略陽烏雞體重遺傳力隨年齡逐漸降低,說明體重的QTL效應隨年齡在逐漸減弱,而環(huán)境效應對體重的影響在逐漸增大。因此,對略陽烏雞14周齡以前體重性狀選育而言,個體表型值選擇有望取得理想選育效果,但對開產體重和20周齡以上體重而言,要充分考慮對環(huán)境效應的控制,家系、育種值選擇等有望取得更好的選育效果。
產蛋數(shù)是本研究關注的另一個經(jīng)濟性狀。本研究發(fā)現(xiàn)略陽烏雞31、35和40周齡產蛋數(shù)遺傳力在0.25—0.27之間,與前人報道基本一致。研究者曾對來自世界各地18個品種不同時期產蛋數(shù)遺傳力進行估計,所得遺傳力的最大值為Kamali等[8]報道的伊朗地方雞開產后12周產蛋數(shù)遺傳力(0.4),最小值為郭軍等[27]報道的如皋黃雞開產后2個月產蛋數(shù)遺傳力(0.05),平均值為0.24±0.10[6-9,11,27-29]。這些結果說明雞產蛋數(shù)QTL效應較小,但在進化上較為保守,在時間上較為恒定。對略陽烏雞產蛋性能選育而言,直接對性狀選育難度較大,而通過配套系雜交利用雜種優(yōu)勢有望取得更好的選育效果。
略陽烏雞5個時間點體重遺傳相關在0.21—0.68之間,低于埃塞俄比亞(0.67—0.99)、泰國(0.55—0.99)、伊朗(0.57—0.99)和坦桑尼亞(0.60—0.93)地方雞估計結果,但相關強度隨時間間隔延遲逐漸減弱的變化規(guī)律與前人報道一致[4,10-12]。本研究推測這種變化規(guī)律與略陽烏雞體重QTL效應隨年齡逐漸減弱有關,說明在略陽烏雞群體中依據(jù)早期體重對后期體重進行間接選擇具有可行性,但選擇的準確性會隨著時間跨度的延長而降低。與其他時間點體重間遺傳相關相比,涉及開產體重的遺傳相關往往更低[4,11]。本研究也觀察到這種結果。開產時間是影響開產體重的一個重要因素。因此,在開產時間得不到有效校正的前提下對開產體重實施早期選種很難取得理想選育效果。
本研究發(fā)現(xiàn)略陽烏雞不同時間點產蛋數(shù)間維持較強正相關性。這一結果與埃塞俄比亞地方雞研究結果(0.8—0.98)一致,但高于靈昆雞(0.571)和洛克雞(-0.21—0.7)[10,29-30]。這種結果說明調控略陽烏雞產蛋性能的QTL盡管效應微弱,但調控作用較為恒定,不易受產蛋時間的影響。當前,在略陽烏雞產蛋性能選育中存在的一個技術難題是確定適宜的留種時間。留種太早,產蛋性能測定時間短,選擇可能不準確;留種時間太晚,略陽烏雞產蛋性能下降嚴重,繁育難度加大。鑒于產蛋數(shù)性狀間表現(xiàn)出的強正相關性,本研究建議依據(jù)31周齡產蛋數(shù)對整個產蛋期產蛋性能進行早期選擇具有較高的準確性。
由體重和產蛋數(shù)間負遺傳相關產生的肉種雞矛盾(broiler-breeder paradox, BBP)不僅是困擾白羽肉種雞育種的一個技術難題[31],而且在眾多地方雞中也廣泛被報道[4,6,11-12]。這種負相關關系的分子基礎與快速生長對卵泡招募(follicle recruitment)產生的負效應有關,而限制飼喂能明顯緩解這種負效應[32]。但是,本研究在略陽烏雞群體中并未觀察到這種遺傳上的負相關性。DANA等[10]在埃塞俄比亞地方雞、KAMALI等在伊朗地方雞[8]、TONGSIRI等[7]在洛島紅和白洛克和GHAZIKHANI SHAD等[9]在伊朗地方雞中均報道了類似的結果。這些研究說明雞生長性狀對繁殖性能產生的負遺傳效應只有在生長強度超過一定閾值時才會出現(xiàn);在低于這個閾值時,二者遺傳關系并不明顯,甚至呈現(xiàn)出正相關關系。這可理解為繁殖系統(tǒng)的正常發(fā)育是以體況的正常發(fā)育為基礎。因此,在當前略陽烏雞的生長強度下,對體重的選育不會對產蛋性能產生負效應。相反,生長速度加快可能為生殖系統(tǒng)發(fā)育乃至后期的產蛋創(chuàng)造更好的體況條件。這種觀點得到體重與產蛋數(shù)間表型相關結果的支持。
本研究發(fā)現(xiàn)各性狀間表型相關和遺傳相關在相關性的方向和隨測定間隔的變化趨勢上顯示出高度的一致性。這說明環(huán)境效應和遺傳效應在以同樣的方向、以同樣的調控通路影響略陽烏雞在各個時期的生長和產蛋[33],也說明依據(jù)早期性狀測定結果對后期生長和產蛋性能間接選擇具有可行性。而表型相關和遺傳相關在相關強度上的差異則很可能由遺傳相關估計誤差引起[34]。
略陽烏雞6—20周齡體重維持了較高的遺傳力(0.52—0.76),表明遺傳效應在略陽烏雞生長調控方面起關鍵作用,但調控效應隨年齡逐漸減弱。因此,對略陽烏雞體重性狀選育,在14周齡以前個體表型選擇有望取得良好選育效果,但在14周齡以后應充分考慮對環(huán)境效應的控制。略陽烏雞產蛋數(shù)遺傳力較低(0.25—0.27),直接選育難度較大,而配套系雜交是更有效的育種手段。在時間維度上,體重和產蛋數(shù)均表現(xiàn)出較強的正相關性,說明早期選種具有可行性。體重和產蛋數(shù)間未出現(xiàn)負遺傳關系,可同時對兩種性狀選育提高。
[1] 劉福柱, 劉景星, 魏忠義. 略陽雞及其雜種的肉用性能和胴體品質研究. 西北農林科技大學學報(自然科學版), 1990(1): 66-70.
Liu F Z, Liu J X, Wei Z Y. Study on meat performance and carcass quality of Lueyang chicken and its hybrids., 1990(1): 66-70. (in Chinese)
[2] 劉福柱, 魏忠義, 劉景星. 略陽雞與泰和雞的肉質比較. 中國畜牧雜志, 1992, 28(3): 28-30.
Liu F Z, Wei Z Y, LIU J X. Comparison of meat quality between Lueyang chicken and Taihe chicken., 1992, 28(3): 28-30. (in Chinese)
[3] Wang Z P, Meng G H, Li N, Yu M F, LIANG X W, MIN Y N, LIU F Z, GAO Y P. The association of very low-density lipoprotein receptor (VLDLR) haplotypes with egg production indicates VLDLR is a candidate gene for modulating egg production., 2016, 39(3): 380-391. DOI: 10.1590/1678-4685- GMB-2015-0206.
[4] NIKNAFS S, NEJATI-JAVAREMI A, MEHRABANI-YEGANEH H, FATEMI S A. Estimation of genetic parameters for body weight and egg production traits in Mazandaran native chicken., 2012, 44(7): 1437-1443. DOI: 10.1007/ s11250-012-0084-6.
[5] ADEYINKA I A, ONI O O, NWAGU B I, ADEYINKA F D. Genetic parameter estimates of body weights of naked neck broiler chickens., 2006, 5(6):589-592. DOI: 10.3923/ijps.2006.589.592.
[6] SANG B D, KONG H S, KIM H K, CHOI C H, KIM S D, CHO Y M, SANG B C, LEE J H, JEON G J, LEE H K. Estimation of genetic parameters for economic traits in Korean native chickens., 2006, 19(3): 319-323. https://doi.org/10.5713/ajas.2006.319.
[7] TONGSIRI S, JEYARUBAN M G, VAN DER WERF J. Genetic parameters for egg production traits in purebred and hybrid chicken in a tropical environment., 2015, 56(6): 613-620. doi: 10.1080/00071668.2015.1099614.
[8] KAMALI M A, GHORBANI S H, MORADI SHARBABAK M, ZAMIRI M J. Heritabilities and genetic correlations of economic traits in Iranian native fowl and estimated genetic trend and inbreeding coefficients., 2007, 48(4): 443-448. DOI: 10.1080/00071660701505013.
[9] Ghazikhani Shad A, Nejati Javaremi A, Mehrabani Yeganeh H. Animal model estimation of genetic parameters for most important economic traits in Iranian native fowls., 2007, 10(16): 2787-2789. DOI: 10.3923/pjbs.2007.2787.2789.
[10] DANA N, VANDER WAAIJ E H, VAN ARENDONK J A. Genetic and phenotypic parameter estimates for body weights and egg production in Horro chicken of Ethiopia., 2011, 43(1): 21-28. DOI: 10.1007/s11250-010-9649-4.
[11] TONGSIRI S, JEYARUBAN G M, HERMESCH S, VAN DER WERF J H, LI L, CHORMAI T. Genetic parameters and inbreeding effects for production traits of Thai native chickens., 2019, 32(7): 930-938. DOI: 10.5713/ajas.18.0690.
[12] LWELAMIRA J, KIFARO G C, GWAKISA P S. Genetic parameters for body weights, egg traits and antibody response against Newcastle Disease Virus (NDV) vaccine among two Tanzania chicken ecotypes., 2009, 41(1): 51-59. DOI: 10.1007/s11250-008-9153-2.
[13] ZEREHDARAN S, VEREIJKEN A J, VAN ARENDONK J, VAN DER WAAIJT E H. Estimation of genetic parameters for fat deposition and carcass traits in broilers., 2004, 83(4): 521-525. DOI: 10.1093/ps/83.4.521.
[14] GOTO T, TSUDZUKI M. Genetic mapping of quantitative trait loci for egg production and egg quality traits in chickens: A review., 2017, 54:1-12. DOI:10.2141/ jpsa.0160121.
[15] ONO T, OHARA K, ISHIKAWA A, KOUGUCHI T, NAGANO A J, TAKENOUCHI A, IGAWA T, TSUDZUKI M. Mapping of quantitative trait loci for growth and carcass-related traits in chickens using a restriction-site associated DNA sequencing method., 2019, 56(3):166-176. DOI: 10.2141/jpsa.0180066.
[16] Furrow R E, Christiansen F B, Feldman M W. Environment-sensitive epigenetics and the heritability of complex diseases., 2011, 189(4):1377-87. DOI: 10.1534/genetics. 111.131912.
[17] ZHAO X L, REN W S, SIEGEL P B, LI J, WANG Y, YIN H D, ZHANG Y, LAI S, SHU G, ZHU Q. Meat quality characteristics of chickens as influenced by housing system, sex, and genetic line interactions., 2018, 17(2): 462-468. https://doi.org/10.1080/1828051X.2017.1363639.
[18] MACKAY T F. Q&A: Genetic analysis of quantitative traits., 2009, 8(3):23. DOI: 10.1186/jbiol133.
[19] Wilson A J, Réale D, Clements M N, Morrissey M M, Postma E, Walling C A, Kruuk L E, Nussey D H. An ecologist's guide to the animal model., 2010, 79(1): 13-26. DOI: 10.1111/j.1365-2656.2009.01639.x.
[20] HADFIELD J D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package., 2010, 33(2): 1-22. DOI: 10.18637/jss.v033.i02.
[21] HYNDMAN R J. Computing and graphing highest density regions., 1996, 50(2): 120-126. DOI: 10.2307/ 2684423.
[22] ZHAO X L, REN W S, SIEGEL P B, LI J, WANG Y, YIN H D, ZHANG Y, LAI S, SHU G, ZHU Q. Meat quality characteristics of chickens as influenced by housing system, sex, and genetic line interactions., 2018, 17(2):462-468. DOI: 10.1080/1828051X.2017.1363639.
[23] HUSSEIN E O S, SULIMAN G M, AL-OWAIMER A N, AHMED S H, ABUDABOS A M, ABD EL-HACK M E, TAHA A E, SAADELDIN I M, SWELUM A A. Effects of stock, sex, and muscle type on carcass characteristics and meat quality attributes of parent broiler breeders and broiler chickens., 2019, 98(12):6586-6592. DOI: 10.3382/ps/pez464.
[24] SINGH M K, KUMAR S, SHARMA R K, SINGH S K, SINGH B, SINGH D V. Genetic parameter estimates for juvenile body weight in indigenous Uttara chickens., 2019, 53(4): 429-434. DOI: 10.18805/ijar.B-3560.
[25] SAATEI M, DEWI I A P, AKSOY R, KIRMIZIBAYRAK T, ULUTAS Z. Estimation of genetic parameter for weekly live weight in one to one sire and dam pedigree recorded Japanese quail. Montpellier: 7th World Congress on Genetic Applied to Livestock Production, 2002.
[26] ASLAM M L, BASTIAANSEN J W, CROOIJMANS R P, DUCRO B J, VEREIJKEN A, GROENEN M A. Genetic variances, heritabilities and maternal effects on body weight, breast meat yield, meat quality traits and the shape of the growth curve in turkey birds., 2011, 12(1): 14. DOI: 10.1186/1471-2156-12-14.
[27] 郭軍, 王克華, 曲亮, 沈曼曼, 竇套存, 胡玉萍. 基于隨機回歸模型的如皋黃雞產蛋數(shù)遺傳參數(shù)分析. 西北農林科技大學學報(自然科學版), 2016, 44(5): 8-12. doi: 10.13207/j.cnki.jnwafu.2016.05.002.
GUO J, WANG K H, QU L, SHEN M M, DOU T C, HU Y P. Random-based genetic parameter analysis of number of egg of Rugao yellow., 2016, 44(5): 8-12. doi: 10.13207/j.cnki.jnwafu.2016.05.002. (in Chinese)
[28] SZYD?OWSKI M, SZWACZKOWSKI T. Bayesian segregation analysis of production traits in two strains of laying chickens., 2001, 80(2): 125-131. DOI: 10.1093/ps/80.2.125.
[29] 熊化鑫, 張麗萍, 任晉東, 唐軍旺, 周樹和, 林興欽, 盧立志. 靈昆雞產蛋性狀與遺傳參數(shù)分析. 中國農學通報, 2016, 32(11): 6-10.
XIONG H X, ZHANG L P, REN J D, TANG J H, ZHOU S H, LIN X Q, LU L Z. Egg production trait of Lingkun chicken and genetic parameter analysis.2016, 32 (11): 6-10. (in Chinese)
[30] FERREIRA P B, RORATO P R N, BREDA F C, MICHELOTTI V T, ROSA A P, MACEDO A. Genotypic parameters for egg production in pure breed hens by using random regression model., 2017, 47(5): e20141631.http://dx.doi.org/10.1590/0103-8478cr20141631.
[31] DECUYPERE E, HOCKING P M, TONA K, ONAGBESAN O, BRUGGEMAN V, JONES E, CASSY S, RIDEAU N, MéTAYER S, JEGO Y. Broiler breeder paradox: a project report., 2006, 62(3): 443-453. https://doi.org/10.1017/ S0043933906001073.
[32] JOHNSON P A, KENT T R, URICK M E, TREVINO L S, GILES J R. Expression of anti-Mullerian hormone in hens selected for different ovulation rates., 2009, 137(5): 857. DOI: 10.1530/REP- 08-0406.
[33] SODINI S M, KEMPER K E, WRAY N R, TRZASKOWSKI M. Comparison of genotypic and phenotypic correlations: Cheverud’s conjecture in humans., 2018, 209:941-948. DOI: 10.1534/ genetics.117.300630.
[34] CHEVERUD J M. A comparison of genetic and phenotypic correlations., 1988, 42(5): 958-968. doi: 10.1111/j.1558- 5646.1988.tb02514.x.
Estimation of Genetic Parameters of Body Weight and Egg Number Traits of Lueyang Black-Boned Chicken
DANG LiPing, ZHOU WenXin, LIU RuiFang, BAI Yun, WANG ZhePeng
(College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi)
【】Lueyang black-boned chicken (LBC) is an indigenous breed originating from Shaanxi province of China. The breed has large adult body weight, high meat quality, abundant contents of amino acids in meat and excellent adaptation to the free-range system in the forest. But the breed has poor performance of growth and egg production. We measured body weight (BW) and egg number (EN) of LBC at different ages. Based on these phenotypic data we evaluated genetic parameters of BW and EN traits. The aim of this study is to elucidate effect of genetic factors on these traits and genetic relationship among them, thus forming a theory foundation to breeding programs of LBC.【】BWs at 6, 10, 14, 20 weeks of age and first egg of 799 cocks and 804 hens from 71 half-sibling families of generation 1 of LBC breeding population and individual ENs from first egg to 31, 35 and 40 weeks of age were measured. Data lower than 1stquantile-1.5×interquantile range and higher than 3rdquantile + 1.5×interquantile range was deleted prior to statistical analysis. Errors in sex records were corrected. Heritabilities were estimated using a univariate animal model where sex was designed as the fix effect, and additive genetic effect was designed as random effect. Genetic correlations among traits were estimated using a bivariate animal model. Inverse gamma distributions were used as the prior distributions for variance components of random and residual effects.Posterior distributions of variance components were obtained based on 1 000 posterior estimates which were produced using Bayesian algorithm by running 130 000 iterations of which the first 30 000 were discarded in ‘burn-in’ period and the rest was sampled every 100 iterations. Heritabilities and genetic correlations were calculated according to posterior variance components. Phenotypic correlation among traits was calculated using chart.Correlation command in PerformanceAnalytics library of R.【】BWs of LBC cocks were (0.56±0.07), (1.07±0.13), (1.56±0.19), (1.97±0.21) kg and BWs of hens were (0.47±0.06), (0.86±0.12), (1.18±0.16), (1.48±0.19) and (1.68±0.23) kg at 6, 10, 14, 20 weeks and first egg. ENs were 31.2±11.5, 42.5±16.7 and 54.7±20.4 at 31, 35 and 40 weeks. Heritabilities of BWs at 6, 10, 14, 20 and first egg that were 0.74, 0.76, 0.63, 0.54 and 0.52 generally decreased with increasing age. Ninety-five percent confidence interval of BW heritabilities ranged from 0.25 to 0.33. Heritabilities of ENs at 31, 35 and 40 weeks were 0.27, 0.25 and 0.26 with 95% confidence interval varying between 0.35 and 0.42. Genetic correlation among 6, 10 and 14 week BWs were moderate to high (0.52-0.68). But BWs at 6 week (0.21-0.52) and first egg (0.21-0.46) showed relatively week genetic relationship with other BWs. Ninety-five percent confidence interval of genetic correlation coefficients among BW traits ranged from 0.13 to 0.34. Genetic correlation coefficients among EN traits approached to 1 with 95% confidence interval ranging from 0.03 to 0.06. BWs and ENs did not show any significant genetic relationship. On the temporal dimension phenotypic correlation coefficients varied between 0.43 and 0.90 (<0.001) for BW traits and between 0.79 and 0.94 (<0.001) for EN traits. There was weak (0.023-0.15) positive correlation between BWs at 6-20 weeks and ENs. But the BW at first egg showed weak negative correlation (-0.17-0.14) with ENs. 【】This represents the first study specifically estimating genetic parameters for LBC. The data shows that BW traits of LBC are predominately determined by genetic factors. In contrast, ENs are more influenced by environmental factors. Results from genetic correlation analysis elucidated the genetic relationship between early and late traits, and between growth and reproduction in LBC, which provide a solid foundation for early selection and multiple-trait breeding programs. High heritabilities showed by BWs suggest that the phenotypic selection of BWs could significantly increase the growth rate of LBC. However it might be more reasonable to breed pure lines and take advantage of heterosis to increase egg yield of LBS. Genetic independence between BWs and ENs suggests that it is feasible to simultaneously improve two traits in the LBC.
Lueyang black-boned chicken; body weight; egg number; heritability; genetic correlation
10.3864/j.issn.0578-1752.2020.17.018
2019-09-12;
2020-04-24
陜西省自然科學基礎研究計劃(2018JM3002)、2019年中央高?;究蒲袠I(yè)務費(2452019202)、中國國家留學基金(201906305010)
黨李蘋,Tel:18829353060;E-mail:dangliping2017@163.com。通信作者王哲鵬,Tel:15619295726;E-mail:wangzhepeng-001@163.com
(責任編輯 林鑒非)