渠永平,張?jiān)鲋?/p>
十六烷基三甲基氯化銨改性黏土固沙保水性能
渠永平1,張?jiān)鲋?
(1. 中北大學(xué)材料科學(xué)與工程學(xué)院,太原 030051;2. 中國礦業(yè)大學(xué)(北京)生態(tài)功能材料研究所,北京 100083)
為解決沙漠公路施工和養(yǎng)護(hù)中固沙難的問題,利用十六烷基三甲基氯化銨(Cetyltrimethyl Ammonium Chloride,CTAC)制備了一種改性黏土材料。研究了材料的力學(xué)性能、抗老化性能和保水性能,并利用X射線衍射儀、紅外光譜分析儀和掃描電子顯微鏡對其固沙保水機(jī)理進(jìn)行分析。結(jié)果表明:當(dāng)CTAC與黏土的質(zhì)量比為5:4時,固沙材料力學(xué)性能和耐老化性能較好,其透氣保水性能較為均衡,草籽發(fā)芽率達(dá)到最高,為47%。微觀分析表明:CTAC通過插層作用將松散的黏土顆粒連接,黏土間隙變?yōu)樵魉?,水分運(yùn)移阻力增大,因此改性黏土固沙保水性能較好。研究結(jié)果可為固沙材料的改進(jìn)應(yīng)用提供參考。
固沙;水分;荒漠化;保水;十六烷基三甲基氯化銨;改性黏土
沙漠公路是荒漠化地區(qū)發(fā)展的基礎(chǔ)和命脈,流動的風(fēng)沙不僅影響荒漠化公路的施工建設(shè),而且流沙的頻繁移動每年都會造成大量的路基邊坡、路肩破損和沙埋公路[1],嚴(yán)重影響了西部公路的運(yùn)營能力,造成巨大的經(jīng)濟(jì)損失,因此,開發(fā)適用于沙漠公路施工和維護(hù)的固沙技術(shù)具有重要的現(xiàn)實(shí)意義和廣闊的應(yīng)用前景[2]。
目前常用的治沙方法主要有工程固沙、化學(xué)固沙和生物固沙[3-5],其中工程固沙主要是通過草方格等方式進(jìn)行機(jī)械固沙,施工費(fèi)時費(fèi)力,且防護(hù)高度有限[6-7];生物固沙周期較長,不適合沙漠公路快速施工的特點(diǎn)[8-9];化學(xué)固沙主要通過噴灑化學(xué)固沙劑的方式,在地表形成固結(jié)層,快速固定流沙,較為適合沙漠公路快速施工的要求[10-13]。多年來,國內(nèi)外很多學(xué)者在化學(xué)固沙技術(shù)中展開了研究與應(yīng)用[14-17]。前蘇聯(lián)和美國最早利用瀝青乳液進(jìn)行固沙,在中東部分國家進(jìn)行了大量工程試驗(yàn),隨后發(fā)展用高分子聚合物進(jìn)行固沙,沙特阿拉伯等國家也利用化學(xué)固沙進(jìn)行了大面積試驗(yàn)及應(yīng)用,取得了一定成果[18-20]。中國也采用過乳化瀝青和木質(zhì)素磺酸鹽等進(jìn)行化學(xué)固沙[21-23],近年來國內(nèi)研發(fā)了許多新型固沙劑。杜峰等[24]以聚醚二元醇、甲苯二異氰酸酯、二羥甲基丙酸、三羥甲基丙烷、可溶性淀粉等制備了內(nèi)交聯(lián)型可生物降解水性聚氨酯固沙劑,該材料在固沙保水的同時,可生物降解。邢靖晨等[25]利用熱解油、尿素、甲醛等合成了熱解油脲醛樹脂固沙劑,該材料可將沙土粘結(jié)成大團(tuán)聚體,固沙保水效果較好。這些化學(xué)固沙技術(shù)固沙性能較好,施用后沙漠表層抗風(fēng)蝕性能明顯提高,但高分子化學(xué)材料會受熱氧老化和光氧老化,發(fā)生鏈斷裂和交裂聯(lián)反應(yīng),使固結(jié)層開裂甚至沙化,抗風(fēng)蝕性能和固沙性能大幅度下降。將“化學(xué)固沙”與“生物固沙”結(jié)合,可通過生物固沙作用,解決高分子固沙劑耐候性差的問題。王銀梅等[26]研制了SH新型高分子固沙材料,研究其固化沙體的強(qiáng)度及相關(guān)特征,并試驗(yàn)了其對植物生長的影響等。溫學(xué)飛等[27]研究了化學(xué)固沙劑的用量對檸條出苗率的影響,隨著化學(xué)固沙劑施用量的增加,檸條出苗時間有所增加,凋萎時間延長。蘇鵬等[28]合成了丙烯酸/全氟辛基甲基丙烯酸酯共聚物,解決了化學(xué)固沙劑固沙層滲水速率低和吸水率高的問題。這些固沙劑將化學(xué)固沙與生物固沙相結(jié)合,解決了化學(xué)固沙劑耐久性差的問題,現(xiàn)有的“化學(xué)-生物”固沙技術(shù)苗木成活率相對較低[29],其主要原因是材料保水性能較差,難以滿足苗木發(fā)芽生長的需要,同時成本較高也是阻礙其發(fā)展的重要因素。
張?jiān)鲋镜萚30]研究的十二烷基苯磺酸鈉改性黏土,其有一定的固沙保水性能,在實(shí)際應(yīng)用中取得了一定的效果,但在施工中存在2個主要問題:一是起泡嚴(yán)重,十二烷基苯磺酸鈉在工業(yè)中常作為發(fā)泡劑使用,泡沫穩(wěn)定不易消散,在荒漠化地區(qū)固沙應(yīng)用中,需要一定時間消泡或添加消泡劑,因此影響施工效率和施工成本;二是十二烷基苯磺酸鈉在硬水中性能下降較為嚴(yán)重,而荒漠化地區(qū)水質(zhì)情況較差,因此改性黏土穩(wěn)定性較差。以上問題主要是由于十二烷基苯磺酸鈉的結(jié)構(gòu)特點(diǎn)和性質(zhì)導(dǎo)致的。
針對十二烷基苯磺酸鈉改性黏土在施工中遇到的問題,本文制備了一種改性黏土,采用十六烷基三甲基氯化銨(Cetyltrimethyl Ammonium Chloride,CTAC)對黏土進(jìn)行有機(jī)改性,CTAC作為常見的表面活性劑,易溶解于水,對各種水質(zhì)適應(yīng)能力較強(qiáng),而且不易起泡,成本低廉。本文主要研究了CTAC的最佳用量以及保水性能、耐老化性能、抗風(fēng)蝕性能、草籽發(fā)芽率等,并對其固沙保水機(jī)理進(jìn)行了研究。
本文主要試驗(yàn)原料有CTAC、黏土和草籽。CTAC為北京化學(xué)試劑公司生產(chǎn),純度為分析純。CTAC是一種常見的陽離子表面活性劑,圖1所示為其結(jié)構(gòu)式示意圖,其主要官能團(tuán)為長碳鏈?zhǔn)榛ㄓH水端)和季氨基(憎水端),其化學(xué)性質(zhì)較為穩(wěn)定,耐熱、耐光、耐強(qiáng)酸強(qiáng)堿,而且其獨(dú)特的結(jié)構(gòu)保證其對不同水質(zhì)的適應(yīng)能力較強(qiáng),在硬水中的溶解性能無明顯下降,而且不起泡[31]。CTAC作為日化工業(yè)中常用的洗滌調(diào)整劑和護(hù)發(fā)素的主要成分,其無毒無害,產(chǎn)量大,成本低。黏土取自烏蘭布和沙漠下層黏土層,最大粒徑為150m,平均粒徑為95m。草籽選用“美洲王”草籽,由北京金土地農(nóng)業(yè)技術(shù)研究所生產(chǎn)?!懊乐尥酢笔且环N矮生多葉型優(yōu)良品種,耐寒性和耐旱性較強(qiáng),適合荒漠化地區(qū)氣候特點(diǎn)。
圖1 十六烷基三甲基氯化銨結(jié)構(gòu)式示意圖
在100g水中分別加入10、15、20、25、30 g CTAC,強(qiáng)力攪拌10min,充分溶解后邊攪拌邊將20g黏土顆粒緩慢地加入到溶液中,繼續(xù)強(qiáng)力攪拌20min,使黏土顆粒與混合液體混合均勻后噴涂在粗砂表面(300 g粗砂置于杯口直徑為70 mm的塑料杯中),粗砂相對濕度為45%。根據(jù)CTAC的不同用量對各試樣命名,將CTAC用量為10、15、20、25、30 g的各試樣分別命名為H1、H2、H3、H4、H5,另外制作未改性黏土為空白對照組H。
材料測試與分析中共涉及6組樣品:H、H1、H2、H3、H4、H5,6組樣品中除CTAC用量不同外,所有測試與分析方法中相關(guān)參數(shù)測試均相同。
材料保水性能測試:將1.2中制備的各組樣品放入人工氣候箱中模擬荒漠化地區(qū)氣候環(huán)境進(jìn)行材料保水性能測試,每種配比制備5個平行樣,所有樣品在人工氣候箱中的測試參數(shù)均一致。
利用PQX多波段人工氣候箱模擬荒漠化地區(qū)氣候環(huán)境,根據(jù)荒漠化地區(qū)一天中溫度、濕度和光照等相關(guān)參數(shù)的變化,將人工氣候箱參數(shù)設(shè)置為5個階段,共計(jì)24 h,參數(shù)設(shè)置如下:溫度50 ℃,相對濕度0,光照強(qiáng)度100%,時間5 h;溫度40 ℃,相對濕度20%,光照強(qiáng)度60%,時間7 h;溫度27 ℃,相對濕度45%,光照強(qiáng)度0%,時間8 h;溫度30 ℃,相對濕度35%,光照強(qiáng)度40%,時間2 h;溫度32 ℃,相對濕度30%,光照強(qiáng)度60%,時間2 h;24 h循環(huán)運(yùn)行。
在試驗(yàn)開始24 h后第一次測試粗砂含水率,此后每隔24 h測試1次粗砂含水率。測試時取粗砂層下3 cm左右的砂土,利用德國Sartorius MA30紅外水分測定儀測試其含水率,溫度參數(shù)為110 ℃。
材料抗壓性能測試:抗壓性能測試參照行業(yè)標(biāo)準(zhǔn)JTG E51-2009公路工程無機(jī)結(jié)合料穩(wěn)定材料試驗(yàn)規(guī)程進(jìn)行,將各試樣置于特制的模具(直徑×高=Ф50 mm×50 mm),自然養(yǎng)護(hù)7 d后取出模具,利用WE-1000B液壓式萬能試驗(yàn)機(jī)測試其抗壓強(qiáng)度,每種配比制備5個平行樣。
材料抗老化性能測試:抗老化性能測試參照行業(yè)標(biāo)準(zhǔn)JTG E51-2009公路工程無機(jī)結(jié)合料穩(wěn)定材料試驗(yàn)規(guī)程進(jìn)行,采用愛佩科技公司的紫外光老化實(shí)驗(yàn)箱,將試樣置于特制的模具(直徑×高=50 mm×50 mm),自然養(yǎng)護(hù)7 d后取出模具,然后置于500 W紫外線碳弧燈正下方老化500 h,然后根據(jù)試驗(yàn)規(guī)程測試其老化前后抗壓強(qiáng)度和質(zhì)量,并計(jì)算其抗壓強(qiáng)度損失率和質(zhì)量損失率,最后將樣品粉碎制漿并噴灑到粗砂表面測試其保水性能,每種配比制備5個平行樣。
模擬植草試驗(yàn):利用模擬植草試驗(yàn)測試材料對草籽發(fā)芽率的影響。在相對濕度為45%的300 g粗砂中預(yù)先放入100粒美洲王草籽后,然后按1.2 中所述方法,制備各組改性黏土材料,分別取各試樣漿體100 g均勻覆蓋在粗砂上,每組制備5個平行樣,在人工氣候箱中模擬沙漠氣候(參數(shù)設(shè)置與材料保水性能測試相同),從開始試驗(yàn)的時間起,每24 h 觀察并記錄1次種子的發(fā)芽數(shù),共記錄10 d,統(tǒng)計(jì)并計(jì)算10 d內(nèi)累計(jì)發(fā)芽數(shù)、每組樣品的平均發(fā)芽數(shù)n和平均發(fā)芽率,平均發(fā)芽率為n/100。
材料的測試與表征:用日本日立S-3400型電子顯微鏡觀察改性前后試樣表面形貌;用NEXUS 670FT-IR光譜儀對試樣進(jìn)行紅外光譜分析,測試范圍4000~500 cm-1,掃描次數(shù)128次,分辨率8 cm-1;用日本理學(xué)D/MAX-2200PC型X射線衍射儀測定試樣的XRD圖譜,銅靶(=0.154 059 nm),管電流=100 mA,掃描速度5°/min。
采用Excel 2003、Origin 8.0和SPSS 16.0進(jìn)行作圖、方差分析,并采用Duncan’s多重比較對數(shù)據(jù)進(jìn)行多重比較。
圖2為不同樣品砂土含水率隨時間變化圖,由圖可知,所有樣品的含水率隨時間都呈下降趨勢,下降速率隨時間延長逐漸趨緩,CTAC改性黏土含水率均高于未改性黏土,說明改性后黏土保水性能有所提高。未改性黏土的含水率到第3 天降為0。改性黏土中,含水率隨CTAC的含量增加而升高,含水率最高和最低分別為H5和H1,第7天含水率分別為27%和7%。H4含水率也較高,第7天含水率為23%。這表明改性后黏土的保水性能明顯提高,且隨CTAC含量的增加,保水性能逐漸增強(qiáng)。
注:H是未改性黏土,H1、H2、H3、H4 、H5為十六烷基三甲基氯化銨與黏土質(zhì)量比為 2:4、3:4、4:4、5:4、6:4的改性黏土,下同。
圖3為不同樣品的抗壓強(qiáng)度圖,其中未改性黏土H組由于強(qiáng)度太低(低于0.1 MPa),萬能試驗(yàn)機(jī)未能測出數(shù)據(jù)。由圖可知,改性后黏土的強(qiáng)度均有明顯提高,各組改性黏土強(qiáng)度均符合標(biāo)準(zhǔn)(不小于1 MPa),且改性黏土的強(qiáng)度隨CTAC的含量增加而升高,強(qiáng)度最高為H5(2.2 MPa),強(qiáng)度最低為H1(1.7 MPa),而H4強(qiáng)度也較高,為2.1 MPa。說明CTAC可將分散的黏土顆粒粘結(jié)在一起形成固結(jié)層,且其強(qiáng)度可滿足機(jī)械施工要求。
圖3 不同處理樣品的抗壓強(qiáng)度
圖4為各樣品老化后強(qiáng)度和質(zhì)量損失率,由圖可知,隨著老化時間延長,各組試樣的強(qiáng)度損失率和質(zhì)量損失率都有上升,且CTAC含量越大,強(qiáng)度損失率和質(zhì)量損失率越高。圖4a中強(qiáng)度損失率最高為H5組,老化500 h后強(qiáng)度損失率為10.4%。H4組強(qiáng)度損失率也較高,為7.3%。圖4b中質(zhì)量損失率最高為H5組,老化500 h后質(zhì)量損失率為3.2%。H4組質(zhì)量損失率也較高,為2.6%。材料老化是由于高分子材料中的活性基團(tuán)在光熱作用下發(fā)生氧化反應(yīng),使高分子長鏈發(fā)生交聯(lián)或者斷裂而失去性能,導(dǎo)致其粘結(jié)性能下降、強(qiáng)度降低,同時改性黏土的質(zhì)量損失也主要是由于部分高分子長鏈斷裂分解引起。
圖4 不同處理樣品老化后強(qiáng)度和質(zhì)量損失率
圖5為各組樣品老化前后表面形貌圖,由圖可知,改性黏土成型穩(wěn)定后表面較為平整致密,孔隙率較低,在固定流沙的同時可大幅度降低水分無效蒸發(fā),因此其保水性能較好。經(jīng)過500 h的老化后,材料表面未見明顯裂紋或裂縫,表面保持平整致密,說明材料在光熱條件下穩(wěn)定性較好。圖6為各組樣品老化前后保水性能對比圖,由圖可知,老化后試樣的保水性能略有下降,下降幅度在5%以內(nèi),保水性能依然明顯優(yōu)于未改性黏土。結(jié)合圖5表明,CTAC化學(xué)性質(zhì)穩(wěn)定,在光熱條件下不易分解,因此其抗老化性能較好,可滿足荒漠化地區(qū)惡劣的氣候條件。
圖5 不同處理樣品老化前后表面形貌對比
圖6 不同處理樣品老化前后保水性能對比
圖7為不同樣品黏土植草試驗(yàn)中草籽發(fā)芽率圖,由圖可知,各組改性樣品的草籽發(fā)芽率均有明顯提高。未改性黏土H組草籽發(fā)芽率為7%,改性后H1組發(fā)芽率達(dá)33%。提高CTAC含量草籽發(fā)芽率逐漸提高,其中H4組發(fā)芽率最高可達(dá)47%。繼續(xù)增加CTAC,發(fā)芽率開始下降,H5組發(fā)芽率為41%。這主要是由于CTAC的加入可將松散的黏土粘結(jié)起來,大幅度降低黏土間的空隙,提高黏土層的保水蓄水能力,為草籽發(fā)芽提供必需的土壤濕度,因此草籽發(fā)芽率大幅度提升。但是過量的CTAC會將黏土間空隙過度填充,固結(jié)層透氣性能下降,因此H5草籽發(fā)芽率開始降低。草籽發(fā)芽生長需要適宜的土壤濕度和空氣,H4組材料形成的固結(jié)層蓄水保濕能力和透氣性能較為均衡,因此H4組發(fā)芽率最高。雖然抗壓強(qiáng)度和保水性能測試中,H5性能略優(yōu)于H4,但是改性黏土作為固沙材料,最重要的性能指標(biāo)是苗木成活率,因此在其他各項(xiàng)性能均達(dá)到標(biāo)準(zhǔn)要求的前提下,選擇發(fā)芽率最高的H4為最佳處理方案。
注:不同的小寫字母表示差異達(dá)顯著水平(P<0.05),不同大寫字母表示表示差異達(dá)極顯著水平(P<0.01)。
圖8為黏土改性前后的X射線衍射圖譜、紅外圖譜。在X射線衍射分析中,布拉格方程2sin=n常用于描述入射光的衍射角與層間距的關(guān)系,其中表示面間距,nm,001表示(001)晶面的面間距;2為衍射角,(°);表示未知整數(shù);表示入射的X射線光波波長,nm。由圖8a可知,黏土礦物微觀結(jié)構(gòu)是由Si-O多面體和Al-O多面體復(fù)合而成的片層結(jié)構(gòu),由圖可知,改性前后黏土主要晶相特征峰未發(fā)生明顯改變,說明CTAC并未破壞黏土的片層結(jié)構(gòu),改性后黏土的(001)面的特征峰整體向小角度偏移,2由7.05°減少到5.95°附近,由布拉格方程2sin=可知,其片層間距由1.253 5 nm變?yōu)?.485 0 nm左右,說明CTAC改性是通過插層進(jìn)入黏土片層間,使其片層間距變大。
注:2θ為衍射角,(°)。
圖8b為黏土改性前后的紅外圖譜,由圖可知,改性前后黏土中主要基團(tuán)的特征峰基本一致,其中3 440 cm-1處特征峰為黏土片層間水分子的伸縮振動峰,1 630 cm-1為H2O的彎曲振動峰,1 430 cm-1為片層間羥基的振動峰,1 050 cm-1為Si-O的振動峰、500 cm-1為Al-O的振動峰。改性黏土中新增加了2 930和2 850 cm-1的特征峰分別是CTAC中-CH2-的不對稱伸縮振動峰和對稱伸縮振動峰,結(jié)合圖7可知,CTAC插層進(jìn)入黏土片層間。
圖9為黏土改性前后的掃描電鏡圖,由圖可知,未改性黏土顆粒分散,顆粒間隙較大,因此未改性黏土孔隙率較大,保水性能差。經(jīng)過改性后,黏土顆粒被有機(jī)物CTAC包覆,CTAC將黏土顆粒包覆粘結(jié)后形成連續(xù)體,顆粒間隙明顯減小,改性黏土層孔隙率有所較低。而且CTAC含量越大,孔隙率降低越明顯,其中H3、H4、H5的顆粒間呈現(xiàn)明顯的粘連狀態(tài),H5未見明顯空隙。并且由于有機(jī)物的憎水作用,黏土間空隙由親水性變?yōu)樵魉?,黏土間隙作為水分傳輸?shù)耐ǖ?,水分運(yùn)移的阻力變大,因此保水性能明顯提高。
圖9 黏土改性前后的掃描電鏡圖
結(jié)合圖10的示意圖可知其固沙保水機(jī)理如下:如圖10a所示,沙漠表層由粒徑約為0.2~2 mm的砂土顆粒組成,顆粒間連接松散、間隙大,孔隙率約為45%~55%。當(dāng)降水或灌溉時,水分容易滲漏;當(dāng)光照較強(qiáng)、地表溫度較高時,水分容易蒸發(fā)。因此未改性黏土保水性能差,苗木難以生存。如圖10b所示,改性黏土H4中松散的黏土顆粒被CTAC粘結(jié)在一起,形成較為致密的固結(jié)層。黏土間的空隙變?yōu)榍鄣拿?xì)孔道,水分運(yùn)移阻力增大。而且CTAC作為粘結(jié)劑,其中親水端(季銨離子端)向內(nèi)與黏土連接,憎水端(長碳鏈端)向外相互粘結(jié),使材料中黏土間隙形成的孔道由親水性向憎水性轉(zhuǎn)變,水分運(yùn)移阻力進(jìn)一步增大,從而大幅度提高材料保水性能。繼續(xù)增加CTAC,如圖10c所示,樣品H5中黏土間空隙進(jìn)一步被CTAC填充,氣體運(yùn)移通道被堵塞,材料透氣性能下降,難以滿足植物發(fā)芽生長對空氣的需求,從而導(dǎo)致草籽發(fā)芽率降低。
注:圖b中水分通道阻斷,氣體通道未阻斷;圖c中H5的水分通道和氣體通道都阻斷。
1)利用十六烷基三甲基氯化銨(CTAC)改性黏土制備固沙材料,當(dāng)CTAC與黏土的質(zhì)量比為5:4時,材料透氣保水性能最優(yōu),同時其力學(xué)性能和耐候性能較好:固結(jié)層抗壓強(qiáng)度為2.1 MPa,老化500 h后抗壓強(qiáng)度損失率為7.3%,質(zhì)量損失率為2.6%,草籽發(fā)芽率為47%,并且材料具有良好的施工性能。
2)固沙材料的微觀結(jié)構(gòu)分析表明,CTAC通過插層作用將松散的黏土顆粒連接在一起形成固結(jié)層,同時CTAC的憎水端可將黏土間隙變?yōu)樵魉?,水分運(yùn)移阻力增大,因此改性黏土固沙保水性能較好。
[1] 國家林業(yè)局.中國第五次全國荒漠化和沙化狀況公報(bào)[EB/OL]. (2015-12-2) [2016-04-03]. http://www.forestry. gov.cn/main/69/content-831684.html.
[2] 張建國,徐新文,雷加強(qiáng),,等. 咸水滴灌對沙漠公路防護(hù)林土壤環(huán)境的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(10):34-39.
Zhang Jianguo, Xu Xinwen, Lei Jiaqiang, et al. Effect of drip-irrigation with salinity water on soil environment of the Trim Desert highway shelterbelt[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(10): 34-39. (in Chinese with English abstract)
[3] 張冠華,???,孫金偉,等. 土壤固化劑及其水土保持應(yīng)用研究進(jìn)展[J]. 土壤,2018,50(1):28-34.
Zhang Guanhua, Niu Jun, Sun Jinwei, et al. Soil stabilizer and its application in soil and water conservation: a review[J]. Soil, 2018, 50(1): 28-34. (in Chinese with English abstract)
[4] Zhao Wenzhi, Hu Guanglu, Zhang Zhihui, et al. Shielding effect of oasis-protection systems composed of various forms of wind break on sand fixation in an arid region: A case study in the Hexi Corridor, northwest China[J]. Ecological Engineering, 2008, 33(2): 119-125.
[5] Ma Rui, Li Junran, Ma Yanjun, et al. A wind tunnel study of the airflow field and shelter efficiency of mixed windbreaks[J]. Aeolian Research, 2019, 41(3): 1-8
[6] 王翔宇,丁國棟,高函,等. 帶狀沙柳沙障的防風(fēng)固沙效益研究[J]. 水土保持學(xué)報(bào),2008,22(2):42-46.
Wang Xiangyu, Ding Guodong, Gao Han, et al. Effect of zonal willow salix psammophila checkerboard on reducing wind and stabilizing sand[J]. Journal of Soil and Water Conservation, 2008, 22(2): 42-46. (in Chinese with English abstract)
[7] Qiu, Guoyu, Lee I B, Shimizu H, et al. Principles of sand dune fixation with straw checkerboard technology and its effects on the environment[J]. Journal of Arid Environments, 2004, 56(3): 449-464.
[8] 吳汪洋,張登山,田麗慧,等. 青海湖克土沙地沙棘林的防風(fēng)固沙機(jī)制與效益[J]. 干旱區(qū)地理,2014,37(4):777-785.
Wu Wangyang, Zhang Dengshan, Tian Lihui, et al. Mechanism and benefit of wind-prevention and sand-fixation of Hippophae rhamnoides forestation in Ketu Sandy Land around Qinghai Lake [J]. Arid Land Geography, 2014, 37(4): 777-785. (in Chinese with English abstract)
[9] Lokhande V H, Gor B K, Neetin S. Desai, et al. Sesuvium portulacastrum, a plant for drought, salt stress, sand fixation, food and phytoremediation: A review[J]. Agronomy for Sustainable Development, 2013, 33(2):329-348.
[10] 楊凱,唐澤軍,趙智,等. 粉煤灰和聚丙烯酰胺固沙效果的風(fēng)洞試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,18(4):54-59.
Yang Kai, Tang Zejun, Zhao Zhi, at al. Wind tunnel experimental study on sand-fixing effect of fly ash and polyacrylamide[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 18(4): 54-59. (in Chinese with English abstract)
[11] Liu Jin, Shi Bin, Lu Yi, et al. Effectiveness of a new organic polymer sand-fixing agent on sand fixation[J]. Environmental Earth Sciences, 2011, 65(3): 589-595.
[12] 梁止水,吳智仁. 改性水溶性聚氨酯的固沙促生性能及其機(jī)理[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(22):171-177.
Liang Zhishui, Wu Zhiren. Performances and mechanism of sand fixation and growth promotion based on modified hydrophilic polyurethane[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 171-177.
[13] Wu Zhiren, Gao Weimin, Wu Zhishen, et al. Synthesis and characterization of a novel chemical sand-fixing material of hydrophilic polyurethane[J]. Journal of the Society of Materials Science Japan, 2011, 60(7): 674-679.
[14] 鐘帥,韓致文,李愛敏. GS-3生態(tài)固沙劑性能及其濃度對植物生長的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(24):107-114.
Zhong Shuai, Han Zhiwen, Li Aimin. Effects of performance and concentration of GS-3 sand-fixing agent on plant growth[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 107-114. (in Chinese with English abstract)
[15] 鐵生年,姜雄,汪長安,等. 化學(xué)固沙材料研究進(jìn)展[J]. 材料導(dǎo)報(bào),2013,27(3):71-75.
Tie Shengnian, Jiang Xiong, Wang Chang’an, et al. Advances in chemical sand-fixing materials[J]. Materials Reports, 2013, 27(3): 71-75. (in Chinese with English abstract)
[16] 袁進(jìn)科,裴向軍,葉長文,等. 改性纖維素類聚合物固沙劑的吸附力學(xué)及崩解特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(21):144-150.
Yuan Jinke, Pei Xiangjun, Ye Changwen, et al.Adsorption mechanics and disintegration characteristics of modified cellulose polymer sand fixing agent[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(21): 144-150. (in Chinese with English abstract)
[17] 賴俊華,張凱,王維樹,等. 化學(xué)固沙材料研究進(jìn)展及展望[J]. 中國沙漠,2017,37(4):644-658.
Lai Junhua, Zhang Kai, Wang Weishu, et al. Research advances and prospect in chemical sand-fixing materials[J]. Journal of Desert Research, 2017, 37(4): 644-658. (in Chinese with English abstract)
[18] Xu Meng. Synthesis and sand-fixing property of cationic poly (Vinyl Acetate-Butyl Acrylate-DMC) copolymer emulsions[J]. Journal of Macromolecular Science: Part D, Review in Polymer Procesing, 2013, 52(9): 931-939.
[19] Gong Wei, Li Meilan, Liu Bailing. How the surfactants mixed with emulsion can enhance the sand fixation ability in the high salt-affected sandy land[J]. Environmental Technology, 2019, 55: 1-15.
[20] Gao Weimin, Wu Zhiren, Wu Zhishen. Kinetic study on solidification of the W-OH chemical sand-fixing material[J]. Journal of Solution Chemistry, 2008, 37(8): 1137-1148.
[21] Liu Jin, Shi Bin, Lu Yi, et al. Effectiveness of a new organic polymer sand-fixing agent on sand fixation[J]. Environmental Earth Sciences, 2012, 65(3): 589-595.
[22] 莊文化,馮浩,吳普特. 高分子保水劑農(nóng)業(yè)應(yīng)用研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(6):265-270.
Zhuang Wenhua, Feng Hao, Wu Pute.Development of super absorbent polymer and its application in agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(6): 265-270. (in Chinese with English abstract)
[23] 張璐,孫向陽,田赟,等. 復(fù)合保水劑吸水保水性能及其應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(15):87-93.
Zhang Lu, Sun Xiangyang, Tian Yun, et al. Properties and application of composite water retaining agent[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(15): 87-93. (in Chinese with English abstract)
[24] 杜峰,項(xiàng)尚林,方顯力. 內(nèi)交聯(lián)型可生物降解水性聚氨酯固沙劑的合成[J]. 中國農(nóng)學(xué)通報(bào),2012,28(23):202-206.
Du Feng, Xiang Shanglin, Fang Xianli. Synthesis of internally crosslinked biodegradable waterborne polyurethane sand fixers[J]. Chinese Agricultural Science Bulletin, 2012, 28(23): 202-206. (in Chinese with English abstract)
[25] 邢靖晨,姚娟,虞宇翔,等. 熱解油脲醛樹脂固沙劑研究[J]. 化工新型材料,2018,46(1):200-203.
Xing Jingchen, Yao Juan, Yu Yuxiang, et al. Research on the sand-fixing agent of pyrolysis oil urea formaldehyde resin[J]. New Chemical Materials, 2008, 46(1): 200-203. (in Chinese with English abstract)
[26] 王銀梅,諶文武,韓文峰. 新型高分子材料固沙抗風(fēng)蝕的風(fēng)洞模擬實(shí)驗(yàn)[J]. 水土保持學(xué)報(bào),2005,19(6):12-14.
Wang Yinmei, Chen Wenwu, Han Wenfeng. Simulation study on resistances to wind erosion of new polymer material in sand fixation[J]. Journal of Soil and Water Conservation, 2005, 19(6): 12-14. (in Chinese with English abstract)
[27] 溫學(xué)飛,張亞峰. 化學(xué)固沙劑對檸條出苗影響的研究[J]. 寧夏農(nóng)林科技,2013,54(3):18-21.
Wen Xuefei, Zhang Yafeng. A study of effect of chemical sand-fixing agent on emergence of caragana microphylla[J]. Ningxia Journal of Agriculture and Forestry Science & Technology, 2013, 54(3): 18-21. (in Chinese with English abstract)
[28] 蘇鵬,馬育紅,楊萬泰. 丙烯酸/全氟辛基甲基丙烯酸酯共聚物的合成及固沙應(yīng)用[J]. 北京化工大學(xué)學(xué)報(bào):自然科學(xué)版,2011,38(6):44-48.
Su Peng, Ma Yuhong, Yang Wantai. Synthesis of acrylic acid/perfluorooctyl methacrylate copolymer and application of sand fixation[J]. Journal of Beijing University of Chemical Technology: Natural Science Edition, 2011, 38(6): 44-48. (in Chinese with English abstract)
[29] Qu Yongping, Zhang Zengzhi, Li Cuilan. Preparation and water retention properties of montmorillonite modified by EL-10 emulsifying agent[J]. Journal of Wuhan University of Technology: Materials Science, 2017, 32(4): 806-811.
[30] 張?jiān)鲋?,渠永平,王宏娟,? 十二烷基苯磺酸鈉改性黏土抑制沙土水分蒸發(fā)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(18):168-175.
Zhang Zengzhi, Qu Yongping, Wang Hongjuan, et al. Inhibiting water evaporation of sand soil with clay modified by linear alklybezene sulfonates[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 168-175. (in Chinese with English abstract)
[31] 程宏飛,賈曉輝,豪日娃,等. 黏土礦物-十六烷基三甲基氯化銨作用機(jī)理及其結(jié)構(gòu)[J]. 人工晶體學(xué)報(bào),2018,47(12):2547-2554.
Cheng Hongfei, Jia Xiaohui, Hao Riva, et al. mechanism and structure of clay mineral-cetyl trimethylammonium chloride[J]. Acta intraocular lens sinica, 2008, 47(12): 2547-2554. (in Chinese with English abstract)
Sand fixation and water retention performance of clay modified by cetyltrimethyl ammonium chloride
Qu Yongping1, Zhang Zengzhi2
(1.030051;2.(),100083,)
A kind of clay modified by Cetyltrimethyl Ammonium Ahloride(CTAC) was prepared to solve the problem of sand fixation in desert highway construction and maintenance. H1, H2, H3, H4 and H5 were assigned to the treatments with mass ratios of CTAC to clay 2:4, 3:4, 4:4, 5:4 and 6:4, respectively. In addition, unmodified clay was prepared as the control group H. Water retention performance was tested in an artificial climate box to simulate the desert climate. And the changes of mass and compressive strength were compared before and after ageing to test the anti-aging property. The grass planting experiment was conducted to analyze the effect of materials on germination rates. At last, the mechanism of sand fixation and water retention was analyzed by X-ray diffractometer, infrared spectrum analyzer and scanning electron microscope. The results showed that the water retention property was obviously improved with the increase of CTAC content. The moisture content of H5 and H4 were 27% and 23% respectively, while H1 was 7% on the 7th day, indicating the water retention performance of modified clay samples were gradually enhanced with the increase of CTAC content. In the compressive strength test, the strength of the unmodified clay group H was failed to measure due to the strength less than 0.1 MPa, while the strengths of the modified clay samples were significantly improved, and the strengths of the modified clay samples all met the standard requirements (no less than 1 MPa). Moreover, the strength of the modified clay increased with the increase of the content of CTAC, with the highest and higher strength of H5 and H4 (2.2 and 2.1MPa respectively), and the lowest strength of H1 (1.7 MPa). This indicated that CTAC could bond dispersed clay particles together to form a consolidation layer, and its strength could meet the requirements of mechanical construction. In the anti-aging performance test, after aging for 500 h, no obvious cracks were found on the surface of the samples, and the water retention performance decreased by less than 5%. The strength and mass loss rate of all the groups increased with aging time, and the higher the CTAC content, the higher the strength and mass loss rate. The strength loss rates of H4 and H5 were respectively 7.3% and 10.4%, and the mass loss rates of H4 and H5 were respectively 2.6% and 3.2% after 500 h of aging. The grass planting experiment showed the germination rate of the unmodified clay group (H) was only 7%, far below that of modified groups. With the increase of CTAC content, the germination rate of grass seeds gradually increased. The germination rate of the modified group H1 was 33%, and the highest germination rate was up to 47% (H4). But there was no more increase when CTAC content increase further, and the germination rate of H5 group was 41%. The microscopic analysis showed that CTAC could bond the loose clay particles together through intercalating effect. The clay gaps were turned into hydrophobicity, which resulted in the increase of the water transport resistance. So the modified clay had better sand-fixation and water-retention performance. However too much CTAC blocked the space of clay particles, the permeability of clay decreased, so the germination rate of H5 decreased. Although the compressive strength and water retention performance of H5 is slightly better than H4, as a kind of sand fixation material, the most important performance is the survival rate of seedlings. Therefore, under the premise that all other performances meet the standard requirements, H4 with the highest germination rate was selected as the best treatment scheme. The results could provide reference for the application of the modified sand-fixing materials.
sand consolidation; water; desertification; water retention; cetyltrimethyl ammonium chloride; modified clay
渠永平,張?jiān)鲋? 十六烷基三甲基氯化銨改性黏土固沙保水性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(13):109-115.doi:10.11975/j.issn.1002-6819.2020.13.013 http://www.tcsae.org
Qu Yongping, Zhang Zengzhi. Sand fixation and water retention performance of clay modified by cetyltrimethyl ammonium chloride[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 109-115. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.13.013 http://www.tcsae.org
2020-03-06
2020-06-10基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(50772131);教育部重點(diǎn)項(xiàng)目(106086)和山西省應(yīng)用基礎(chǔ)研究計(jì)劃(201801D221147)聯(lián)合資助。
渠永平,副教授,博士,主要從事荒漠化治理及節(jié)水灌溉研究。Email:quyongping1989@163.com
農(nóng)業(yè)工程學(xué)會會員:渠永平(E041000021M)
10.11975/j.issn.1002-6819.2020.13.013
TB34
A
1002-6819(2020)-13-0109-07