范嚴偉,楊志偉,胡五龍
均質(zhì)土微潤灌濕潤體模型構建及驗證
范嚴偉1,楊志偉1,胡五龍2
(1. 蘭州理工大學能源與動力工程學院,蘭州 730050;2. 武漢理工大學理學院,武漢 430070)
為探明微潤灌土壤濕潤體運移的影響因素和變化規(guī)律,設置了56種微潤灌情景(8種土壤質(zhì)地、3種土壤基質(zhì)勢和10種微潤管比流量的不同組合),利用HYDRUS-2D軟件,模擬研究土壤飽和導水率、土壤基質(zhì)勢和微潤管比流量對微潤灌土壤濕潤體的影響。綜合考慮單位長度總滲水量、土壤飽和導水率、土壤基質(zhì)勢和微潤管比流量等影響因素,基于量綱分析方法,建立了一種均質(zhì)土微潤灌濕潤體尺寸估算模型,并利用數(shù)值模擬結果,定量獲取了所建模型的待定參數(shù),最后,采用試驗資料評價了估算模型的可靠性。結果表明,土壤飽和導水率、土壤基質(zhì)勢和微潤管比流量對微潤灌土壤濕潤體形狀影響較小,且在濕潤鋒未到達地表前,濕潤體形狀均為以線源為軸線的近似“橢圓柱體”;相同土壤飽和導水率條件下,土壤濕潤體水平、垂直向下和垂直向上方向上的濕潤鋒運移速率均隨土壤基質(zhì)勢和微潤管比流量增大而增大;當土壤基質(zhì)勢和微潤管比流量恒定時,隨土壤飽和導水率數(shù)值的增大,垂直向上和水平方向的濕潤鋒運移速率逐漸減小,而垂直向下的濕潤鋒運移速率存在先減小后增大的現(xiàn)象;所建模型的統(tǒng)計指標平均絕對誤差、均方根誤差均趨近于0,納什效率接近1,說明模型估算效果良好,可為微潤灌工程的運行及管理提供科學依據(jù)。
模型;土壤;濕潤體;量綱分析;微潤灌
微潤灌是一種地下線源灌溉技術,其操作簡單,工作水頭低,對大田及溫室作物具有較好的節(jié)水增產(chǎn)效果[1-2]。了解清楚不同影響因素下微潤灌土壤濕潤體的動態(tài)變化特征,進而構建濕潤體特征模型,對設計經(jīng)濟高效的微潤灌溉系統(tǒng)至關重要。
田間灌溉時,土壤濕潤體的特性主要受土壤特性參數(shù)和灌水技術要素的影響。就土壤特性參數(shù)而言,土壤質(zhì)地對濕潤模式影響顯著[3-4],然而,即使是同一土壤質(zhì)地,其容重不同,土壤內(nèi)部的孔隙分布不同,土壤濕潤體的運移速率也會有較大的差異,因此,灌溉參數(shù)不能僅視田間土壤質(zhì)地狀況而定;土壤飽和導水率受土壤質(zhì)地、孔隙分布特征和容重的影響較大,同時在灌溉、排水系統(tǒng)工程的設計和土壤剖面中水通量的計算中起重要作用,所以,在確定灌溉參數(shù)時,可以考慮采用土壤飽和導水率來表征土壤質(zhì)地、容重以及孔隙分布的差異。土壤特性參數(shù)還包括土壤基質(zhì)勢,根據(jù)土壤基質(zhì)勢制定灌溉方案是一種非常實用的方法[5-6],因為其易于在各種田間條件下使用,無需對土壤類型或鹽分水平進行校準,很多學者的研究表明,田間啟動灌溉的土壤基質(zhì)勢適宜閾值大致在?50~?10 kPa之間[7-9]。從灌水技術要素考慮,微潤管比流量與埋深是微灌系統(tǒng)較重要的2個參數(shù)。研究表明,相較于地下滴灌,微潤管比流量更易受土壤質(zhì)地、土壤容重、微潤管埋深、壓力水頭、土壤初始含水率等因素影響[10-13];埋深直接影響微潤管周圍土壤濕潤體的水分分布位置,但對土壤濕潤體的運移速率影響較小[11,14]。因此,在進行土壤濕潤體運移距離的研究時,重點應考慮微潤管比流量。
土壤濕潤體特征值是灌溉計劃制定和灌溉系統(tǒng)設計的重要依據(jù),但田間灌溉時土壤濕潤體難以直接觀測,導致問題研究變得復雜。為此,國內(nèi)外學者開發(fā)了一些解析模型[15-18]、數(shù)值模型[19-20]和經(jīng)驗模型[21-24]來描述濕潤體運移過程。Kandelous等[25-27]對上述3類模型進行了分析與評價:解析模型較復雜,求解較困難;數(shù)值模型在已知土壤水力特性參數(shù)的前提下對濕潤體的動態(tài)變化描述詳細,但也存在模擬過程復雜和模擬參數(shù)難以獲得等問題;經(jīng)驗模型形式簡單,但大多數(shù)針對具體灌溉技術而建,其在不同灌溉模式下的普適性不強。量綱分析法能夠合理恰當?shù)剡x擇特征尺度,將有量綱量轉(zhuǎn)化為無量綱量,達到簡化參數(shù)、量綱和諧的效果,為量化濕潤體尺寸、解決濕潤體不易觀測的問題提供一種方便而實用的手段。
為探明微潤灌土壤濕潤體運移的影響因素及變化規(guī)律,采用HYDRUS-2 D軟件,模擬研究土壤飽和導水率、土壤基質(zhì)勢以及微潤管比流量對微潤灌濕潤體的影響;通過量綱分析法得到微潤灌土壤水平向、垂直向上和垂直向下的濕潤體尺寸與土壤飽和導水率、土壤基質(zhì)勢、微潤管比流量以及單位長度總滲水量之間的關系,構建土壤濕潤體尺寸的估算模型;采用試驗數(shù)據(jù)驗證預測模型的可靠性,為微潤灌溉工程的設計和運行提供科學依據(jù)。
1.1.1 基本方程
假定微潤管的滲水速率沿微潤管方向呈均勻分布且土壤均勻和各向同性,微潤灌土壤水分運動可近似為點源在垂直面上的二維運動,其土壤水流控制方程為二維Richards方程[28],即
式中為垂向坐標,規(guī)定向下為正;為水平向坐標;為基質(zhì)勢,cm;為土壤體積含水率,cm3/cm3;為時間,min;()為土壤非飽和導水率,cm/min。
通過van Genuchten-Mualem (VG-M)模型描述式(1)中、()和三者之間的關系[29]。即
式中S為土壤相對飽和度,S=(?θ)/(θ?θ);K為土壤飽和導水率,cm/min;θ和θ分別為土壤殘余含水率和飽和含水率,cm3/cm3;和為經(jīng)驗常數(shù),其中>1,=1?1/;為經(jīng)驗參數(shù),cm-1;為經(jīng)驗系數(shù),通常取0.5。
1.1.2 定解條件
圖1為微潤灌土壤水分運動模擬示意圖??紤]田間微潤管水平向鋪設的對稱性,模擬計算域的選取原則是,豎直向以微潤管為起點的上至土壤表面、下至不受灌水影響的深度,水平向以微潤管為起點向右至微潤管間距的一半。
注:D是微潤管埋深,cm;W是微潤管間距,cm;Dd為模擬計算域深度,cm;Ψ為土壤基質(zhì)勢,cm;Ψ0為土壤初始基質(zhì)勢,cm。
模擬開始前,不同土壤類型的基質(zhì)勢均采用初始基質(zhì)勢。灌溉過程中,上邊界與大氣相接觸,按大氣邊界設置;下邊界在選取研究區(qū)域時不受灌水的影響,按自由邊界設置;左邊界為向下穿過微潤管的中心線,右邊界為相鄰微潤管中心線,均按零通量邊界設置;單位長度微潤管的出流量基本恒定[30-31],按定流量邊界設置。
1.1.3 模擬方案
為體現(xiàn)土壤類型的廣泛性和研究成果的普適性,選取田間常見的8種土壤質(zhì)地,其VG-M模型參數(shù)取自Carsel等[32]資料,土壤容重取自Pachepsky等[33]資料,具體見表1。
表1 8種典型土壤的VG-M模型參數(shù)
依據(jù)文獻[7-9],選取3種值(?100、?300和?500 cm)。參考文獻[1,10-12,30],壓力水頭取值范圍為0.6~2.4 m,取值大致在10~40 cm之間。通過給定的、和,采用文獻[34]中的比流量計算式確定模擬方案中的微潤管比流量,模擬方案共計56種(8種土壤質(zhì)地、3種土壤基質(zhì)勢和10種微潤管比流量的不同組合),具體模擬方案見表2。
表2 模擬方案
1.1.4 求解方法
利用HYDRUS-2 D軟件[35]進行數(shù)值求解時,考慮到田間實際和計算精度的要求,模擬區(qū)域設為D=100 cm,/2=60 cm的矩形區(qū)域,空間步長為1 cm,時間步長為0.1 min。求解時,對土壤剖面采用Galerkin有限元法進行空間離散,對時間采用隱式差分格式進行離散。
1.2.1 濕潤體運移的影響因素
從56組模擬方案中,選取不同K、和影響因素組合下的7組單因素對比方案,繪制土壤濕潤體運移變化圖,如圖2所示。
由圖2可見,濕潤鋒未到達地表前,土壤濕潤體形狀差異較小,其輪廓線均為近似“橢圓柱體”;濕潤鋒到達地表后,微潤管上部濕潤體形狀由“半橢圓”轉(zhuǎn)化為“梯形”,微潤管下部濕潤體形狀繼續(xù)保持“半橢圓”。隨灌水時間延長,濕潤體向外逐漸擴展增大,但擴展速率逐漸減小。濕潤體尺寸符合垂直向下>水平方向>垂直向上的規(guī)律。
注:縱坐標20 cm處為微潤管所在位置。
1)土壤飽和導水率對濕潤體運移的影響
圖2a、2b和2c顯示了不同K條件下濕潤體隨時間的變化規(guī)律。對比圖2a、2b和2c,發(fā)現(xiàn)相同和條件下,隨K的增大,同一時刻垂直向上和水平方向上的濕潤鋒運移距離逐漸減小。如持續(xù)微潤灌24 h,K=0.007 5 cm/min土壤的垂直向上和水平濕潤尺寸分別為12.0和12.3 cm,K=0.017 3 cm/min的土壤則減小為11.1和11.6 cm,而K=0.073 7 cm/min的土壤則再縮減為10.2和11.0 cm。相同和條件下,隨K的增大,同一時刻垂直向下方向上的濕潤鋒運移距離表現(xiàn)出先減小后增大的現(xiàn)象。如持續(xù)微潤灌48 h,3種K(0.007 5、0.017 3和0.073 7 cm/min)下的垂直向下濕潤尺寸分別為12.7、12.0和13.2 cm。灌水結束時(132 h),3種K(0.007 5、0.017 3和0.073 7 cm/min)下的垂直向上的運移距離比垂直向下的運移距離分別下降35.5%,31.8%和38.1%;而水平方向的運移距離比垂直向下的運移距離分別下降6.5%,8.5%和28.9%。
2)土壤基質(zhì)勢對濕潤體運移的影響
圖2d、2f和2g給出了壤土在不同條件下濕潤體的運移特性。對比圖2d、2f和2g,發(fā)現(xiàn)相同K和條件下,3個方向上值越高,同一時刻濕潤體運移距離越大,而且垂直向下方向上對濕潤鋒運移的影響更顯著。如持續(xù)微潤灌24 h,=?500 cm的3個方向(垂直向上、水平方向和垂直向下)濕潤尺寸分別為11.5、12.0和12.5 cm,=?300 cm的增長為12.3、12.9和13.5 cm,而=?100 cm的再提升為13.3、15.0和17.0 cm。灌水結束時(132 h),3種值下垂直向上方向的濕潤體運移距離均到達地表,水平方向,=?100和?300 cm的濕潤體運移距離分別比=?500 cm的運移距離大31.0%,34.6%;而垂直向下方向,=?100和?300 cm的濕潤體運移距離分別比=?500 cm的運移距離大7.5%,9.3%。
3)微潤管比流量對濕潤體運移的影響
對比分析3種條件下壤土濕潤體運移過程(圖2b、2d和2e)??梢钥闯?,相同K和條件下,值越大,濕潤體運移速度越快,同一時刻濕潤體尺寸越大。如持續(xù)微潤灌48 h,3種(0.010 7,0.014 5和0.018 2 mL/(cm·min))下3個方向濕潤尺寸分別為15.5、16.3、17.1 cm(垂直向上),17.1、18.1、19.2 cm(水平方向)和18.7、19.6、21.0 cm(垂直向下)。灌水結束時(132 h),3種下垂直向上方向的濕潤體運移距離均到達地表,水平方向,微潤管比流量為0.014 5和0.018 2 mL/(cm·min)的濕潤體運移距離分別比0.010 7 mL/(cm·min)的運移距離增大11.2%和20.5%;而垂直向下方向,微潤管比流量為0.014 5和0.018 2 mL/(cm·min)的濕潤體運移距離分別比0.010 7 mL/(cm·min)的運移距離增大13.1%和23.7%。
1.2.2 濕潤體運移輪廓
對圖2進行分析,發(fā)現(xiàn)均質(zhì)土條件下微潤灌濕潤體輪廓可分上下兩部分,當上半部分在濕潤邊界未到達地表前,可用半橢圓形方程表示,如式(4)所示。
式中為水平向的最大濕潤體尺寸,cm;為垂直向上或垂直向下的最大濕潤體尺寸,cm;為濕潤體輪廓上任意點的坐標。
由式(4)可知,濕潤體的大小由水平向、垂直向上以及垂直向下的濕潤體尺寸的最大值確定,基于此,建立3個方向上濕潤體尺寸的估算模型則為確定濕潤體大小的關鍵。
通過定性分析微潤灌濕潤體運移的影響因素,可知:K、和對微潤灌土壤濕潤體尺寸均有影響,另外,濕潤體尺寸還受灌水時間的影響,故依據(jù)文獻[21]將灌水時間對濕潤體尺寸的影響用單位長度總滲水量(,mL/cm)代替?;诖?,最終確定微潤灌溉系統(tǒng)的水平向()、垂直向上(1)以及垂直向下(2)的濕潤尺寸取決于K、、以及。假設這些參數(shù)之間的關系為
式中表示參數(shù)之間存在某種關系。
式(5)中的7個參數(shù)根據(jù)量綱分析法及定理可得到5個獨立的項,其之間的關系表示如下:
式中表示5個獨立的項之間存在某種關系;1、2、3、4和5為由定理得到的無量綱量。
根據(jù)量綱和諧原理得到5個獨立項的具體表達式,即
無量綱體積*、無量綱水平向濕潤尺寸*、無量綱垂直向上濕潤尺寸1*以及無量綱垂直向下濕潤尺寸2*可由5個獨立項的組合產(chǎn)生:
1)4與5的乘積得到無量綱體積*,表示如下:
2)1的平方與4的乘積得到無量綱水平向濕潤尺寸*,表示如下:
3)2的平方與4的乘積得到無量綱垂直向上濕潤尺寸1*,表示如下:
4)3的平方與4的乘積得到無量綱垂直向上濕潤尺寸2*,表示如下:
式(12)~式(15)所表示的無量綱參數(shù)之間的關系由文獻[21]可得,即
在式(16)~式(18)中,1、2和3是指數(shù),1、2和3是系數(shù)。將W和V的值代入式(16)中獲得式(19):
同樣地,將1*2*和*的值放在式(17)與式(18)中獲得式(20)與式(21):
利用HYDRUS-2D軟件的模擬結果及式(12)~式(15)計算無量綱項*1*2*和*,并借助Origin 9.0,采用式(16)~式(18)擬合獲得參數(shù)1、2、3和1、2、3,如圖3所示。其中,式(12)~式(15)與式(19)~式(21)中的微潤管比流量()為單位長度微潤管的總出流量。
由圖3可見,利用式(16)~式(18)擬合得到無量綱水平向濕潤尺寸W、無量綱垂直向上濕潤尺寸1以及無量綱垂直向下濕潤尺寸2與無量綱體積*之間的關系,其指數(shù)1、2、3分別為0.53、0.53、0.56,常數(shù)1、2、3分別為2.91、2.65、4.88,擬合回歸線的決定系數(shù)2分別為0.96、0.97、0.97,均接近1,說明擬合效果良好。將擬合獲得的結果代入式(19)~式(21),得到不同K、、以及下的濕潤體尺寸預測模型。即:
注:W*、Z1*、Z2*分別代表無量綱條件下水平方向、垂直向上和垂直向下濕潤尺寸。
土箱試驗用于模型的驗證,供試土樣分別取自甘肅省蘭州市七里河區(qū)的粉壤土和武威市民勤縣的砂黏壤土,且取土深度均為0~40 cm。土樣經(jīng)風干、碾壓、過2 mm篩后待用。為獲得均勻土壤剖面,試驗前,土樣按設定基質(zhì)勢加水并均勻混合,然后用塑料薄膜將土樣密封,靜置1 d,之后按設定好的容重分層(每層5 cm)裝入土箱。裝土完畢靜置1 d開始試驗,灌水時間設為3 d。土壤特性參數(shù)和灌水技術參數(shù)見表3。
表3 供試土樣特性參數(shù)和灌水技術參數(shù)
試驗裝置由土箱、高度可調(diào)節(jié)支架、橡膠管、馬氏瓶和微潤管組成(圖4)。土箱由10 mm厚的有機玻璃制成,尺寸為60 cm(長)×60 cm(寬)×100 cm(高)。為防止土體內(nèi)部氣阻的發(fā)生,土箱底部留有多個通氣孔(直徑2 mm)。為便于觀測濕潤體形狀與尺寸,裝土時將微潤管緊靠土箱壁,水平放置于設定的埋深處。試驗中,馬氏瓶在恒定水頭下提供水量,馬克筆繪制不同時刻濕潤體輪廓。
用平均絕對誤差、均方根誤差和納什效率系數(shù)對模型的性能進行評價。如果比較結果顯示平均絕對誤差和均方根誤差接近0,納什效率系數(shù)接近1,則表明模型具有良好的模擬性能。統(tǒng)計參數(shù)使用以下方程計算[36]:
式中MAE、RMSE和NSE分別為平均絕對誤差、均方根誤差和納什效率系數(shù);O和C分別為第個實測值和第個計算值;為所有實測值的平均值;表示數(shù)據(jù)總個數(shù)。
注:H為供水面至土壤表面的壓力水頭,cm。
為進一步評價預測模型的準確性,利用室內(nèi)土箱試驗和已發(fā)表的有關微潤灌濕潤體運移的文獻資料[12,30,37]中的實測數(shù)據(jù)對預測模型進行驗證,并繪制實測值與預測模型計算值對比圖(圖5),且已發(fā)表文獻資料中的土壤的相關基本性質(zhì)見表4。采用式(25)~式(27)對計算值與實測值進行統(tǒng)計學分析(表4)。
注:*表示取自文獻[30]; **表示取自文獻[12];***表示取自文獻[37]。
表4 濕潤體運移距離實測值與模型計算值
由圖5可見,以各土壤的水平、垂直向上以及垂直向下方向的濕潤體運移距離的實測值與模型計算值為坐標的點均分布在1:1線附近,且利用檢驗計算得到各土壤在水平、垂直向上以及垂直向下方向的值均大于0.05,說明3個方向上各土壤的實測值與模型計算值均無顯著性差異,一致性較好。借助指標MAE、RMSE和NSE對模型誤差進行統(tǒng)計分析,如表4所示。由表4可知,MAE介于1.16~2.10 cm之間,RMSE介于1.20~2.46 cm之間,NSE介于0.83~0.95之間,模型預測效果良好。
相同和條件下,水平和垂直向上的濕潤鋒運移距離隨K的增大而減小,而垂直向下的濕潤鋒運移距離隨K的增加存在先減小后增大的現(xiàn)象。分析原因可能是:1)相同和條件下,土壤飽和度隨K的增大而減小,而飽和度越低,土壤的儲水能力越強,濕潤鋒運移越慢[38-39];2)相同和條件下,微潤管處土壤基質(zhì)勢隨K的增大而增大,而此處基質(zhì)勢越高,土壤水勢梯度越大,濕潤鋒運移越快;3)相同和條件下,K越大,越有利于土壤水分運動。文中模擬情景融合了上述3種原因的影響,使K對土壤水分運動規(guī)律的影響變得較為復雜,后期仍需進一步定量研究其影響機理。
濕潤鋒運移距離隨的增大而增大。究其原因為:1)相同K和條件下,越大,土壤初始越高,而初始越高,入滲開始前土壤孔隙所含水分越多,則土壤達到飽和狀態(tài)時所需水分越少,所需時間越短[38];2)土壤初始越大,()越大,水分在土壤中的運移速率越快[40]。濕潤鋒運移距離隨的增大而增大。主要是越大,相同時間內(nèi)進入土壤的水量越多,濕潤鋒運移越快。
灌水過程中,微潤管內(nèi)外水勢梯度會影響微潤管比流量,但作用時間較短,一般48 h后會保持穩(wěn)定,這在牛文全等[13,41]的研究中得到驗證。需要說明的是,微潤灌作為一種地下續(xù)灌技術,可能會在植物整個生育期持續(xù)灌溉,土壤水分消耗問題是不可避免的,土壤水分消耗主要包括根系吸水消耗與土壤水分蒸發(fā)損失。因此,后期將結合根系吸水和土壤水分蒸發(fā)等對水分消耗開展研究,以期將濕潤體大小保持在有效根區(qū)。
濕潤體模型包含的土壤物理參數(shù)(土壤飽和導水率和土壤基質(zhì)勢)和灌溉技術參數(shù)(微潤管比流量)容易測定,便于設計者針對不同土壤特性確定合理的灌水參數(shù)。需要說明的是,灌水推進過程中,濕潤邊界會達到地表,垂直向上的式(20)不再適用,但估算值大于微潤管埋深時可取埋深值。濕潤邊界到達地表對水平向與垂直向下的濕潤體運移影響不大,式(19)與式(21)依舊適用。
1)土壤飽和導水率、土壤基質(zhì)勢和微潤管比流量對微潤灌濕潤體運移影響顯著。3個方向(水平、垂直向上和垂直向下)濕潤鋒運移速率隨基質(zhì)勢和比流量增大而增大;隨飽和導水率的增大,水平和垂直向上的濕潤鋒運移速率逐漸減小,而垂直向下的濕潤鋒運移速率先減小后增大。
2)基于量綱分析法建立了一種均質(zhì)土微潤灌濕潤體模型。采用試驗數(shù)據(jù)進行驗證,平均絕對誤差介于1.16~2.10 cm之間,均方根誤差介于1.20~2.46 cm之間,納什效率系數(shù)介于0.83~0.95之間,所建模型估算效果良好,能夠解決微潤灌地下土壤濕潤體難以觀測的問題,為微潤灌的工程設計和田間運行提供科學依據(jù)。
[1] 張明智,牛文全,路振廣,等. 微潤灌對作物產(chǎn)量及水分利用效率的影響[J]. 中國生態(tài)農(nóng)業(yè)學報,2017,25(11):1671-1683.
Zhang Mingzhi, Niu Wenquan, Lu Zhenguang, et al. Effect of moistube-irrigation on crop yield and water use efficiency[J]. Chinese Journal of Eco-Agriculture, 2017, 25(11): 1671-1683. (in Chinese with English abstract)
[2] Sun Q, Wang Y, Chen G, et al. Water use efficiency was improved at leaf and yield levels of tomato plants by continuous irrigation using semipermeable membrane[J]. Agricultural Water Management, 2018, 203: 430-437.
[3] 余小弟,劉小剛,朱益飛,等. 土壤質(zhì)地和供水壓力對豎插式微潤管入滲的影響[J]. 排灌機械工程學報,2017,35(1):71-79.
Yu Xiaodi, Liu Xiaogang, Zhu Yifei, et al. Effects of soil texture and water pressure on moistube infiltration in vertical inserting mode[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(1): 71-79. (in Chinese with English abstract)
[4] Wang J J, Huang Y F, Long H Y, et al. Water and salt movement in different soil textures under various negative irrigating pressures[J]. Journal of Integrative Agriculture, 2016, 15(8): 1874-1882.
[5] Létourneau G, Caron J, Anderson L, et al. Matric potential-based irrigation management of field-grown strawberry: Effects on yield and water use efficiency[J]. Agricultural Water Management, 2015, 161: 102-113.
[6] 萬書勤,閆振坤,康躍虎,等. 溫室滴灌土壤基質(zhì)勢調(diào)控對番茄生長、品質(zhì)和耗水的影響[J]. 灌溉排水學報,2019,38(7):1-9.
Wan Shuqin, Yan Zhenkun, Kang Yuehu, et al. Response in growth, quality and water consumption of greenhouse tomato to change in matric potential at 20 cm below the emitter of drip irrigation [J]. Journal of Irrigation and Drainage, 2019, 38(7): 1-9. (in Chinese with English abstract)
[7] Klein I. Scheduling automatic irrigation by treshold-set soil matric potential increases irrigation efficiency while minimizing plant stress[J]. Acta Horticulturae, 2004, 664: 361-368.
[8] Liu H, Yang H, Zheng J, et al. Irrigation scheduling strategies based on soil matric potential on yield and fruit quality of mulched-drip irrigated chili pepper in Northwest China[J]. Agricultural Water Management, 2012, 115: 232-241.
[9] Contreras J I, Alonso F, Cánovas G, et al. Irrigation management of greenhouse zucchini with different soil matric potential level. Agronomic and environmental effects[J]. Agricultural Water Management, 2017, 183: 26-34.
[10] 張俊,牛文全,張琳琳,等. 初始含水率對微潤灌溉線源入滲特征的影響[J]. 排灌機械工程學報,2014,32(1):72-79.
Zhang Jun, Niu Wenquan, Zhang Linlin, et al. Effects of soil initial water content on line-source infiltration characteristic in moistube irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(1): 72-79. (in Chinese with English abstract)
[11] 牛文全,張俊,張琳琳,等. 埋深與壓力對微潤灌濕潤體水分運移的影響[J]. 農(nóng)業(yè)機械學報,2013,44(12):128-134.
Niu Wenquan, Zhang Jun, Zhang Linlin, et al. Effects of buried depth and pressure head on water movement of wetted soil during moistube-irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12): 128-134. (in Chinese with English abstract)
[12] 張國祥,申麗霞,郭云梅. 壓力水頭與土壤容重對微潤灌溉水分入滲的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2017,35(4):67-73.
Zhang Guoxiang, Shen Lixia, Guo Yunmei. Effect of pressure heads and soil bulk density on water infiltration under moistube irrigation[J]. Agricultural Research in the Arid Areas, 2017, 35(4): 67-73. (in Chinese with English abstract)
[13] 牛文全,張明智,許健,等. 微潤管出流特性和流量預報方法研究[J]. 農(nóng)業(yè)機械學報,2017,48(6):217-224.
Niu Wenquan, Zhang Mingzhi, Xu Jian, et al. Prediction methods and characteristics of flow for moistube[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(6): 217-224. (in Chinese with English abstract)
[14] 范嚴偉,趙彤,白貴林,等. 水平微潤灌濕潤體HYDRUS-2D模擬及其影響因素分析[J]. 農(nóng)業(yè)工程學報,2018,34(4):115-124.
Fan Yanwei, Zhao Tong, Bai Guilin, et al. HYDRUS-2D simulation of soil wetting pattern with horizontal moistube-irrigation and analysis of its influencing factors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 115-124. (in Chinese with English abstract)
[15] Philip J R. Travel times from buried and surface infiltration point sources[J]. Water Resources Research, 1984, 20(7): 990-994.
[16] Chu S T. Green-Ampt analysis of wetting patterns for surface emitters[J]. Journal of Irrigation and Drainage Engineering, 1994, 120(2): 414-421.
[17] Cook F J, Thorburn P J, Fitch P, et al. WetUp: A software tool to display approximate wetting patterns from drippers[J]. Irrigation Science, 2003, 22(3/4): 129-134.
[18] Moncef H, Khemaies Z. An analytical approach to predict the moistened bulb volume beneath a surface point source[J]. Agricultural Water Management, 2016, 166: 123-129.
[19] Brandt A, Bresler E, Diner N, et al. Infiltration from a Trickle Source: I. Mathematical Models[J]. Soil Science Society of America Journal, 1971, 35(5): 683-689.
[20] ?im?nek J, van Genuchten M T, ?ejna M. Development and applications of the HYDRUS and STANMOD software packages and related codes[J]. Vadose Zone Journal, 2008, 7(2): 587-600.
[21] Schwartzman M, Zur B. Emitter spacing and geometry of wetted soil volume[J]. Journal of Irrigation and Drainage Engineering, 1986, 112(3): 242-253.
[22] Malek K, Peters R T. Wetting pattern models for drip irrigation: New empirical model[J]. Journal of Irrigation and Drainage Engineering, 2011, 137(8): 530-536.
[23] Al-Ogaidi A A M, Wayayok A, Rowshon M K, et al. Wetting patterns estimation under drip irrigation systems using an enhanced empirical model[J]. Agricultural Water Management, 2016, 176: 203-213.
[24] 范嚴偉,邵曉霞,王英,等. 垂直線源灌土壤濕潤體尺寸預測模型研究[J]. 農(nóng)業(yè)機械學報,2018,49(10):336-346.
Fan Yanwei, Shao Xiaoxia, Wang Ying, et al. Empirical model for predicting wetted soil dimensions under vertical line source irrigation[J].Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 336-346. (in Chinese with English abstract)
[25] Kandelous M M, Simunek J. Comparison of numerical, analytical, and empirical models to estimate wetting patterns for surface and subsurface drip irrigation[J]. Irrigation Science, 2010, 28(5): 435-444.
[26] Subbaiah R. A review of models for predicting soil water dynamics during trickle irrigation[J]. Irrigation Science, 2013, 31(3): 225-258.
[27] Al-Ogaidi A A M, Wayayok A, Kamal M R, et al. Modelling soil wetting patterns under drip irrigation using HYDRUS-3D and comparison with empirical models[J]. Global Journal of Engineering and Technology Review, 2016, 1: 17-25.
[28] Richards L A. Capillary conduction of liquids through porous mediums[J]. Journal of Applied Physics, 1931, 1(5): 318-333.
[29] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
[30] 張俊,牛文全,張琳琳,等. 微潤灌溉線源入滲濕潤體特性試驗研究[J]. 中國水土保持科學,2012,10(6):32-38.
Zhang Jun, Niu Wenquan, Zhang Linlin, et al. Experimental study on characters of wetted soil in moistube irrigation[J]. Science of Soil and Water Conservation, 2012, 10(6): 32-38. (in Chinese with English abstract)
[31] 張國祥,申麗霞,郭云梅. 微潤灌溉條件下土壤質(zhì)地對水分入滲的影響[J]. 灌溉排水學報,2016,35(7):35-39.
Zhang Guoxiang, Shen Lixia, Guo Yunmei. Effect of soil structure on water infiltration under moistube irrigation[J]. Journal of Irrigation & Drainage, 2016, 35(7): 35-39. (in Chinese with English abstract)
[32] Carsel R F, Parrish R S. Developing joint probability distributions of soil water retention characteristics[J]. Water Resources Research, 1988, 24(5): 755-769.
[33] Pachepsky Y, Park Y. Saturated hydraulic conductivity of us soils grouped according to textural class and bulk density[J]. Soil Science Society of America Journal, 2015, 79(4): 1094-1100.
[34] Fan Y W, Huang N, Zhang J, et al. Simulation of soil wetting pattern of vertical moistube-irrigation[J]. Water, 2018, 10(5): 1-19.
[35] ?im?nek J, ?ejna M, van Genuchten M T. The HYDRUS-2D Software Package for Simulating the Two-dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media: Version 2.0[M]. California: US Salinity Laboratory, Agricultural Research Service, US Department of Agriculture, 1999.
[36] Moriasi D N, Arnold J G, Liew M W V, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3): 885-900.
[37] 樊二東,王新坤,肖思強,等. 壓力水頭對微潤灌溉土壤水分運移試驗研究[J]. 排灌機械工程學報,2019,37(11):986-992.
Fan Erdong, Wang Xinkun, Xiao Siqiang, et al. Experimental study of pressure head on water migration in soil under moistube-irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37(11): 986-992. (in Chinese with English abstract)
[38] 聶衛(wèi)波,馬孝義,王術禮. 溝灌入滲濕潤體運移距離預測模型[J]. 農(nóng)業(yè)工程學報,2009,25(5):20-25.
Nie Weibo, Ma Xiaoyi, Wang Shuli. Forecast model for wetting front migration distance under furrow irrigation infiltration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 20-25.(in Chinese with English abstract)
[39] 曾辰,王全九,樊軍. 初始含水率對土壤垂直線源入滲特征的影響[J]. 農(nóng)業(yè)工程學報,2010,26(1):24-30.
Zeng Chen, Wang Quanjiu, Fan Jun. Effect of initial water content on vertical line-source infiltration characteristics of soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(1): 24-30. (in Chinese with English abstract)
[40] 王衛(wèi)華,王全九,樊軍. 原狀土與擾動土導氣率、導水率與含水率的關系[J]. 農(nóng)業(yè)工程學報,2008,24(8):25-29.
Wang Weihua, Wang Quanjiu, Fan Jun. Relationship between air permeability, water conductivity and water content for undisturbed and disturbed soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(8): 25-29.(in Chinese with English abstract)
[41] 張國祥,趙愛琴. “痕量灌溉”理論支撐與技術特點的質(zhì)疑[J]. 農(nóng)業(yè)工程學報,2015,31(6):1-7.
Zhang Guoxiang, Zhao Aiqin. Query about theory and technical properties of trace quantity irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 1-7. (in Chinese with English abstract)
Establishment and validation of wetting pattern model of moistube irrigation in homogeneous soil
Fan Yanwei1, Yang Zhiwei1, Hu Wulong2
(1.730050;2.430070)
Moistube irrigation is a kind of underground line source infiltration irrigation technology developed by using the principle of polymer semi permeable membrane. The growth and yield of crops are affected by the shape and size of soil wetting pattern but the wetting pattern is not easy to observe. Therefore, it is very important to understand the shape and size of wetting pattern for the design of economic and efficient moistube irrigation system. In order to facilitate users to quickly evaluate the moistube irrigation wetting pattern, a total of 56 moistube irrigation scenarios (different combinations of eight soil textures, three soil matrix potentials and ten specific discharges of moistube) were set up. By using HYDRUS-2D software, the dynamic changes of wetting pattern under different combinations of soil saturated hydraulic conductivity, soil matrix potential and specific discharge of moistube were simulated and analyzed. The results showed that before the soil wetting front reached the surface, there was little difference in the shape of the soil wetting pattern, and its contour was almost "elliptical cylinder"; after the wetting front reached the surface, the shape of the wetting pattern at the upper part of the moistube changed from "semi ellipse" to "trapezoid", and the shape of the wetting pattern at the lower part of the moistube kept "semi ellipse". In general, soil saturated hydraulic conductivity, soil matrix potential and specific discharge of moistube had little influence on the shape of the moistube irrigation soil wetting pattern; The size of moistube irrigation soil wetting pattern at the vertical downward was larger than that at the horizontal direction and vertical upward, and with the extension of irrigation time, the wetting pattern expanded outward gradually, but the expansion rate decreased gradually. Under the condition of homogeneous soil, the contour of moistube irrigation wetting pattern was divided into two parts: the upper part and the lower part. When the upper part of the wetting boundary did not reach the surface, it could be expressed by semi elliptic equation. Under the same soil matrix potential and specific discharge of moistube conditions, with the increase of soil saturated hydraulic conductivity, at the same time, the vertical upward and horizontal migration distance of the wet front gradually decreased, while the vertical downward migration distance of the wet front first decreased and then increased; Under the same soil saturated hydraulic conductivityand specific discharge of moistube conditions, there was a positive correlation between the migration distance of the wetting front and soil matrix potential in three directions. The higher the soil matrix potential value resulted in the greater the migration distance of the wetting pattern at the same time; Under the same soil saturated hydraulic conductivity and soil matrix potential conditions, the migration distance of wetting pattern was positively correlated with specific discharge of moistube. The larger the specific discharge of moistube value could result in the faster the migration speed of wetting pattern and the larger the size of wetting pattern at the same time. Generally speaking, soil saturated hydraulic conductivity, soil matrix potential and specific discharge of moistube had significant influence on the migration of wetting pattern in moistube irrigation. On this basis, taking into the influence factors such as the total water seepage per unit length, soil saturated hydraulic conductivity, soil matrix potential and specific discharge of moistube, and based on the dimensional analysis method, the estimation model for the wetting pattern of moistube irrigation of homogeneous soil was established, and the undetermined parameters of the model were obtained quantitatively by using the numerical simulation results. Finally, the reliability of the estimation model was evaluated by the test data. The mean absolute error was not more than 2.10 cm, the root mean square error was not more than 2.46 cm, and the Nash efficiency coefficient was not less than 0.83 of statistical index of the model. It showed that the measured value was consistent with the estimated value of the model, and the model estimation effect was well. It provides a scientific basis for the operation and management of moistube irrigation engineering.
models; soils; wetting pattern; dimensional analysis; moistube irrigation
范嚴偉,楊志偉,胡五龍. 均質(zhì)土微潤灌濕潤體模型構建及驗證[J]. 農(nóng)業(yè)工程學報,2020,36(13):83-91.doi:10.11975/j.issn.1002-6819.2020.13.010 http://www.tcsae.org
Fan Yanwei, Yang Zhiwei, Hu Wulong. Establishment and validation of wetting pattern model of moistube irrigation in homogeneous soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 83-91. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.13.010 http://www.tcsae.org
2020-03-25
2020-06-10
國家自然科學基金項目(51409137、51969013);甘肅省科學基金項目(18JR3RA144)
范嚴偉,博士,副教授,主要從事水土資源利用和節(jié)水灌溉技術方面的研究。Email:fanyanwei24@163.com
10.11975/j.issn.1002-6819.2020.13.010
S274.3; S155.4+4
A
1002-6819(2020)-13-0083-09