王新坤,姚吉成,徐勝榮,張中華,朱登平,李 華
噴管仰角和長度對負(fù)壓反饋射流噴頭水力性能的影響
王新坤1,姚吉成1,徐勝榮1,張中華2,朱登平2,李 華2
(1. 江蘇大學(xué)流體機械工程技術(shù)研究中心,鎮(zhèn)江 212013;2. 華維節(jié)水科技集團(tuán)股份有限公司/上海節(jié)水灌溉工程技術(shù)研究中心,上海 201505)
負(fù)壓反饋射流噴頭(簡稱射流噴頭)是中國自主研發(fā)的新型中程灌溉噴頭。噴管是噴頭的重要組成部分,對噴頭水力性能影響重大。為針對性研究噴管參數(shù)(仰角、長度組合)對射流噴頭水力性能的影響,尋找最優(yōu)噴管參數(shù),開展了不同噴管參數(shù)下射流噴頭與PY210搖臂式噴頭水力性能對比試驗。結(jié)果表明,在相同主噴嘴尺寸時,不同工作壓力和不同噴管參數(shù)下,射流噴頭均同比搖臂式噴頭射程遠(yuǎn)1~2.5 m;射流噴頭水量分布中近程呈現(xiàn)較好的“三角形”分布,遠(yuǎn)處出現(xiàn)水量“凸峰”。最后對試驗數(shù)據(jù)采用綜合評分法和熵權(quán)法進(jìn)行分析,同時綜合考慮實際噴頭野外抗風(fēng)性能和單一造價,確定最優(yōu)綜合評分下的主副噴管參數(shù)為:主副噴管長度組合4.2 cm×4.2 cm,工作壓力為0.20~0.30 MPa時,主副噴管仰角40°×40°;工作壓力為0.35 MPa時,主副噴管仰角30°×30°。
噴管;射程;水量分布;綜合評分法;負(fù)壓反饋射流噴頭
噴灌是國際公認(rèn)的一種高效節(jié)水灌溉技術(shù),廣泛應(yīng)用于農(nóng)業(yè)、畜牧業(yè)、園林景觀等領(lǐng)域[1-2]。噴頭是噴灌系統(tǒng)的重要組成部分,其性能的好壞直接影響著噴灌工程的整體造價和噴灑效果[3-5]。噴頭的水力性能主要包括射程,噴灑均勻度,雨滴打擊強度等。射程決定了噴灑濕潤面積,進(jìn)一步直接影響噴頭間距布置、管道間距、噴頭數(shù)量及支管用量,從而影響噴灌工程的投資[6]。噴灑均勻度和雨滴打擊強度決定著整體噴灑效果和適用的作物和土壤類型[7]。噴灑均勻度越高噴灑效果越好,有利于作物的均勻生長;雨滴打擊強度越小對作物和土壤打擊傷害越小,噴頭適用范圍也越廣[8-9]。
搖臂式噴頭是目前市場上應(yīng)用最為廣泛的噴頭之一,具有性能穩(wěn)定,噴灑均勻性好等優(yōu)點,但其驅(qū)動機構(gòu)較復(fù)雜,易磨損老化[10-12]。全射流噴頭是中國自主研發(fā)的一種新型灌溉噴頭,利用射流的附壁效應(yīng)完成噴頭的直射、步進(jìn)和反向功能,具有結(jié)構(gòu)簡單,水力性能好等優(yōu)點[13-15]。負(fù)壓反饋射流噴頭(以下簡稱射流噴頭)是王新坤等[16-18]基于射流附壁切換技術(shù)設(shè)計的一種國產(chǎn)新型灌溉噴頭,其團(tuán)隊隨后針對射流噴頭的射流原件參數(shù)對脈沖特性的影響進(jìn)行了模擬選優(yōu)研究,并對不同直徑主副噴嘴組合下噴頭水力性能進(jìn)行試驗研究,研究表明射流噴頭結(jié)構(gòu)簡單,脈沖特性顯著,水力性能較好。噴管是噴頭的重要組成部分,其仰角和長度組合對噴頭的水力性能影響較大[19-20]。區(qū)別于搖臂式噴頭的雙向無切換連續(xù)出射特性,射流噴頭具有獨特的水流左右兩側(cè)偏轉(zhuǎn),脈沖間斷出射的特點,導(dǎo)致其水流湍能較大,平順度差。合適的主副噴管仰角和長度組合有助于減少壓力水流與噴管內(nèi)壁的碰撞能量損失,增加水流出射平順度,對噴頭水力性能具有重要影響,但目前未有針對性研究。鑒于此,本文對射流噴頭主副噴管仰角和長度組合對噴頭射程,雨量分布,噴灌均勻性等水力性能影響進(jìn)行研究,以期為該型國產(chǎn)噴頭工程應(yīng)用提供可借鑒的理論數(shù)據(jù)支撐。
基于射流附壁切換技術(shù)設(shè)計的射流噴頭,工作時壓力水流會進(jìn)行左右周期性偏轉(zhuǎn)出射,水流的高頻次偏轉(zhuǎn)與碰撞會造成較大能量損失。圖1為射流噴頭流道結(jié)構(gòu)與射流偏轉(zhuǎn)右側(cè)時的Fluent模擬壓力云圖[21]。由圖1 b分析可知,當(dāng)紅色主射流偏轉(zhuǎn)至右側(cè)時,會與右側(cè)噴管內(nèi)壁產(chǎn)生多次碰撞,而碰撞會加大橫向環(huán)流和渦流的產(chǎn)生,造成能量損失,同時影響噴頭出射水流平順度,對噴頭穩(wěn)定性和水力性能影響顯著。合適的主副噴管仰角和長度組合有利于減少壓力水流的碰撞損失,增加出射水流平順度。
注:是噴頭進(jìn)口公稱直徑,mm;1是進(jìn)口收縮角,(°);是射流元件進(jìn)口寬度,mm;是射流元件進(jìn)口深度,mm;是控制道寬度,mm;是位差,mm;是側(cè)壁傾角,(°);1是劈距,mm;c1是分流劈半徑,mm;cp是彎頭曲率半徑,mm;cm1是主噴管長度,cm;cm2是副噴管長度,cm;是噴管仰角,(°);c1是主噴嘴直徑,mm;c2是副噴嘴直徑,mm。
Note:is the nominal diameter of the sprinkler inlet, mm;1is the inlet contraction angle, °;is the inlet width of the jet element, mm;is the inlet depth of the jet element, mm;is the width of the control channel, mm;is the offset mm;is the side wall inclination angle, (°);1is the split pitch, mm;c1is the shunt structure radius, mm;cpis the radius of curvature of the elbow, mm;cm1is the length of the main nozzle, cm;cm2is the length of the sub-nozzle, cm;is the elevation angle of the nozzle, (°);c1is the diameter of the main nozzle, mm;c2is the diameter of the sub-nozzle, mm.
圖1 負(fù)壓反饋射流噴頭流道結(jié)構(gòu)與壓力云圖
Fig.1 Negative pressure feedback jet sprinkler flow channel and pressure contour
試驗于江蘇大學(xué)噴灌試驗室內(nèi)進(jìn)行,針對不同噴管仰角和長度組合下的射流噴頭和PY210搖臂式噴頭(以下簡稱搖臂噴頭)進(jìn)行水力性能對比試驗。搖臂噴頭的主要參數(shù)為:主副噴管仰角均為30°,長度4.5 cm×25 cm,主副噴嘴直徑4 mm×3 mm??紤]到噴頭的整體設(shè)計和噴管直徑對壓力補償系數(shù)的影響[22-24],設(shè)計噴管直徑為7 mm。中、近射程噴頭的噴管長度一般取4~10[25],因此試驗所用的“主×副”噴管長度設(shè)計為4.2 cm×4.2 cm、5.6 cm×4.2 cm、7.0 cm×4.2 cm、5.6 cm×5.6 cm、7.0 cm× 5.6 cm、7.0 cm×7.0 cm;仰角參照搖臂式噴頭設(shè)計[26]分別取20°、30°、40°和50°。
試驗采用控制變量法。在研究不同主副噴管仰角對噴頭水力性能影響時,保持噴頭其他尺寸不變,主要為位差2 mm;側(cè)壁傾角10°;劈距28 mm;主副噴管長度組合4.2 cm×4.2 cm;主副噴嘴直徑4 mm×4 mm。同理在研究不同噴管組合對射流噴頭水力性能影響時,主副噴管仰角控制為30°,其他尺寸保持不變。同時,考慮到主副噴管采用不同仰角會引起噴頭受到的側(cè)向壓力不對稱,影響噴頭轉(zhuǎn)動均勻性,試驗中主副噴管仰角采取同步變化;由于轉(zhuǎn)動周期對射程對比影響較大,為減少試驗誤差,試驗中通過增減塑膠墊片來調(diào)整轉(zhuǎn)動機構(gòu)的松緊度進(jìn)而控制噴頭轉(zhuǎn)動周期,按照《噴灌工程技術(shù)規(guī)范》[27]轉(zhuǎn)動周期控制在3.0~3.5 min。具體試驗方案設(shè)計參照GB/T 22999-2008[28]。
旋轉(zhuǎn)式噴頭的性能評價指標(biāo)較多,主要有射程、噴灌均勻性等。因此對試驗結(jié)果采用綜合評分法[29]進(jìn)行分析選優(yōu)。在多指標(biāo)綜合評價體系中,權(quán)重的選取直接影響著最終評分結(jié)果。權(quán)重的確定主要分為主觀賦權(quán)法和客觀賦權(quán)法兩大類。主觀賦權(quán)法是由相關(guān)行業(yè)專家憑借積累的經(jīng)驗進(jìn)行選取權(quán)重的方法,不受指標(biāo)取值的影響;客觀賦權(quán)法是根據(jù)原始數(shù)據(jù)之間的關(guān)系,通過一定的數(shù)學(xué)方法來進(jìn)行權(quán)重選取的方法,其結(jié)果不依賴人的主觀判斷,具有較強的數(shù)學(xué)理論依據(jù)。常用的客觀賦權(quán)法主要有熵權(quán)法、主成分分析法、層次分析法、標(biāo)準(zhǔn)離差法等。本文選擇熵權(quán)法進(jìn)行權(quán)重的選取,并采用直接加權(quán)法進(jìn)行綜合評分。具體計算方法如下[30]:
對個樣本,個指標(biāo),y為第個樣本的第個指標(biāo)的數(shù)值(1…,;=1,…,),本文y指不同試驗工況下的灌水均勻性系數(shù)與射程的試驗值。
各指標(biāo)標(biāo)準(zhǔn)化處理:
第項指標(biāo)的熵值:
各項指標(biāo)的權(quán)重:
其中,d=1?e。
各工況下的綜合得分:
不同噴管仰角和噴管長度組合下的射流噴頭與搖臂噴頭的射程對比,如圖2所示。由圖2a可以看出,僅當(dāng)噴管仰角為20°時射流噴頭射程小于PY210搖臂噴頭,其余仰角下射流噴頭在不同壓力下的射程均同比搖臂噴頭遠(yuǎn)1 ~2.5 m,主要是由于射流噴頭出射水流具有強烈脈沖湍動能引起的。當(dāng)噴管仰角為30°時,射流噴頭射程隨工作壓力增加呈遞增趨勢,且仰角為30°,工作壓力為0.35 MPa時射程達(dá)到最大值14 m,此時仰角較為合適;當(dāng)噴管仰角為40°和50°時,射程隨著工作壓力增加呈先增后減趨勢,工作壓力為0.25 MPa時達(dá)到極大值13.7 m,主要是因為壓力增大導(dǎo)致出射水流破碎加劇,射流末端破碎加劇引起末端水簾迎風(fēng)阻力增加,導(dǎo)致噴頭射程減小。
由圖2b可以看出,當(dāng)主副噴管長度組合為4.2 cm× 4.2 cm、5.6 cm×4.2 cm、7.0 cm×4.2 cm時,射流噴頭的射程同比PY10搖臂式噴頭較遠(yuǎn),其中主副噴管組合為4.2 cm×4.2 cm時射程最遠(yuǎn),在0.30 MPa時達(dá)到極大值13.5 m;且在副噴管長度不變情況下,噴頭射程隨主噴管長度增加而減小,這是因為射流噴頭噴管內(nèi)部流動為高頻脈沖間斷沖擊出流,噴管長度增加會加劇內(nèi)部水流的碰撞,水流紊亂程度加劇,導(dǎo)致壓力損失增加引起射程減??;同時射程隨著工作壓力增加呈先增后減趨勢,主要是因為壓力增大導(dǎo)致出射水流破碎加劇,主射流剝離加劇,導(dǎo)致射程減小。由主副噴管長度組合為7.0 cm× 4.2 cm、7.0 cm×5.6 cm、7.0 cm×7.0 cm時,噴頭射程變化趨勢可以看出,在主噴管長度不變的情況下,噴頭射程隨副噴管長度增加而減小,這是由于噴頭內(nèi)部的射流偏轉(zhuǎn)不僅與控制管處的偏向流有關(guān),主副噴嘴處的脈沖壓力回流對射流的偏轉(zhuǎn)也具有較大影響,副噴管長度增加在一定程度上對主射流偏轉(zhuǎn)產(chǎn)生了影響,造成主噴管內(nèi)部水流流態(tài)的變化,進(jìn)而引起噴頭射程的變化。
圖2 不同噴管仰角和長度組合下射流噴頭與搖臂式噴頭射程對比
圖3、4分別為不同噴管仰角和不同主副噴管長度組合下的射流噴頭與搖臂式噴頭徑向降水曲線對比圖。對于中近程噴頭要求徑向降水曲線成三角形較好[31]。由圖3可以看出,不同工作壓力下,搖臂噴頭的徑向降水曲線差別較小,均表現(xiàn)為水量距噴頭距離近處少,中間多,整體呈梯形分布。
圖3 不同工作壓力和噴管仰角下射流噴頭與搖臂噴頭徑向降水深對比
對于射流噴頭,當(dāng)噴管仰角為20°時,在不同工作壓力下,水量分布整體相似,呈現(xiàn)近處和遠(yuǎn)處的水量多、中間少趨勢,在距離噴頭6~8 m處,出現(xiàn)水量凹峰,主要是因為小仰角下副噴嘴的射程較近。
當(dāng)噴管仰角為30°、40°時,在工作壓力為0.20、0.30、0.35 MPa時徑向水量呈現(xiàn)近、中處多趨勢,在距離噴頭8~10 m處,出現(xiàn)水量凹峰。0.25 MPa下主副噴嘴射程搭配較好,水量分布整體呈現(xiàn)類“三角形”。
當(dāng)噴管仰角為50°時,徑向水量呈現(xiàn)近處多,中間少分布。在2~4 m處水量驟然增加,主要是由于仰角過大,水滴在空中破碎,漂移近處較多。8~10 m處水量凹峰的出現(xiàn),主要是因為高仰角下副噴嘴射程較近,主副噴嘴射程搭配不合理。
由圖4可以看出,不同主副噴管長度組合下的射流噴頭徑向降水曲線變化趨勢差別較小,說明噴管長度變化對水量分布影響較小。水量分布主要呈現(xiàn)近中處“三角形分布”,遠(yuǎn)處水量增加,形成水量凸峰,且隨著工作壓力增大凸峰高度不斷降低,這是由于壓力的增加加劇了射流的破碎,使得水量分布更加均勻,水量凸峰變緩。水量凸峰的形成主要是因為射流噴頭的脈沖間斷出射水流的湍動能較大,導(dǎo)致末端水滴較大,因此末端水量較多??傮w來看,在0.35 MPa下的水量分布較好,呈“三角形分布”,主要是由于大壓力下的出射水流破碎,霧化效果較好,一定程度上彌補了中間水量。
圖4 不同工作壓力和噴管長度組合下射流噴頭與搖臂噴頭徑向降水深對比圖
單一噴頭的噴灌均勻性系數(shù)在實際工程應(yīng)用中意義不大。因此在測量不同噴管仰角與長度組合下的噴灌均勻性試驗中,采用噴灌工程中常用的正方形布置,各噴頭組合間距1.2(為射程)[32]。噴灌均勻性系數(shù)計算,根據(jù)圖3、4的噴頭徑向降水深,采用噴灌工程中常用的Christiansen法[33-34]由MATLAB軟件編程計算得出。
圖5為不同噴管仰角和不同長度組合下的射流噴頭與PY210搖臂式噴頭的噴灌均勻性系數(shù)隨工作壓力變化趨勢對比圖。由圖5 a可知,對于射流噴頭噴管仰角越大,噴灌均勻性越高。不同噴管仰角下的射流噴頭噴灌均勻性與搖臂式同比較低,相差范圍為0~13%。且當(dāng)進(jìn)口水壓為0.25 MPa和0.35 MPa時,除噴管仰角20°外,其他仰角下的射流噴頭噴灌均勻性相差較小。由圖5b可知,主副噴管組合為4.2 cm×4.2 cm、7.0 cm×4.2 cm時,射流噴頭噴灌均勻性較高且隨工作壓力波動較小與搖臂式噴頭相似。其他噴管長度組合下的噴灌均勻性較差,噴灌均勻性隨壓力增加而增加,其中主副噴管組合為7.0 cm×7.0 cm和7.0 cm×5.6 cm時,分別在工作壓力為0.30和0.35 MPa時噴灌均勻性系數(shù)同比搖臂式噴頭較高。
圖5 不同噴管仰角和長度組合下的射流噴頭與搖臂式噴頭噴灌均勻性系數(shù)對比
不同噴管仰角和長度組合下射流噴頭水力性能試驗結(jié)果分析如表1、2所示。
表1 不同主副噴管仰角組合試驗結(jié)果分析
注:灌水均勻性系數(shù)與射程的權(quán)重分別為0.5576,0.4424。
Note: Weights of the irrigation uniformity coefficient and range are 0.5576, 0.4424, respectively.
表2 不同主副噴管長度組合多指標(biāo)試驗結(jié)果分析
注:灌水均勻性系數(shù)與射程的權(quán)重分別為0.611 8,0.388 2
Note: Weights of the irrigation uniformity coefficient and range are 0.611 8 ,0.388 2, respectively.
以S作為噴頭綜合水力性能評價指標(biāo),當(dāng)工作壓力為0.20 MPa,主副噴管仰角為50°×50°時,單一工況下綜合評分最高為0.823;當(dāng)工作壓力為0.35 MPa,主副噴管仰角為30°×30°時次之,單一工況綜合評分為0.716。同時,當(dāng)主副噴管仰角為40°×40°時,噴頭在壓力為0.25~0.35 MPa評分也較高,為0.707~0.718。
由于噴灌工程在實際運行時,噴頭工作壓力為額定值,且工作壓力是影響噴灌系統(tǒng)實際運行能耗的重要指標(biāo),同時噴管仰角越大,噴頭野外運行抗風(fēng)性越差,不利于噴頭性能發(fā)揮。綜合考慮設(shè)計工作壓力對噴灌工程造價的影響和噴頭的野外抗風(fēng)性能。不宜采用主副噴管仰角為50°×50°,建議噴灌工程設(shè)計工作壓力為0.35 MPa時,主副噴管仰角為30°×30°。設(shè)計工作壓力為0.20~0.30 MPa時,采用主副噴管仰角為40°×40°。
噴管越長,單一噴頭的成本也相應(yīng)越高。同時工作壓力越高,噴灌工程能耗也越高。當(dāng)主副噴灌組合為4.2 cm×4.2 cm時,各壓力下評分均較高。結(jié)合以上分析結(jié)果,綜合考慮成本和綜合評分結(jié)果,主副噴管長度組合擇優(yōu)選用4.2 cm×4.2 cm。
1)通過對不同主副噴管參數(shù)(包括仰角與長度)的負(fù)壓反饋射流噴頭與PY210搖臂式噴頭的射程進(jìn)行對比試驗,發(fā)現(xiàn)射流噴頭的射程同比搖臂遠(yuǎn)1~2.5 m,主要是由于射流噴頭出射水流具有強烈脈沖湍能。
2)試驗發(fā)現(xiàn),負(fù)壓反饋射流噴頭水量分布不同于搖臂式噴頭,不同工作壓力下的近中處水量分布整體呈現(xiàn)“三角形”分布,在射程遠(yuǎn)處會出現(xiàn)一個水量“凸峰”,“凸峰”隨工作壓力增加漸緩。
3)采用綜合評分法對試驗數(shù)據(jù)進(jìn)行評價分析,并綜合考慮實際運行的抗風(fēng)性能、成本,給出了負(fù)壓反饋射流噴頭主副噴管的建議工作參數(shù)分別為:主副噴管長度組合4.2 cm×4.2 cm,工作壓力為0.20~0.30 MPa時,主副噴管仰角40°×40°;工作壓力為0.35 MPa時,主副噴管仰角30°×30°。
由于負(fù)壓反饋射流噴頭設(shè)計還處于初級階段,本文并未對影響噴頭水量分布影響較大的驅(qū)動擋板進(jìn)行針對性研究,后續(xù)可開展相應(yīng)研究。同時可增加對噴管內(nèi)增設(shè)穩(wěn)流器進(jìn)行相關(guān)模擬與試驗研究,進(jìn)一步優(yōu)化噴頭水力性能。
[1] 康紹忠. 貫徹落實國家節(jié)水行動方案推動農(nóng)業(yè)適水發(fā)展與綠色高效節(jié)水[J]. 中國水利,2019(13):1-6.
Kang Shaozhong. National water conservation initiative for promoting water-adapted and green agriculture and highly-efficient water use[J]. China Water Resources, 2019(13): 1-6. (in Chinese with English abstract)
[2] 袁壽其,李紅,王新坤. 中國節(jié)水灌溉裝備發(fā)展現(xiàn)狀、問題、趨勢與建議[J]. 排灌機械工程學(xué)報,2015,33(1):78-92.
Yuan Shouqi, Li Hong, Wang Xinkun. Status, problems, trends and suggestions for water-saving irrigation equipment in China[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(1): 78-92. (in Chinese with English abstract)
[3] 袁壽其,李紅,王新坤,等. 噴微灌技術(shù)與設(shè)備[M]. 北京:中國水利水電出版社,2015.
[4] 李紅,袁壽其,謝福琪,等. 隙控式全射流噴頭性能特點及與搖臂式噴頭的比較研究[J]. 農(nóng)業(yè)工程學(xué)報,2006,22(5):82-85.
Li Hong, Yuan Shouqi, Xie Fuqi, et al. Performance characteristics of fluidic sprinkler controlled by clearance and comparison with impact sprinkler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(5): 82-85. (in Chinese with English abstract)
[5] 嚴(yán)海軍,劉竹青,王福星,等. 我國搖臂式噴頭的研究與發(fā)展[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報,2007,12(1):77-80.
Yan Haijun, Liu Zhuqing, Wang Fuxing, et al. Research and development of impact sprinklers in China[J]. Journal of China Agricultural University, 2007, 12(1): 77-80. (in Chinese with English abstract)
[6] 喻黎明. 國內(nèi)外幾種主要噴頭水力性能測試與評價[D]. 楊凌:西北農(nóng)林科技大學(xué),2002.
Yu Liming. The Test and the Remark of the Hydraulic Performance of Several Main Sprinklers at Home and Abroad[D]. Yangling: Northwest A&F University, 2002. (in Chinese with English abstract)
[7] 朱忠銳,范永申,段福義,等. 噴灌灌水與施肥對春小麥水分動態(tài)及產(chǎn)量的影響[J]. 排灌機械工程學(xué)報,2019,37(2):174-178.
Zhu Zhongrui, Fan Yongshen, Duan Fuyi, et al. Effects of sprinkler irrigation and fertilization on water dynamic and yield of spring wheat[J]. Journal of Drainage and Irrigation Engineering, 2019, 37(2): 174-178. (in Chinese with English abstract)
[8] 李英能. 對我國噴灌技術(shù)發(fā)展若干問題的探討[J]. 節(jié)水灌溉,2000(1):1-3.
Li Yingneng. A discussion on several problems of sprinkler irrigation technique development in China[J]. Water Saving Irrigation, 2000(1): 1-3. (in Chinese with English abstract)
[9] 施少培,謝崇寶,高虹,等. 噴灌技術(shù)發(fā)展歷程及設(shè)備存在問題的探討[J]. 節(jié)水灌溉,2013(11):78-81.
Shi Shaopei, Xie Chongbao, Gao Hong, et al. Sprinkler irrigation technology development and existing equipment problems[J]. Water Saving Irrigation, 2013(11): 78-81. (in Chinese with English abstract)
[10] 王子君,惠鑫,黎耀軍,等. 搖臂式噴頭噴嘴結(jié)構(gòu)改進(jìn)及水力性能試驗研究[J]. 水利學(xué)報,2019,50(4):1-9.
Wang Zijun, Hui Xin, Li Yaojun, et al. Optimization of nozzle structure and investigation on hydraulic performance of impact sprinkler[J]. Journal of Hydraulic Engineering, 2019, 50(4): 1-9. (in Chinese with English abstract)
[11] 范興科,吳普特,馮浩,等. 全圓旋轉(zhuǎn)搖臂式噴頭的非圓形域噴灑[J]. 灌溉排水學(xué)報,2006,25(1):58-61.
Fan Xingke, Wu Pute, Feng Hao, et al. Non-circular spray region of the round rotatory rocker arm sprinkler[J]. Journal of Irrigation & Drainage, 2006, 25(1): 58-61. (in Chinese with English abstract)
[12] 湯躍,趙進(jìn),陳超,基于ADAMS的垂直搖臂式噴頭多體動力學(xué)建模與優(yōu)化[J]. 農(nóng)機化研究,2016(9):28-32.
Tang Yue, Zhao Jin, Chen Chao. Dynamic simulation and optimization of vertical impact drive sprinkler by considering friction coefficient[J]. Journal of Agricultural Mechanization Research, 2016(9): 28-32. (in Chinese with English abstract)
[13] 朱興業(yè),袁壽其,李紅. 全射流噴頭與搖臂式噴頭的對比實驗[J]. 農(nóng)業(yè)機械學(xué)報,2008,39(2):70-72.
Zhu Xingye, Yuan Shouqi, Li Hong. Compared experiments between complete fluidic sprinkler and impact sprinkler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(2): 70-72. (in Chinese with English abstract)
[14] 劉俊萍,袁壽其,李紅,等. 全射流噴頭射程與噴灑均勻性影響因素分析與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2008,39(11):51-54.
Liu Junping, Yuan Shouqi, Li Hong, et al. Analysis and experiment on influencing factors of range and spraying uniformity for complete fluidic sprinkler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(11): 51-54. (in Chinese with English abstract)
[15] 袁壽其,朱興業(yè),李紅,等. 全射流噴頭內(nèi)部流場計算流體動力學(xué)數(shù)值模擬[J]. 農(nóng)業(yè)機械學(xué)報,2005,36(10):46-49.
Yuan Shouqi, Zhu Xingye, Li Hong, et al. Numerical simulation of inner flow for complete fluidic sprinkler using computational fluid dynamics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(10): 46-49. (in Chinese with English abstract)
[16] 王新坤. 一種雙噴嘴射流噴頭及噴灑方法. CN105944856B[P]. 2019-01-08.
[17] 王新坤,徐勝榮,樊二東,等. 全圓旋轉(zhuǎn)射流噴頭設(shè)計與水力性能試驗[J]. 農(nóng)業(yè)機械學(xué)報,2019,50(2):132-137,146. Wang Xinkun, Xu Shengrong, Fan Erdong, et al. Structure design and hydraulic performance test of round rotatory jet sprinkler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 132-137, 146. (in Chinese with English abstract)
[18] 王新坤,薛子龍,徐勝榮,等. 雙噴嘴負(fù)壓反饋射流噴頭水力性能研究[J]. 農(nóng)業(yè)機械學(xué)報,2019,50(11):278-284.
Wang Xinkun, Xue Zilong, Xu Shengrong, et al. Hydraulic performance of negative pressure feedback jet sprinkler with double nozzles[J] Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 278-284, 146. (in Chinese with English abstract)
[19] 王玄,李廣,郭聰聰,等. 搖臂式噴頭副噴嘴仰角及位置參數(shù)的優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(11):89-95.
Wang Xuan, Li Guang, Guo Congcong, et al. Optimization of impact sprinkler sub-nozzle parameters of elevation angle and position[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 89-95.(in Chinese with English abstract)
[20] 蔣定生,搖臂式噴頭設(shè)計原理[M]. 北京:水利出版社,1981.
[21] 王新坤,姚吉成,徐勝榮,等. 負(fù)壓反饋射流噴頭脈沖特性及其影響規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(4):90-97.
Wang Xinkun, Yao Jicheng, Xu Shengrong, et al. Pulse characteristics and its influence of negative pressure feedback jet sprinkler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 90-97. (in Chinese with English abstract)
[22] 李星恕,張建賓,韓文霆. 仰角可調(diào)搖臂式噴頭水力性能試驗[J]. 農(nóng)業(yè)機械學(xué)報,2015,46(2):34-38.
Li Xingshu, Zhang Jianbin, Han Wenting, Experiments on hydraulic performance of impact sprinkler with adjustable elevation angel[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 34-38. (in Chinese with English abstract)
[23] 辛利. 音波振蕩器振蕩性研究及應(yīng)用[D]. 大連:大連理工大學(xué),2010.
Xin Li. Study on the Oscillation of Sonic Oscillator and Application[D]. Dalian: Dalian University of Technology, 2010. (in Chinese with English abstract)
[24] 陳祖志. 射流振蕩制冷機性能與機理研究[D]. 大連:大連理工大學(xué),2008.
Chen Zuzhi. Study on Performance and Mechanism of Jet-Oscillation Refrigerator[D]. Dalian: Dalian University of Technology, 2008. (in Chinese with English abstract)
[25] 李世英,噴灌噴頭理論與設(shè)計[M]. 北京:兵器工業(yè)出版社,1995.
[26] 蔣定生,金兆森. 搖臂式噴頭設(shè)計原理[M]. 北京:水利出版社,1981:71.
[27] 噴灌工程技術(shù)規(guī)范:GB/T 50085—2007[S]. 北京:中國計劃出版社,2007.
[28] 全國農(nóng)業(yè)機械標(biāo)準(zhǔn)化技術(shù)委員會. 旋轉(zhuǎn)式噴頭:GB/T 22999—2008[S]. 北京:中國標(biāo)準(zhǔn)出版社,2008.
[29] 朱興業(yè),袁壽其,向清江,等. 旋轉(zhuǎn)式射流噴頭設(shè)計與性能正交試驗[J]. 農(nóng)業(yè)機械學(xué)報,2008,39(7):76-79.
Zhu Xinye, Yuan Shouqi, Xiang Qingjiang, et al. Orthogonal experiment on design and performance of a rotational jet sprinkler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(7): 76-79. (in Chinese with English abstract)
[30] 信桂新,楊朝現(xiàn),楊慶媛,等. 用熵權(quán)法和改進(jìn)TOPSIS模型評價高標(biāo)準(zhǔn)基本農(nóng)田建設(shè)后效應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(1):238-249.
Xin Guixin, Yang Chaoxian, Yang Qingyuan, et al. Post-evaluation of well-facilitied capital farmland construction based on entropy weight method and improved TOPSIS model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 238-249. (in Chinese with English abstract)
[31] 吳普特,朱德蘭,呂宏興等. 灌溉水力學(xué)引論[M]. 北京:科學(xué)出版社,2016:134.
[32] 周世峰. 噴灌工程技術(shù)[M]. 鄭州:黃河水利出版社,2011.
[33] 全國農(nóng)業(yè)機械標(biāo)準(zhǔn)化技術(shù)委員會. 旋轉(zhuǎn)式噴頭第二部分:水量分布均勻性和試驗方法:GB/T 19795.2—2005[S]. 北京:中國標(biāo)準(zhǔn)出版社,2005.
[34] 韓文霆,吳普特,楊青,等. 噴灌水量分布均勻性評價指標(biāo)比較及研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報,2005,21(9):172-177.
Han Wenting, Wu Pute, Yang Qing, et al. Advances and comparisons of uniformity evaluation index of sprinkle irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(9): 172-177. (in Chinese with English abstract)
Effects of nozzle elevation and length on hydraulic performance of negative pressure feedback jet sprinkler
Wang Xinkun1, Yao Jicheng1, Xu Shengrong1, Zhang Zhonghua2, Zhu Dengping2, Li Hua2
(1.212013,; 2.201505,)
The negative pressure feedback jet sprinkler is a new type of irrigation nozzle independently developed by China. The nozzle is an important part of the sprinkler. Due to the unique water flow of the jet sprinkler, the ejection mechanism is intermittently deflected from left to right, the water will collide with the inner wall of the nozzle, and the collision will cause a large amount of energy loss. Appropriate nozzle parameters are conducive to reducing the head loss and increasing the nozzle range and the uniformity of the combined irrigation. In order to specifically study the influence of nozzle parameters (including elevation angle and length combination) on the hydraulic performance of negative pressure feedback jet sprinklers and find the optimal nozzle parameter combination, the sprinkler comparison tests for negative pressure feedback jet sprinkler and PY210 rocker sprinkler under different nozzle parameters were performed. The main parameters of the PY210 impact sprinkler were the elevation angle of the main and auxiliary nozzles 30°, the length 45 mm×25 mm, and the diameter of the main and auxiliary spray head 4 mm×3 mm. The controlled variable method was used in the test. Namely, keeping the other dimensions of the sprinkler unchanged when studying the influence of different main and auxiliary nozzle elevation angles on the hydraulic performance of the sprinkler. The parameters mainly for the jet mechanism were offset 2 mm, side wall inclination angle 10°, split pitch 28 mm, main and auxiliary nozzle length combination 4.2 cm×4.2 cm, main and auxiliary nozzle spray head 4 mm×4 mm. Similarly, when studying the effect of different nozzle combinations on the hydraulic performance of the jet sprinkler, the elevation angle of the main and auxiliary nozzles was controlled to 30°, and the size of the spray mechanism was the same as the diameter of the main and auxiliary nozzles. At the same time, considering that the main and auxiliary nozzles adopt different elevation angles, the pressure on the nozzles will be asymmetric, which will affect the rotation uniformity of the nozzles. During the tests, the elevation angles of the main and auxiliary nozzles will be synchronized. In order to reduce the test error, the tightness of the rotation mechanism was adjusted by adding or removing plastic gaskets during the test, and then the rotation period of the nozzle was controlled. According to the GB/T 50085-2007, the rotation period was controlled from 3 min to 3.5 min. The specific test scheme design refers to the national standard GB/T 22999-2008. The experimental results showed that with the same nozzle size, the range of the negative pressure feedback jet nozzle was 1-2.5 m farther than the PY210 impact sprinkler under different working pressure and different nozzle parameters. The range of the negative pressure feedback jet nozzle was far because of its unique pulse characteristics, which resulted in the strong pulse turbulence of the outgoing water stream. In the negative pressure feedback jet nozzle, the water distribution of the nozzle showed a good “triangular” distribution in the short range. The water volume distribution showed a “water volume peak” far away from the sprinkler, and as the pressure increases, the “water volume peak” gradually disappeared. The formation of the “convex peak” of water volume is mainly due to the large turbulent kinetic energy of the intermittently ejected water jet from the jet nozzle, which resulted in a larger water droplet at the end, so the end has more water. Finally, based on the measured experimental data, a comprehensive scoring method and an entropy weight method were used. Taking into account the wind resistance of the sprinkler field work and the nozzle cost, the parameters of the main and auxiliary nozzles under the optimal comprehensive score were determined as follows. The length of the main and auxiliary nozzles was 4.2 cm×4.2 cm, when the working pressure was 0.20-0.30 MPa, the elevation angle of the main and auxiliary nozzles was 40°×40° while the working pressure was 0.35 MPa, the elevation angle of the main and auxiliary nozzles was 30°×30°.
nozzle; range; water distribution; comprehensive scoring method; negative pressure feedback jet sprinkler
王新坤,姚吉成,徐勝榮,等. 噴管仰角和長度對負(fù)壓反饋射流噴頭水力性能的影響[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(13):75-82.doi:10.11975/j.issn.1002-6819.2020.13.009 http://www.tcsae.org
Wang Xinkun, Yao Jicheng, Xu Shengrong, et al. Effects of nozzle elevation and length on hydraulic performance of negative pressure feedback jet sprinkler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 75-82. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.13.009 http://www.tcsae.org
2020-01-25
2020-06-05
江蘇省科技計劃項目(BE2018373)和國家自然科學(xué)基金項目(51579116)
王新坤,博士,研究員,主要從事節(jié)水灌溉理論與新技術(shù)研究。Email:xjwxk@126.com
10.11975/j.issn.1002-6819.2020.13.009
S277.9+4
A
1002-6819(2020)-13-0075-08