董燕婕 梁京蕓 王磊 苑學(xué)霞 范麗霞 趙善倉
摘 要:綜述了熒光型真菌毒素檢測生物傳感器的研究進展,重點介紹了熒光型真菌毒素檢測生物傳感器的設(shè)計及其靈敏度、特異性等性能,分析了黃曲霉毒素等主要毒素的免疫熒光傳感器和適配體熒光傳感器的檢測方法,提出將來的研究可以針對納米材料/納米復(fù)合材料的表面化學(xué)調(diào)節(jié),設(shè)計用于檢測各種分析物的目標(biāo)特定無標(biāo)簽分析方法,實現(xiàn)毒素的多種同時檢測。
關(guān)鍵詞:真菌毒素;生物傳感器;納米材料;熒光猝滅
真菌毒素是產(chǎn)毒霉菌的次生代謝產(chǎn)物,目前發(fā)現(xiàn)的主要產(chǎn)毒真菌有曲霉菌屬、青霉菌屬、鐮刀菌屬、麥角菌屬、葡萄穗真菌屬和內(nèi)生真菌屬等六大類[1-2]。真菌毒素在收獲前后均可能污染農(nóng)作物,從而使其腐敗變質(zhì)和品質(zhì)下降。目前已知有近100種不同種類的產(chǎn)毒真菌,可產(chǎn)生400多種產(chǎn)毒代謝產(chǎn)物。全球25%的農(nóng)產(chǎn)品被真菌毒素污染,不僅引發(fā)嚴(yán)重的經(jīng)濟損失,更威脅著人類的健康[3]。真菌毒素污染多發(fā)生在谷物及其制品、油料作物、堅果、奶、肉制品及香料中[4-5]。真菌毒素由于高的肝毒性、致畸性和免疫毒性,導(dǎo)致嚴(yán)重的人類健康并發(fā)癥。常見的真菌毒素包括黃曲霉毒素(AF)、赭曲霉毒素(OTA)、伏馬毒素(FB)、脫氧雪腐鐮刀菌烯醇(DON)、T-2毒素、玉米赤霉烯酮(ZEN)、棒曲霉素、桔霉素等。真菌毒素可能發(fā)生在食品生產(chǎn)的各個環(huán)節(jié),因此需要快速、實時的監(jiān)測手段以便于及時發(fā)現(xiàn)及預(yù)警。生物傳感器是一種便攜式分析設(shè)備,它利用生化識別元件對傳感器界面上的分析物質(zhì)分子進行精確和選擇性的捕獲。自1962年首篇關(guān)于生物傳感器的文章問世以來[6],傳感器在醫(yī)學(xué)、制藥、農(nóng)業(yè)、食品工業(yè)和環(huán)境監(jiān)測中廣泛應(yīng)用并形成了商業(yè)化體系[7-10]。與傳統(tǒng)的色譜、質(zhì)譜的檢測方法相比,傳感器具有便攜、成本低、快速的特點,操作步驟簡單,不需要經(jīng)過訓(xùn)練的專業(yè)人員即可操作,適用于現(xiàn)場和基層的檢測需求。根據(jù)傳感器材料的不同類型,生物傳感器可以是電化學(xué)的、光學(xué)的、壓電的和量熱的。在所有這些類型的生物傳感器中,光學(xué)生物傳感器由于其簡單、靈敏和特異性而具有明顯的優(yōu)勢。光學(xué)生物傳感器又分為比色傳感器、熒光傳感器、磷光傳感器、反射傳感器、折射傳感器、表面等離子體共振傳感器、共振色散傳感器、拉曼散射傳感器、紅外吸收傳感器和化學(xué)發(fā)光生物傳感器,其中熒光生物傳感器具有很高的靈敏度,在對小分子真菌毒素的檢測上受到了廣泛的關(guān)注。本文綜述熒光生物傳感器在真菌毒素檢測中的研究進展,以期為真菌毒素的熒光生物傳感器的技術(shù)及產(chǎn)業(yè)發(fā)展提供科學(xué)依據(jù)。
1 熒光生物傳感器
熒光生物傳感器已經(jīng)被探索用于各種應(yīng)用,例如醫(yī)療診斷、藥物供應(yīng)、藥物發(fā)現(xiàn)、環(huán)境監(jiān)測和糧食安全[7-10]。在熒光生物傳感器中可以探索一些參數(shù),例如熒光強度、熒光各向異性、衰減時間、能量轉(zhuǎn)移(輻射或非輻射)、衰減效率和量子產(chǎn)量,以檢測不同的分析物。
1.1 熒光生物傳感器的組成
根據(jù)分子自然地表現(xiàn)熒光的特性,例如許多蛋白質(zhì)和其他生物分子(核酸、NADH、黃素核苷酸、綠色熒光蛋白)具有固有的熒光特性[11],一旦與配體結(jié)合或當(dāng)配體與這些蛋白質(zhì)結(jié)合時,分子的熒光行為會發(fā)生變化,從而可以對其檢測。相比之下,大多數(shù)分析物是非熒光的。因此,為能被熒光光譜檢測,需使用不同的熒光標(biāo)記或探針。標(biāo)簽通過共價作用附著在待測分析物上,通過反應(yīng)性基團,如羥基、羧基、氨基或巰基,進行化學(xué)結(jié)合。標(biāo)記、探針或標(biāo)簽一般為相對較小尺寸的試劑,由具有固有熒光特性的特定功能組成,使其對附著的分子(核酸、蛋白質(zhì)或任何其他分子)具有可檢測的敏感性。標(biāo)簽和探針在對環(huán)境的反應(yīng)方面是不同的,因此標(biāo)簽只是共價地附著在分析物上,不會干擾環(huán)境中的其他化學(xué)物質(zhì),但是熒光探針不應(yīng)該是惰性的,并且對環(huán)境的反應(yīng)非常靈敏。適配體是一種很好的生物識別元件,由于其易于直接修飾,具有很高的特異性和選擇性。與其他生物元素(抗體、酶、肽)不同,適配體為其化學(xué)修飾提供了很大的靈活性[12-13]。因此,適配體傳感器廣泛應(yīng)用于農(nóng)產(chǎn)品質(zhì)量安全檢測中。熒光適配酶傳感器中最常用的一種形式是使用適配體信標(biāo)。類似于分子信標(biāo),適配體信標(biāo)有一個發(fā)夾狀結(jié)構(gòu)末端,用熒光團和猝滅劑標(biāo)記。當(dāng)靶分子與適配體結(jié)合時,待測物的結(jié)合會干擾熒光共振能量轉(zhuǎn)移(FRET)對的初始構(gòu)象,導(dǎo)致熒光信號開啟[14]。
1.2 熒光標(biāo)簽的類型
1.2.1 有機染料 有機染料在熒光傳感中被廣泛用作標(biāo)簽。由于其易獲得、成本低,是最通用的熒光標(biāo)記材料。最常用的熒光染料是基于花菁結(jié)構(gòu)或黃嘌呤染料。熒光素和羅丹明是第一種用于熒光標(biāo)記的有機染料,盡管有機染料具有很多的優(yōu)點,但是其存在著pH敏感性、疏水性和蛋白漂白等缺點[15-16]。
1.2.2 作為熒光團和淬火劑的納米材料 為了克服有機染料的技術(shù)障礙,半導(dǎo)體量子點[17-18]、上轉(zhuǎn)換納米顆粒[19]和有機聚合物納米顆粒等納米材料已被作為優(yōu)良的替代品進行了探索[20]。量子點(QDS)是一種高效的信號產(chǎn)生納米探針,是尺寸小于10nm的半導(dǎo)體納米晶體,QDS的光學(xué)性質(zhì)主要取決于組成材料、粒徑、視差(尺寸分布)、量子點類型(核或核殼量子點)和表面化學(xué)(用于表面鈍化的材料類型)。因此,通過優(yōu)化這些參數(shù),可以很容易地獲得特定應(yīng)用所需的光學(xué)特性[21]。硅納米顆粒(Si-NP)是一種在熒光生物傳感器中得到廣泛應(yīng)用的納米材料。Si-NP具有雙重功能:一種是將Silica-NP用作FRET分析中的固體載體,以便順利處理材料[22-23],第二種是可用于摻雜不同的熒光染料以增強信號。染料摻雜的二氧化硅納米粒子常被用于檢測核酸、蛋白質(zhì)和病原體[24-27]。金納米材料由于其優(yōu)異的光學(xué)性能,是一種較好的基于FRET的淬火材料[17,28]。銀納米材料(納米顆粒和納米團簇)也是一種有效的FRET受體。在熒光分析中,它們既可作為FRET受體(猝滅劑)發(fā)揮雙重作用,又可為生物測定提供支撐表面,提高分析性能[29]。碳納米管(單壁和多壁)、石墨烯和納米金剛石主要用于光學(xué)生物傳感器的制造,以獲得快速可靠的響應(yīng)[19,23,30]。碳納米管(CNT)和石墨烯被用作基于FRET的分析中許多染料的猝滅劑。熒光生物傳感器中使用的其他納米材料有磁性納米顆粒、納米材料和上轉(zhuǎn)換納米顆粒[31]。
2 真菌毒素?zé)晒馍飩鞲衅?/p>
2.1 免疫傳感平臺
2.1.1 黃曲霉毒素的檢測 由于黃曲霉毒素在食品中污染的嚴(yán)重性和普遍性,黃曲霉毒素的免疫熒光檢測平臺得到了廣泛的研究。Wang等[32]報道了一種基于表面等離子體增強熒光光譜(SPF)的牛奶黃曲霉毒素M1(AFM1)檢測平臺。利用表面等離子體(SPS)探測熒光標(biāo)記物或分析物分子與傳感器表面的結(jié)合,檢測牛奶中AFM1,檢出限為6×10-4ng/mL。Tang等[33]報告了一種對AFB1敏感的競爭性免疫測定法。將摻雜的納米材料(羅丹明B,即Rb作為熒光團)二氧化硅納米粒子用作固定單克隆抗AFB1抗體的載體。QDS技術(shù)在黃曲霉毒素分析中的應(yīng)用也引起了人們的廣泛關(guān)注[34-35]。Zhang等[36]建立了一種基于色譜時間分辨熒光(TRF)的便攜式免疫傳感器,用于食品和飼料樣品中AFB1的現(xiàn)場測定。該免疫傳感器的線性范圍為0.2~60ng/mL,不同食品和飼料樣品基質(zhì)的檢出限為0.06~0.12ng/mL,回收率為80.5%~116.7%。Beloglazova等[37]對啤酒樣品中的AFB1進行了快速、簡便的熒光偏振免疫分析,結(jié)果表明,啤酒樣品的檢出限為1ng/mL,回收率為89%~114%、黑啤酒樣品為80%~125%。Guo等[38]建立了基于免疫反應(yīng)原理和全內(nèi)反射熒光(TIRF)實現(xiàn)AFM1檢測的多平面波導(dǎo)熒光免疫傳感器(MPWFI)。免疫傳感器的線性范圍為0.073~0.400ng/mL,檢測限為0.045ng/mL。Lou等[39]開發(fā)了一種利用便攜式消逝波光電流生物傳感平臺(EOBP)檢測AFM1的免疫傳感器,檢出限為0.005ng/mL(附表)。
2.1.2 其他毒素的檢測 針對其他毒素或者多種毒素共存的情況,許多研究建立了熒光免疫快速傳感平臺。Shim等[40]建立了一種基于單克隆抗體的熒光偏振競爭免疫分析法(FPIA)測定小麥樣品中的OTA,線性范圍為5.0×103~200.0×103ng/mL,檢出限為3.0×103ng/mL。Ngundi等[41]建立了同時檢測玉米樣品中的OTA和DON的熒光復(fù)合競爭分析法,OTA和DON的檢出限分別為15、150ng/mL。Zezza等[42]基于單克隆抗體和OTA-熒光素示蹤劑,建立了一種基于FPIA的平臺,可快速篩選紅酒中的OTA,檢出限為0.7ng/mL,分析時間不到10min。Vidal等[43]開發(fā)了一種結(jié)合熒光檢測器的固相自動萃取(SPE)系統(tǒng),其線性范圍為3~18ng/mL,檢出限為1.2ng/mL。Liang等[44]建立了一種新的熒光耦合酶聯(lián)免疫吸附測定法,利用葡萄糖氧化酶(GOx)介導(dǎo)的量子點熒光猝滅(MPA QDS)檢測OTA,其線性范圍為0.002 4~0.625ng/mL,檢出限為0.002 2ng/mL。Huang等[45]建立了一種改進的競爭性熒光酶聯(lián)免疫吸附測定法(ELISA),利用過氧化氫(H2O2)誘導(dǎo)的巰基丙酸修飾的CdTe量子點的熒光猝滅檢測OTA,其線性范圍為5×10-5~1×10-4ng/mL,檢測限為5×10-5ng/mL。Jiang等[46]研究了一種銀納米粒子(AgNPS)熒光猝滅競爭耦合橫向流動免疫分析(CLFIA)。CLFIA平臺在葡萄酒中的檢出限為0.06ng/mL。Thompson等[47]利用異源雙功能硅烷共價固定化的單克隆抗體-FB1構(gòu)建了一種光纖免疫傳感器來測量FB1。免疫傳感器的工作范圍為10~1 000ng/mL FB1,檢出限為10ng/mL。傳感器與FB2發(fā)生交叉反應(yīng),但未與水解的FB1、斯芬蘭尼堿或丙三羧酸發(fā)生反應(yīng)。Urraca等[48]構(gòu)建了一種檢測谷物樣品中ZEN的靈敏流式免疫傳感器,其線性范圍為0.019~0.422ng/mL,檢出限為0.007ng/mL。Li等[49]開發(fā)了一個同時測定玉米中的FB1和FB2的FPIA平臺。采用FB1-FITC和MAB 4B9對FB2的交叉反應(yīng)性(CR)為98.9%的FPIA用于同時檢測FB1和FB2,F(xiàn)B1檢出限為157.4ng/mL,F(xiàn)B2的檢出限為290.6ng/mL,檢測時間縮短至30min。Beloglazova等[50]開發(fā)了基于量子點納米標(biāo)簽的新型多重?zé)晒饷庖叻治龇?,用于同時測定幾種真菌毒素,如DON、ZEN、AFB1、T-2毒素和FB1。同時測定DON、ZEN、AFB1、T-2毒素和FB1的檢出限分別為3.2、0.6、0.2、10、0.4ng/mL(附表)。
2.2 基于適配體的檢測技術(shù)
2.2.1 黃曲霉毒素的檢測 隨著納米技術(shù)和合成受體化學(xué)的進步,熒光標(biāo)簽和適配體/DNA的結(jié)合,研究人員開發(fā)了幾種基于熒光的結(jié)構(gòu)切換傳感器或適配體檢測方法。納米材料作為主要的熒光猝滅劑?;跓晒庑盘柈a(chǎn)生的黃曲霉毒素檢測結(jié)構(gòu)轉(zhuǎn)換分析方法的發(fā)展主要基于與OTA檢測相同的格式。Rhouati等[51]建立了一種基于二氧化鈦和多壁碳納米管復(fù)合物的熒光猝滅型適配體傳感器,用于檢測AFB1。Lu等[52]報道了利用QDS和GOX組成的熒光猝滅系統(tǒng)對AFB1進行熒光恢復(fù)的適配體分析方法,線性范圍為4.99×10-1~49.96×10-4ng/mL,檢測限為0.44ng/mL。Sharma等[53]設(shè)計了一種用于AFM1檢測的結(jié)構(gòu)轉(zhuǎn)換信號熒光適配體分析,該方法對牛奶中AFM1的檢出限為0.005ng/mL,加標(biāo)回收率在94.40%~95.28%之間,對AFB1和OTA沒有明顯干擾。Goud等[54]構(gòu)建了基于羧甲基羅丹明(TAMRA)淬火的AFB1檢測適配體平臺,檢出限為0.2ng/mL,線性范圍為0.25~32ng/mL。Tayebi等[55]設(shè)計并評價了兩種基于量子點的熒光適配子,即金納米粒子上的熒光氮摻雜碳點和作為熒光探針的半胱胺封端CdS量子點用于檢測AFB1和黃曲霉毒素總量。Sabet等[56]利用適體共軛熒光量子點(QDS)和金納米粒子作為熒光猝滅劑,研制了一種基于FRET的適體傳感器,用于花生和水稻中AFB1的選擇性和敏感檢測,其檢測限為1.06ng/mL,線性范圍為3.122~124.91ng/mL。Chen等[57]報道了用結(jié)構(gòu)轉(zhuǎn)換熒光適體分析法檢測嬰兒米粉中的AFB1,檢出限為1.6ng/mL,線性范圍為5~100ng/mL,回收率為93.0%~106.8%。Mukherjee等[58]建立了競爭性熒光適配酶傳感器與高效液相色譜法檢測AFB1的分析方法,回收率為92%~102%。
2.2.2 其他毒素的檢測 基于熒光信號產(chǎn)生的其他毒素檢測結(jié)構(gòu)轉(zhuǎn)換分析方法的發(fā)展主要基于與黃曲霉毒素檢測相同的模式。Sheng等[59]開發(fā)了一個基于適配體和氧化石墨烯的適配體傳感平臺,其線性檢測范圍為8.01×10-1~14.133×10-3ng/mL,裸GOx的檢出限為0.767ng/mL,PVP改性GOx表面的檢出限為0.955ng/mL。Guo等[60]建立了一種基于單壁碳納米管(SWCNT)為熒光猝滅劑的測定OTA的熒光適能傳感器。與基于GOx的傳感器相比,基于SWCNT的適配體傳感器的檢出限為9.73ng/mL,檢測范圍為10.09~80.76ng/mL。Duan等[61]建立了一種新結(jié)構(gòu)的可切換熒光適配傳感器,其線性范圍為0.002~10ng/mL,檢出限為0.001ng/mL。Chen等[62]設(shè)計了一種基于目標(biāo)誘導(dǎo)結(jié)構(gòu)的開關(guān)信號適配體的OTA檢測方法,其線性檢測范圍為1~100ng/mL,檢出限為0.8ng/mL,分析時間不超過1min。Chen等[63]基于熒光DNA支架銀納米團簇、抗OTA適體和磁珠的結(jié)構(gòu)轉(zhuǎn)換的熒光適體傳感器,檢出限低至0.002ng/mL。Hayat等[64]報道了一種基于熒光的廣義適配設(shè)計,采用羧基修飾熒光(CMF)粒子作為信號產(chǎn)生探針,磁性粒子作為固體分離載體。Wang等[65]報道了一種快速檢測農(nóng)產(chǎn)品(如面粉和啤酒)中OTA的熒光法。該方法以高熒光氮摻雜碳點(CD)為能量供體,DNA固定化硫化Ag-NP為能量受體,線性范圍為4.04~2 020ng/mL,檢出限為3.73ng/mL。Wu等[19]報道了一種基于多色上轉(zhuǎn)換熒光納米粒子(UCNP)作為供體和GOx作為整個有效受體之間的多重FRET的適配體平臺檢測FB1,其線性范圍為0.1~500ng/mL,檢出限為0.1ng/mL。Goud等[66]構(gòu)建了一種基于熒光猝滅原理的適配體分析方法用于檢測ZEN。在該平臺上,選擇了具有高水分分散性的去角質(zhì)功能氧化石墨烯(FGOx)作為對FAM熒光的有效熒光猝滅劑。結(jié)果表明,F(xiàn)GO比非功能化的GOx具有更高的淬火效率,線性范圍為0.5~64ng/mL和0.5ng/mL。
3 結(jié)論
熒光生物傳感器具有分析時間短、成本效益高、操作方便等優(yōu)點,然而,只有一個熒光團分子能被生物受體標(biāo)記,從而降低了系統(tǒng)的靈敏度。此外,大多數(shù)常用熒光團的熒光壽命以秒為單位,并且需要特定的儲存條件來穩(wěn)定其熒光響應(yīng),不適合現(xiàn)場分析。為克服上述問題,最近的研究多集中在熒光納米顆粒作為標(biāo)記探針用于親和力分析。同時,隨著納米技術(shù)的發(fā)展,各種納米材料也被用于構(gòu)建熒光猝滅法檢測多種毒素。未來的研究可以針對納米材料/納米復(fù)合材料的表面化學(xué)調(diào)節(jié),設(shè)計用于檢測各種分析物的目標(biāo)特定無標(biāo)簽分析方法,實現(xiàn)毒素的多種同時檢測。
參考文獻
[1]Wang J,Xie G,Wang S.Chemistry and safety of mycotoxins in food[M].Food safety chemistry.CRC Press,2014:198-223.
[2]Ellis W O,Smith J P,Simpson B K,et al.Aflatoxins in food:occurrence,biosynthesis,effects on organisms,detection,and methods of control[J].Critical Reviews in Food Science & Nutrition,1991,30(4):403-439.
[3]Kabak B,et al. Var I.Strategies to prevent mycotoxin contamination of food and animal feed:A review[J].Critical Reviews in Food Science and Nutrition,2006(46):593-619.
[4]Shephard G S,Berthiller F,Burdaspal P A,et al. Developments in mycotoxin analysis:An update for 2010—2011[J].World Mycotoxin Journal,2012(5):3-30.
[5]Pinotti S,Ottoboni M,Giromini C,et al.Mycotoxin contamination in the EU feed supply chain:A focus on cereal byproducts[J].Toxins,2016(8):45.
[6]Clark L C,Jr,Lyons C.Electrode systems for continuous monitoring in cardiovascular surgery[J].Annals of the New York Academy of Sciences,1962(148):133-153.
[7]Kirsch J,Siltanen C,Zhou Q,et al.Biosensor technology:recent advances in threat agent detection and medicine[J].Chemical Society Reviews,2013(42):8733-8768.
[8]Antonacci A,Arduini F,Moscone D,et al. Nanostructured(bio)sensors for smart agriculture[J].Trends in Analytical Chemistry,2018(98):95-103.
[9]Rotariu L,et al. Electrochemical biosensors for fast detection of food contaminants—Trends and perspective[J].Trends in Analytical Chemistry,2016(79):80-87.
[10]Arduini F,Cinti S,Scognamiglio V,et al.How cuttingedge technologies impact the design of electrochemical(bio)sensors for environmental analysis.A review[J].Analytica Chimica Acta,2017(959):15-42.
[11]Sekhon S S,et al. Aptasensors for pesticide detection[J].Toxicology and Environmental Health Sciences,2018,5:229-236.
[12]陳芳明,陳煒,王健,等.適配體在受體和分子傳感器中的應(yīng)用研究進展[J].中國科學(xué):生命科學(xué),2018,48(6):618-629.
[13]Bayat P,Nosrati R,Alibolandi M,et al.SELEX methods on the road to protein targeting with nucleic acid aptamers[J].Biochimie,2018,154:132-155.
[14]Yamamoto R,Kumar P K.Molecular beacon aptamer fluoresces in the presence of tat protein of HIV-1[J].Genes Cells,2000,5(15):389-396.
[15]Kim H N,et al.A new trend in rhodamine-based chemosensors:application of spirolactam ring-opening to sensing ions[J].Chemical Society Reviews,2008,37:1465-1472.
[16]Beija M,Afonso C A M,Martinho J M G. Synthesis and applications of Rhodamine derivatives as fluorescent probes[J].Chemical Society Reviews,2009,38(8):2410-2433.
[11]Yamamoto R,Kumar P K.Molecular beacon aptamer fluoresces in the presence of tat protein of HIV-1[J].Genes Cells,2000(5):389-396.
[17]Anfossi L,Di Nardo F,Cavalera S,et al.A lateral flow immunoassay for straightforward determination of fumonisin mycotoxins based on the quenching of the fluorescence of CdSe/ZnS quantum dots by gold and silver nanoparticles[J].Microchimica Acta,2018(185):94.
[18]Lu Z,Chen X,Hu W.A fluorescence aptasensor based on semiconductor quantum dots and MoS2 nanosheets for ochratoxin a detection[J].Sensors and Actuators B:Chemical,2017(246):61-67.
[19]Wu S,et al.Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins[J].Analytic Chemistry,2012(84):6263-6270.
[20]Rhouati A,Hayat A,Mishra R K,et al.Ligand assisted stabilization of fluorescence nanoparticles;an insight on the fluorescence characteristics,dispersion stability and DNA loading efficiency of nanoparticles[J].Journal of Fluorescence,2016(26):1407-1414.
[21]Schiffman J D,Balakrishna R G.Quantum dots as fluorescent probes:Synthesis,surface chemistry,energy transfer mechanisms,and applications[J].Sensors and Actuators B:Chemical,2017(258):1191-1214.
[22]Gao D,Wang Z,Liu B,et al.Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT[J].Analytic Chemistry,2008(80):8545-8553.
[23]Wang Y,Liu B.Label-free single-nucleotide polymorphism detection using a cationic tetrahedralfluorene and silica nanoparticles[J].Analytic Chemistry,2007(79):7214-7220.
[24]Bonacchi S,et al.Silica nanoparticles doped with multiple dyes featuring highly efficient energy transfer and tunable stokes-Shift.U.S.Patents 9616141B2,11 April 2017.
[25]Rampazzo E,Genovese D,Palomba F,et al.Nir fluorescent dye doped silica nanoparticles for in vivo imaging,sensing and theranostic[J].Methods and Applications in Fluorescence,2018(6):022002.
[26]Moore C J,et al.‘Overloading’fluorescent silica nanoparticles with dyes to improve biosensor performance[J].Journal of Materials Chemistry B,2017(5):5564-5572.
[27]Ahmad A,Zakaria N D,Razak K A.Photostability effect of silica nanoparticles encapsulated fluorescence dye[J].AIP Conf.Proc.,2017(1901):020010.
[28]Wang B,Chen Y,Wu Y,et al.Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1[J].Biosensors and Bioelectronics,2016(78):23-30.
[29]Zhang J,F(xiàn)u Y,Lakowicz J R.Enhanced frster resonance energy transfer(FRET)on a single metal particle[J].The Journal of Physical Chemistry C,2007(111):50-56.
[30]Duan N,et al.Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles[J].Microchimica Acta,2015(182):917-923.
[31]Bülbül G,Hayat A,Mustafa F,et al.DNA assay based on nanoceria as fluorescence quenchers(nanoceracq DNA assay)[J].Scientific Reports,2018(8):2426.
[32]Wang Y,Dostálek J,Knoll W.Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin m1 in milk[J].Biosensors and Bioelectronics,2009(24):2264-2267.
[33]Tang D,Yu Y,Niessner R,et al.Magnetic bead-based fluorescence immunoassay for aflatoxin b1 in food using biofunctionalized rhodamine b-doped silica nanoparticles[J].Analyst,2010(135):2661-2667.
[34]Zekavati R,Safi S,Hashemi S J,et al.Highly sensitive fret-based fluorescence immunoassay for aflatoxin b1 using cadmium telluride quantum dots[J].Microchimica Acta,2013(180):1217-1223.
[35]Xu W,et al.A homogeneous immunosensor for afb1 detection based on fret between different-sized quantum dots[J].Biosensors and Bioelectronics,2014(56):144-150.
[36]Zhang Z,Tang X,Wang D,et al.Rapid on-site sensing aflatoxin B1 in food and feed via a chromatographic time-resolved fluoroimmunoassay[J].PLoS ONE,2015(10):e0123266.
[37]Beloglazova N V,Eremin S A.Rapid screening of aflatoxin B1 in beer by fluorescence polarization immunoassay[J].Talanta,2015(142):170-175.
[38]Guo H,et al.Highly sensitive and simultaneous detection of melamine and aflatoxin m1 in milk products by multiplexed planar waveguide fluorescence immunosensor(MPWFI)[J].Food Chemistry,2016(197):359-366.
[39]Lou X,Zhu A,Wang H,et al.Direct and ultrasensitive optofluidic-based immunosensing assay of aflatoxin m1 in dairy products using organic solvent extraction[J].Analytica Chimica Acta,2016(940):120-127.
[40]Shim W,Kolosova A Y,Kim Y,et al. Fluorescence polarization immunoassay based on a monoclonal antibody for the detection of ochratoxin A[J].International Journal of Food Science & Technology,2004(39):829-837.
[41]Ngundi M M,et al. Multiplexed detection of mycotoxins in foods with a regenerable array[J].Journal of Food Protection,2006(69):3047-3051.
[42]Zezza F,et al. Fluorescence polarization immunoassay for rapid screening of ochratoxin A in red wine[J].Analytical and Bioanalytical Chemistry,2009(395):1317-1323.
[43]Vidal J C,Duato P,Bonel L,et al.Molecularly imprinted on-line solid-phase extraction coupled with fluorescence detection for the determination of ochratoxin A in wheat samples[J].Analytical Letters,2012(45):51-62.
[44]Liang Y,Huang X,Yu R,et al.Fluorescence elisa for sensitive detection of ochratoxin A based on glucose oxidase-mediated fluorescence quenching of CdTe QDs[J].Analytica Chimica Acta,2016(936):195-201.
[45]Huang X,Zhan S,Xu H,et al.Ultrasensitive fluorescence immunoassay for detection of ochratoxin A using catalase-mediated fluorescence quenching of CdTe QDs[J].Nanoscale,2016(8):9390-9397.
[46]Jiang H,Li X,Xiong Y,et al.Silver nanoparticle-based fluorescence-quenching lateral flow immunoassay for sensitive detection of ochratoxin A in grape juice and wine[J].Toxins,2017(9):83.
[47]Thompson V S,Maragos C M.Fiber-optic immunosensor for the detection of fumonisin B1[J].Journal of Agricultural and Food Chemistry,1996(44):1041-1046.
[48]Urraca J L,Benito-Pea E,Pérez-Conde C,et al.Analysis of zearalenone in cereal and swine feed samples using an automated flow-through immunosensor[J].Journal of Agricultural and Food Chemistry,2005(53):3338-3344.
[49]Li C,et al.Development of a screening fluorescence polarization immunoassay for the simultaneous detection of fumonisins B1 and B2 in maize[J].Journal of Agricultural and Food Chemistry,2015(63):4940-4946.
[50]Beloglazova N V,Speranskaya E S,Wu A,et al. Novel multiplex fluorescent immunoassays based on quantum dot nanolabels for mycotoxins determination[J].Biosensors and Bioelectronics,2014(62):59-65.
[51]Rhouati A,Nasir M,Marty J L,et al. Photoinduced discharge of electrons stored in a TiO2-mwcnt composite to an analyte:Application to the fluorometric determination of hydrogen peroxide,glucose and aflatoxin B1[J].Microchimica Acta,2018(185):26.
[52]Lu Z,Chen X,Wang Y,et al.Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide[J].Microchimica Acta,2015(182):571-578.
[53]Sharma A,Catanante G,Hayat A,et al. Development of structure switching aptamer assay for detection of aflatoxin M1 in milk sample[J].Talanta,2016(158):35-41.
[54]Goud K Y,Sharma A,Hayat A,et al. Tetramethyl-6-carboxyrhodamine quenching-based aptasensing platform for aflatoxin B1:Analytical performance comparison of two aptamers[J].Analytical Biochemistry,2016(508):19-24.
[55]Tayebi M,Tavakkoli Yaraki M,Ahmadieh M,et al. Determination of total aflatoxin using cysteamine-capped CdS quantum dots as a fluorescence probe[J].Colloid and Polymer Science,2016(294):1453-1462.
[56]Sabet F S,Hosseini M,Khabbaz H,et al.Fret-based aptamer biosensor for selective and sensitive detection of aflatoxin B1 in peanut and rice[J].Food Chemistry,2017(220):527-532.
[57]Chen L,Wen F,Li M,et al.A simple aptamer-based fluorescent assay for the detection of aflatoxin B1 in infant rice cereal[J].Food Chemistry,2017(215):377-382.
[58]Mukherjee M,Bhatt P,Manonmani H K. Fluorescent competitive aptasensor for detection of aflatoxin B1[J].J Mol Recognit.,2017(30):e2650.
[59]Sheng L,Ren J,Miao Y,et al.Pvp-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer[J].Biosensors and Bioelectronics,2011(26):3494-3499.
[60]Guo Z,Ren J,Wang J,et al.Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A[J].Talanta,2011(85):2517-2521.
[61]Duan N,Wu S,Wang Z.An aptamer-based fluorescence assay for ochratoxin A[J].Chinese Journal of Analytical Chemistry,2011(39):300-304.
[62]Chen J,F(xiàn)ang Z,Liu J,et al.A simple and rapid biosensor for ochratoxin A based on a structureswitching signaling aptamer[J].Food Control,2012(25):555-560.
[63]Chen J,Zhang X,Cai S,et al.A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection[J].Biosensors and Bioelectronics,2014(57):226-231.
[64]Hayat A,Mishra R K,Catanante G,et al. Development of an aptasensor based on a fluorescent particles-modified aptamer for ochratoxin A detection[J].Analytical and Bioanalytical Chemistry,2015(407):7815-7822.
[65]Wang C,Tan R,Chen D.Fluorescence method for quickly detecting ochratoxin A in flour and beer using nitrogen doped carbon dots and silver nanoparticles[J].Talanta,2018(182):363-370.
[66]Goud Y K,Hayat A,Satyanarayana M,et al. Aptamer-based zearalenone assay based on the use of a fluorescein label and a functional graphene oxide as a quencher[J].Microchimica Acta,2017(184):4401-4408.
Abstract:The paper reviewed the research progress of the detection of the biological sensor by the fluorescent mycotoxin,introduced the design,sensitivity and specificity of the biological sensor for the detection of the fluorescent mycotoxin,and a number of these fluorescent biosensors have shown promising results in food samples for the detection of mycotoxins,future research can be performed on the modulation of surface chemistry of nanomaterials/nanocomposite to design target specific label free assays for the detection of various analytes.
Keywords:mycotoxins;biosensor;nanomaterial;fluorescence quenching
(責(zé)任編輯 唐建敏)