安俊霞,趙宇,張正坤,史海鵬,紀東銘,曹洪翼,杜茜,李啟云
公主嶺霉素誘導對育苗期水稻耐冷性的影響
安俊霞1,2,趙宇1,張正坤1,史海鵬3,紀東銘4,曹洪翼5,杜茜1,李啟云1
(1吉林省農(nóng)業(yè)科學院植物保護研究所/吉林省農(nóng)業(yè)微生物重點實驗室/農(nóng)業(yè)農(nóng)村部東北作物有害生物綜合治理重點實驗室,長春 130033;2吉林農(nóng)業(yè)大學植物保護學院,長春 130118;3伊通滿族自治縣農(nóng)業(yè)技術推廣總站,吉林伊通 130700;4四平市植物保護站,吉林四平 136000;5哈爾濱師范大學生命科學與技術學院,哈爾濱 150080)
【】探討在低溫條件下公主嶺霉素對水稻幼苗生長及耐冷相關基因表達、抗逆防御酶活性的影響,明確施用公主嶺霉素后育苗期水稻耐冷性的變化。以‘吉粳88’為試驗材料,經(jīng)公主嶺霉素水浸提液浸種引發(fā)后播種,調(diào)查不同溫度下稻種萌發(fā)和幼苗生長狀況并計算稻種發(fā)芽臨界溫度。將農(nóng)抗“769”固體發(fā)酵物干燥粉碎后添加到水稻育苗基質(zhì)中,以‘吉粳88’為試驗材料,在立針期模擬倒春寒生境對水稻幼苗施加冷脅迫處理,在處理后逐漸緩慢升溫并于1—8 d內(nèi)連續(xù)采樣,升溫至28℃后每隔7 d采樣一次;以‘吉宏6號’為試驗材料,大棚育苗待水稻幼苗長至一葉一心期采樣;采用實時熒光定量PCR(RT-qPCR)技術,分析模擬生境及大棚育苗環(huán)境中幼苗葉片耐冷相關基因、、、的表達狀況,并檢測移栽前大棚秧苗葉片中防御酶超氧化物歧化酶(SOD)、過氧化氫酶(CAT)、苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)活性的變化。公主嶺霉素能夠提高稻種發(fā)芽率和發(fā)芽指數(shù),縮短發(fā)芽時間,其對幼苗生長的促進作用隨溫度的降低而逐漸明顯,G-500X表現(xiàn)最好,使稻種萌發(fā)的臨界溫度降低了4.09%,并以該濃度為基礎進行后續(xù)的試驗研究。光照培養(yǎng)箱低溫模擬倒春寒氣候條件,低溫脅迫下公主嶺霉素可調(diào)控、、表達量的提升,并通過加快響應速度,實現(xiàn)快速反應以應對低溫脅迫,對照處理主要通過調(diào)控的響應速度和表達量提升應對低溫脅迫,但公主嶺霉素處理下的水稻幼苗該基因表達量亦得到提升。水稻幼苗在立針期受到低溫脅迫后,公主嶺霉素處理的幼苗在低溫脅迫后、、表達量峰值出現(xiàn)時間較對照早1—2 d,且分別比對照提高38.57%、74.66%、130.61%;最高表達量的時間較對照遲2 d,但最高表達量比對照提高了34.91%。大棚育苗,固體發(fā)酵物干粉在育苗基質(zhì)中的最適添加量為8 g·m-2,添加后一葉一心期的水稻幼苗葉片中的表達量均高于對照,其中表達量顯著提升,在添加量為8 g·m-2時表達量最高,為261.20;當固體發(fā)酵物干粉添加量為5 g·m-2時,表達量最高,比對照提高了126.30%;當固體發(fā)酵物干粉添加量為8 g·m-2時,表達量最高,比對照提高了359.81%。移栽前處于四葉一心期的幼苗,育苗基質(zhì)中添加公主嶺霉素誘導幼苗葉片中SOD、POD、PPO、PAL酶活性均高于對照,其中起主要作用的酶為SOD、PPO,活性分別比對照提高57.18%、28.53%。公主嶺霉素在水稻育苗期施用可降低稻種的發(fā)芽臨界溫度,促進幼苗生長,顯著提升幼苗的秧苗素質(zhì);公主嶺霉素通過提升耐冷相關基因的表達量、加快低溫脅迫的響應速度及提高幼苗體內(nèi)防御酶的活性,促進水稻幼苗耐冷性的增強。
公主嶺霉素;水稻;耐冷性;基因表達;防御酶活性
【研究意義】水稻是世界三大糧食作物之一,是我國最主要的糧食作物[1]。作為喜溫作物,其對溫度反應敏感,溫度在15—20℃時就會對水稻的正常生長產(chǎn)生不利影響[2]。我國北方地區(qū)早春氣候異常,低溫對植物種子的萌發(fā)和幼苗的生長有很大的影響,而種子萌發(fā)很大程度上決定了植物的出苗、生長以及收獲時稻米的產(chǎn)量和品質(zhì)。【前人研究進展】提高植物耐冷性比較有效的方法包括采用傳統(tǒng)育種培育耐低溫品種,如荷蘭育種專家培育出抵抗12℃的黃瓜品種,以及我國育種專家選育的耐低溫品種‘津優(yōu)3號’‘津優(yōu)20號’等[3];植物經(jīng)低溫處理后,細胞結構和細胞內(nèi)各種物質(zhì)將發(fā)生一系列形態(tài)和生理生化等方面的適應性變化[4],如細胞膜透性變大[5],丙二醛(malondialdehyde,MDA)含量升高[6],超氧化物歧化酶(superoxide dismutase,SOD)、過氧化氫酶(catalase,CAT)、過氧化物酶(peroxidase,POD)、苯丙氨酸解氨酶(phenylalanine ammonia-lyase,PAL)等保護酶的活性升高[7-9],因此通過種子變溫處理、低溫鍛煉等方法可以提高植物耐冷性[10-11];增施化學肥料、脫落酸(ABA)[12]和多效唑[13]等化學試劑,亦可提高植物耐冷能力;另有研究表明,利用空氣和植物根系部分不同種類的有益微生物來促進植物生長,可以提高植物對逆境的抵抗能力[14-16],進而克服低溫對植物產(chǎn)生的不利影響。不吸水鏈霉菌公主嶺變種(n. var.)(農(nóng)抗“769”)是一株對病原真菌具有廣譜抑菌作用的生防鏈霉菌,其代謝產(chǎn)物被稱為公主嶺霉素,是一種自然生物合成的混合制劑,具有較好的水溶性,通過液體發(fā)酵或固體培養(yǎng)均可獲得。研發(fā)初期,農(nóng)抗“769”及公主嶺霉素主要應用于玉米、高粱、小麥等作物土傳病害的防治[17]?!颈狙芯壳腥朦c】農(nóng)抗“769”及公主嶺霉素可誘導植株體內(nèi)防御酶活性的變化,從而提高植株的抗病性,并對植物具有促進生長和提升產(chǎn)量、品質(zhì)的作用[18-19],然而公主嶺霉素誘導對植物應對非生物脅迫的影響尚未見報道。【擬解決的關鍵問題】通過考察公主嶺霉素引發(fā)后稻種發(fā)芽臨界溫度、幼苗在低溫時的生長狀況、幼苗耐冷基因表達及防御酶活性的變化,探究公主嶺霉素對水稻耐冷能力的影響,為提升水稻秧苗素質(zhì)、解決育苗期低溫冷害對水稻生產(chǎn)帶來損失的問題提供新思路,為應用于水稻育苗期以公主嶺霉素為主要成分的生物制劑的研發(fā)和施用方式的確定提供數(shù)據(jù)支持。
水稻品種:‘吉粳88’‘吉宏6號’,市售。生物炭無土育苗基質(zhì)購自沈陽凡宇園藝科技有限公司。蕓苔素內(nèi)酯(Y)市售,EZ-DNA away RNA Min-Preps Kit、AVM第一鏈cDNA合成試劑盒、2×SG Fast qPCR Master Mix均購自上海生工生物工程有限公司。
農(nóng)抗“769”固體發(fā)酵物干粉:以玉米碴為培養(yǎng)基質(zhì),滅菌后接種農(nóng)抗“769”,28℃充分培養(yǎng)后自然晾曬,干燥并粉碎[20]。公主嶺霉素水浸提液:將農(nóng)抗“769”固體發(fā)酵物按質(zhì)量體積比1﹕2以純凈水4℃靜置浸提24 h,離心取上清液[20]。
農(nóng)抗“769”固體發(fā)酵物及公主嶺霉素水浸提液質(zhì)量檢測:農(nóng)抗“769”固體發(fā)酵充分培養(yǎng)后按質(zhì)量體積比1﹕2加入無菌水,平板涂布,檢測培養(yǎng)物含菌量,達到1×106cfu/mL以上為充分培養(yǎng)。充分培養(yǎng)后的農(nóng)抗“769”固體發(fā)酵培養(yǎng)物自然晾曬,干燥后粉碎,過100目篩備用。將培養(yǎng)物粉末與水按質(zhì)量體積比1﹕2混合,制備水浸提液;以玉米大斑病菌()為指示菌,通過抑菌圈法檢測水浸提液對病原菌的抑制情況,抑菌圈直徑達到3.0 cm以上;將符合上述兩個指標的培養(yǎng)物用于實驗和生產(chǎn)中。
用光照培養(yǎng)箱在實驗室模擬水稻遭遇倒春寒的生境,考察公主嶺霉素誘導下水稻幼苗的耐冷性。利用光照培養(yǎng)箱種植水稻,生長條件設定為溫度28℃、光照12 h·d-1、相對濕度75%、光照強度5 000 lx,播種后用公主嶺霉素(G)水浸提液500倍稀釋液(G-500X)將土壤完全潤透,以清水潤濕的土壤為對照,每個處理設3次重復。待幼苗長至立針期后進行低溫脅迫,低溫脅迫時保持光照10 h·d-1、相對濕度75%、光照強度4 000 lx,溫度變化過程包括:10℃脅迫1 d,16℃脅迫7 d,恢復28℃培養(yǎng)14 d。從低溫脅迫起始日每天采集幼苗葉片,-80℃保存,用于測定幼苗葉片中耐冷相關基因表達量變化。
生產(chǎn)性大棚育苗考察公主嶺霉素誘導下水稻幼苗耐冷性試驗于2019年4月14日至5月8日在吉林省伊通滿族自治縣建國村育苗大棚中進行。育苗大棚在育苗期間田間管理及農(nóng)事操作專人專管,除受氣候因素影響外,其他保持不變。棚內(nèi)生長溫度約為21—25℃,相對濕度為50%—90%。實驗室模擬環(huán)境公主嶺霉素最佳使用量為1.5 g·m-2[19],本研究中,以實驗室模擬環(huán)境中的最佳使用量為起點,在田間生產(chǎn)中以添加量差異設置質(zhì)量梯度,以不添加為對照,分別以1.5、3、5、8、10 g·m-2的添加量將粉碎的農(nóng)抗“769”固體發(fā)酵物拌入育苗基質(zhì)中,至幼苗長至一葉一心期,采集幼苗葉片-80℃保存,用于測定幼苗葉片中耐冷相關基因表達量變化。以耐冷相關基因表達量數(shù)據(jù)為參考,選擇基因表達量高的處理,待幼苗長至四葉一心期,移栽前采集葉片,-80℃保存,測定幼苗葉片中防御酶活性的變化。以不添加作為對照,每個處理設3次重復。
1.3.1 種子萌發(fā)及幼苗生長的測定 選取大小均勻一致且籽粒飽滿的水稻種子,參照前期研究結果設置公主嶺霉素水浸提液濃度[19]。分別以公主嶺霉素水浸提液500倍稀釋液(G-500X)、1 000倍稀釋液(G-1000X),蕓苔素內(nèi)酯1 000倍稀釋液(Y-1000X)及清水浸種引發(fā),25℃浸種48 h,每處理設3次重復,每個重復100粒種子。育苗盤中稱取相同質(zhì)量的基質(zhì),將引發(fā)后的種子分別播種于育苗盤中,分別在16、18、20、22、24、26℃黑暗條件下萌發(fā)[21],每天統(tǒng)計發(fā)芽數(shù)(以幼芽長度達到種子長度的1/2,且幼根與種子等長為發(fā)芽標準,兩者需要同時滿足),每天記錄3次。計算發(fā)芽率、發(fā)芽指數(shù)、平均發(fā)芽時間、臨界溫度等。計算公式如下:
式中,G:種子發(fā)芽率,n:發(fā)芽種子數(shù),N:供試種子總數(shù)。
=Σ/(2)
式中,GI:發(fā)芽指數(shù),Gt:逐日發(fā)芽種子數(shù),Dt:相應發(fā)芽天數(shù)。
式中,T:平均發(fā)芽時間。
發(fā)芽臨界溫度的計算是由發(fā)芽指數(shù)()對發(fā)芽溫度()作回歸分析,回歸曲線與軸交點(=0)即為低溫發(fā)芽起始。發(fā)芽指數(shù)與溫度的回歸關系在0.01和0.05差異水平上經(jīng)測驗考察回歸方程的可靠性[21-22]。
待水稻發(fā)芽后按晝/夜=12 h/12 h生長至第10天,測定株高、幼苗鮮重,并將幼苗在電熱恒溫干燥箱100℃殺青10 min,80℃烘12 h至恒重,稱干重。
1.3.2 水稻幼苗葉片耐冷基因表達量測定 采用實時熒光定量PCR(RT-qPCR)技術對幼苗葉片耐冷相關基因進行表達差異分析。以水稻組成型表達基因作為內(nèi)參基因,以相對定量的方法對目的基因的表達量進行檢測。采用2-??CT法計算相對表達量[23],每個試驗樣品進行3次獨立的生物學重復。目標基因、基因功能及引物序列見表1。
1.3.3 水稻幼苗葉片防御酶活性測定 苯丙氨酸解氨酶(PAL)的活性測定采用苯丙氨酸紫外吸收法[28];多酚氧化酶(PPO)的活性測定采用鄰苯二酚-紫外吸收法[28];超氧化物歧化酶(SOD)的活性測定采用氮藍四唑自氧化法[29];過氧化氫酶(CAT)的活性測定采用鉬酸銨法[30]。
表1 4個耐冷相關基因RT-qPCR的引物
采用Excel 2007處理數(shù)據(jù)及作圖,采用DPS15.10高級版進行單因素方差分析,IBM SPSS Statistics 20進行回歸分析(Tukey法)。
隨種植溫度降低,稻種發(fā)芽時間增長,發(fā)芽率和發(fā)芽指數(shù)均呈下降趨勢,幼苗生長速度、鮮重和干重均降低。公主嶺霉素引發(fā)后,在稻種發(fā)芽至二葉一心生長期前,不同生長溫度表現(xiàn)出不同的作用效果。在生長溫度較高時,水稻幼苗會出現(xiàn)徒長的現(xiàn)象。如表2所示,24—26℃恒溫種植,公主嶺霉素處理稻種其作用效果主要表現(xiàn)在墩苗壯苗上,幼苗株高比對照顯著降低,G-500X和G-1000X均有較好的效果。22℃恒溫種植較適宜水稻的生長,除幼苗干重外各處理間各生長指標均無顯著差異,但G-500X和G-1000X幼苗鮮重和干重與對照相比均有所降低,表明幼苗葉片的含水量及鮮嫩程度降低,有助于提高幼苗抵御如病害侵染、溫度驟降等逆境的能力。16—20℃低溫逆境下,公主嶺霉素處理水稻種子可以提高種子發(fā)芽率和發(fā)芽指數(shù),縮短發(fā)芽時間,促進幼苗生長。與26℃相比,種植溫度為16℃時CK、Y-1000X、G-500X、G-1000X等不同處理間平均發(fā)芽時間分別延遲了4.90、3.64、4.34、4.83 d,發(fā)芽率分別降低了25.33%、31.33%、16.66%、26.66%,發(fā)芽指數(shù)分別降低98.28%、87.58%、80.71%、93.86%,G-500X引發(fā)后稻種發(fā)芽指數(shù)最高。公主嶺霉素引發(fā)后,16℃低溫逆境,G-500X處理稻種各生長指標表現(xiàn)最好,平均發(fā)芽時間比對照降低了6.81%,發(fā)芽率、發(fā)芽指數(shù)和株高分別比對照提高了12.21%、38.45%和34.41%。
表2 公主嶺霉素對種子發(fā)芽及幼苗生長的影響
表中數(shù)據(jù)為平均值±標準誤,數(shù)據(jù)后不同小寫字母表示同一溫度同一調(diào)查指標的不同處理間差異顯著(<0.05)The data in the table are shown as mean ±SE, different lowercase letters after the data indicate significant differences among different treatments of the same temperature and the same survey index (<0.05)
2.2.1 公主嶺霉素引發(fā)對稻種發(fā)芽臨界溫度的影響 發(fā)芽臨界溫度愈低,種子發(fā)芽時對低溫的耐受能力愈強[21]。本研究中,種子在不同引發(fā)條件下,發(fā)芽臨界溫度略有差異,表現(xiàn)為CK>G-1000X>G-500X>Y-1000X(表3),其中,G-500X浸種引發(fā)后的發(fā)芽臨界溫度為10.32℃,比對照降低了4.09%。
2.2.2 公主嶺霉素誘導對水稻幼苗耐冷基因表達的影響 水稻幼苗在立針期遭遇低溫脅迫后,葉片中及先后對脅迫作出了響應,4個基因最高表達量均高于對照,其中,最高表達量為89.50,而對照僅為64.59,比對照提高38.57%;最高表達量為85.74,比對照提高74.66%;最高表達量為84.38,比對照提高130.61%;最高表達量為29.91,比對照提高34.91%。4個基因的表達均呈單峰趨勢,主要在脅迫早期表達,施用公主嶺霉素加快了幼苗對低溫脅迫的響應速度,和均比對照響應速度快,基因表達的峰值出現(xiàn)時間分別在冷脅迫后的1、3和6 d,分別比對照提前2、1和2 d,而對照中最先對脅迫作出了響應(圖1)。
表3 公主嶺霉素對種子發(fā)芽臨界溫度的影響
水稻育苗時在育苗土中添加農(nóng)抗“769”固體發(fā)酵物粉末,不同添加量對幼苗耐冷基因表達產(chǎn)生的影響略有不同,但的相對表達量均比對照高。如圖2,相對表達量在添加量為8 g·m-2時最高,5 g·m-2其次,表達量分別為261.20、161.29;在添加量5 g·m-2時最高,8 g·m-2其次,分別比對照高126.30%、100.10%;在添加量8 g·m-2時最高,5 g·m-2其次,分別比對照高359.81%、113.73%。的相對表達量與其他3個基因的變化趨勢不同,隨著添加量的增加,基因表達量先下降后上升,在添加量為8 g·m-2時比對照高1.46%,差異不顯著。水稻育苗期以5—8 g·m-2農(nóng)抗“769”固體發(fā)酵物拌土較為適宜,對水稻幼苗耐冷性的提升有促進作用。
2.2.3 公主嶺霉素對水稻葉片防御酶活性的影響 水稻育苗時在育苗土中添加農(nóng)抗“769”固體發(fā)酵物粉末,水稻幼苗長至四葉一心期時,幼苗葉片中SOD、POD、PPO、PAL等防御酶活性均較對照顯著提升。SOD活性為343.02 U/mg FW,比對照提高了57.18%(圖3);對苯丙烷類代謝途徑的影響主要表現(xiàn)在顯著提高了PPO的活性,其活性為501.80 U/mg FW,比對照提高了28.53%(圖4)。
發(fā)芽率、發(fā)芽勢和發(fā)芽指數(shù)等指標均是衡量種子發(fā)芽質(zhì)量的關鍵指標,可以反映種子發(fā)芽的速度和整齊度[31],發(fā)芽臨界溫度與田間苗期耐冷性總選擇指數(shù)緊密相關,通過室內(nèi)鑒定可以對田間耐冷反應作出可靠估計,是評估水稻耐冷性有效的鑒定方法[21]。低溫條件下水稻種子發(fā)芽率和發(fā)芽勢降低[32],本研究中,適宜濃度的公主嶺霉素處理稻種對稻種發(fā)芽和幼苗生長無不利影響,公主嶺霉素通過誘導提高種子發(fā)芽率、發(fā)芽指數(shù),促進幼苗生長、縮短發(fā)芽時間應對低溫脅迫,提高水稻幼苗的耐冷性。
在田間生產(chǎn)中,水稻在立針期最易受到冷害的影響,從而降低幼苗的生長勢和秧苗素質(zhì),導致育苗期立枯病發(fā)生,移栽時水稻秧苗素質(zhì)降低,秧苗田間抗病性差,收獲時稻米產(chǎn)量和品質(zhì)降低,因此立針期水稻秧苗的耐冷性對于水稻生產(chǎn)具有巨大的影響。植物通過響應逆境脅迫的信號傳導途徑將脅迫信號傳遞至細胞內(nèi),調(diào)控基因表達并對逆境脅迫作出適應性反應[33]。NAC轉錄因子是植物所特有的轉錄因子,是細胞核內(nèi)基因組基因,在植物對逆境脅迫的響應和生長發(fā)育的過程中扮演非常重要的角色,在整合和轉導非生物和生物逆境脅迫信號過程中也發(fā)揮著重要的作用[24,34],低溫、干旱、高鹽、脫落酸、茉莉酸、機械損傷和病原菌侵染都會誘導其表達,過表達的植株呈現(xiàn)出較高的抗逆性[24]。腐胺、亞精胺和精胺等多胺廣泛參與植物生長發(fā)育和響應環(huán)境刺激,是植物適應逆境脅迫的重要調(diào)節(jié)物質(zhì)[35],S-腺苷甲硫氨酸脫羧酶(SADMC)是多胺合成代謝過程中起調(diào)控作用的關鍵酶[36],作為一種調(diào)控因子,主要調(diào)控植物體內(nèi)的腐胺、亞精胺和精胺等多胺的積累量,從而影響植物體內(nèi)的DNA、RNA和蛋白質(zhì)生物合成,促進植物的生長發(fā)育,影響植物應答環(huán)境脅迫,增強植物的抗逆性[2]。是乙烯受體基因,是乙烯信號轉導的上游原件,乙烯受體作為乙烯信號傳導途徑中結合并響應乙烯的初始成分,其通過細胞表面糖蛋白的識別與乙烯結合,改變蛋白質(zhì)構象、激活或抑制相關響應調(diào)控因子或功能基因的表達來完成信號轉導[37]。低溫可促進的表達,從而提升植株的抗逆性[25]。C2H2型鋅指蛋白主要參與植物生長發(fā)育,并且對逆境脅迫的響應有著重要的作用[38-40],受低溫誘導后通過調(diào)控CBF類基因的表達、影響可溶性糖、脯氨酸含量的增加以及MDA含量的減少來提高水稻耐冷性[26]。本研究模擬田間倒春寒環(huán)境,對立針期幼苗施加低溫脅迫,公主嶺霉素的施用促進了耐冷基因表達量的提升并加快了幼苗對低溫脅迫的響應速度。在生產(chǎn)性育苗過程中,公主嶺霉素拌土對水稻幼苗葉片中及表達量提升的促進作用明顯,表明公主嶺霉素的施用可以提高水稻對低溫的耐受能力。
圖1 模擬倒春寒環(huán)境下公主嶺霉素對水稻幼苗耐冷基因表達的誘導效果
圖2 生產(chǎn)性育苗中公主嶺霉素對水稻幼苗耐冷基因表達的誘導效果
圖3 公主嶺霉素對水稻幼苗葉片主要植物氧化酶活性的影響
圖4 公主嶺霉素對水稻幼苗葉片苯丙烷類代謝關鍵酶活性的影響
PAL、PPO、SOD、CAT等是植物體內(nèi)重要的保護酶,其功能包括參與活性氧清除,酚類、木質(zhì)素和植保素等抗病相關物質(zhì)的合成,破壞病原菌細胞壁,使植物產(chǎn)生對病原菌的抵抗能力等[41-44],研究表明,在鹽脅迫后,高粱的SOD、POD、CAT和APX(抗壞血酸過氧化物酶)活性均有所提高,且抗性品種比敏感品種增幅大[45]。在適當?shù)牡蜏孛{迫下不同小麥品種的SOD、POD和CAT均有不同程度的提高,抗寒性與SOD、CAT和POD呈極顯著正相關[46]。本研究中,公主嶺霉素在播種前施入,幼苗葉片中SOD、CAT、PAL、PPO活性均有提升,其中SOD和PPO活性比對照提升的幅度顯著,表明公主嶺霉素的施入提升了幼苗應對冷脅迫的能力。
(1)適宜濃度的公主嶺霉素在低溫環(huán)境下可以提升稻種的發(fā)芽率,促進水稻的幼苗建成,提高水稻的秧苗素質(zhì);(2)適宜濃度公主嶺霉素誘導,可以提升水稻幼苗葉片中耐冷基因的表達量及對逆境的響應速度;(3)適宜濃度公主嶺霉素誘導,可以增強水稻幼苗葉片中防御酶的活性。
綜上,在水稻育苗期合理施用公主嶺霉素,可以誘導提升水稻幼苗的抗寒能力,增強幼苗苗勢,從而降低不利的氣候條件對秧苗造成的危害。
[1] 朱德峰, 張玉屏, 陳惠哲, 向鏡, 張義凱. 中國水稻高產(chǎn)栽培技術創(chuàng)新與實踐. 中國農(nóng)業(yè)科學, 2015, 48(17): 3404-3414.
ZHU D F, ZHANG Y P, CHEN H Z, XIANG J, ZHANG Y K. Innovation and practice of high-yield rice cultivation technology in China., 2015, 48(17): 3404-3414. (in Chinese)
[2] 胡曉晨, 張婷, 楊圣, 秦巧, 石英堯, 王文生, 傅彬英. 水稻冷脅迫響應基因功能標記的開發(fā)和利用. 中國水稻科學, 2015, 29(5): 475-480.
HU X C, ZHANG T, YANG S, QIN Q, SHI Y Y, WANG W S, FU B Y. Development and application of a functional marker for the cold stress responsive gene., 2015, 29(5): 475-480. (in Chinese)
[3] 馬俊. 叢枝菌根真菌對黃瓜幼苗低溫脅迫的緩解效應及其調(diào)控機理[D]. 楊凌: 西北農(nóng)林科技大學, 2016.
MA J. Alleviative effects and its mechanism of exogenous arbuscular mycorrhizal fungi (AMF) on cucumber seedlings under cold stress[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
[4] 烏鳳章, 王賀新, 徐國輝, 張自川. 木本植物低溫脅迫生理及分子機制研究進展. 林業(yè)科學, 2015, 51(7): 116-128.
WU F Z, WANG H X, XU G H, ZHANG Z C. Research progress on the physiological and molecular mechanisms of woody plants under low temperature stress., 2015, 51(7): 116-128. (in Chinese)
[5] SHEIKH S, NOH J, SEONG M H, HJUNG G T, KIM J M. Consequences of chilling stress on watermelon [(Thunb.) Matsum. and Nakai] germplasm lines at seedling stage., 2015, 56(1): 79-88.
[6] HAWRYLAK-NOWAK B, MATRASZEK R, SZYMA?SKA M. Selenium modifies the effect of short-term chilling stress on cucumber plants., 2010, 138(1/3): 307-315.
[7] 項洪濤, 齊德強, 李琬, 鄭殿峰, 王月溪, 王彤彤, 王立志, 曾憲楠, 楊純杰, 周行, 趙海東. 低溫脅迫下外源ABA對開花期水稻葉鞘激素含量及抗寒生理的影響. 草業(yè)學報, 2019, 28(4): 81-94.
XIANG H T, QI D Q, LI W, ZHENG D F, WANG Y X, WANG T T, WANG L Z, ZHENG X N, YANG C J, ZHOU H, ZHAO H D. Effect of exogenous ABA on the endogenous hormone levels and physiology of chilling resistance in the leaf sheath of rice at the flowering stage under low temperature stress.,2019, 28(4): 81-94. (in Chinese)
[8] XIANG H T, WANG T T, ZHENG D F, WANG L Z, FENG Y J, LUO Y, LI R, LI Z J, MENG Y, LI W, WANG L M, YANG C J. ABA pretreatment enhances the chilling tolerance of a chilling-sensitive rice cultivar., 2017, 40(4): 853-860.
[9] 董春娟, 李亮, 曹寧, 尚慶茂, 張志剛. 苯丙氨酸解氨酶在誘導黃瓜幼苗抗寒性中的作用. 應用生態(tài)學報, 2015, 26(7): 2041-2049.
DONG C J, LI L, CAO N, SHANG Q M, ZHANG Z G. Roles of phenylalanine ammonia-lyase in low temperature tolerance in cucumber seedlings., 2015, 26(7): 2041-2049. (in Chinese)
[10] JANDA T, MAJLáTH I, SZALAI G. Interaction of temperature and light in the development of freezing tolerance in plants., 2014, 33(2): 460-469.
[11] CHEN J H, TIAN Q Q, PANG T, JIANG L B, WU R L, XIA X L, YIN W L. Deep-sequencing transcriptome analysis of low temperature perception in a desert tree,., 2014, 15: 326.
[12] CUEVAS J C, LóPEZ-COBOLLO R, ALCáZAR R, ZARZA X, KONCZ C, ALTABELLA T, SALINAS J, TIBURCIO A F, FERRANDO A. Putrescine is involved infreezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature., 2008, 148(2): 1094-1105.
[13] 徐秋曼, 陳宏, 高虹, 程景勝. 多效唑提高水稻幼苗抗低溫能力的機理初探. 西北植物學報, 2002, 22(5): 1236-1241.
XU Q M, CHEN H, GAO H, CHENG J S. The biochemical mechanism study on improvement of PP333on the cold resistance of the rice seedlings., 2002, 22(5): 1236-1241. (in Chinese)
[14] 劉潤進, 唐明, 陳應龍. 菌根真菌與植物抗逆性研究進展. 菌物研究, 2017, 15(1): 70-88.
LIU R J, TANG M, CHEN Y L. Recent advances in the study of mycorrhizal fungi and stress resistance of plants., 2017, 15(1): 70-88. (in Chinese)
[15] THEOCHARIS A, CLEMéNT C, BARKA E A. Physiological and molecular changes in plants grown at low temperatures.,2012, 235(6): 1091-1105.
[16] GARG N, SINGLA P. Naringenin- and- mediated alterations in redox state synchronize antioxidant network to alleviate oxidative stress inL. genotypes under salt stress., 2015, 34(3): 595-610.
[17] 隋麗, 徐文靜, 杜茜, 陳光, 董英山, 李啟云. 放線菌769發(fā)酵液對水稻體內(nèi)主要防御酶活性的影響. 吉林農(nóng)業(yè)大學學報, 2009, 31(4): 382-384, 389.
SUI L, XU W J, DU Q, CHEN G, DONG Y S, LI Q Y. Effect of actinomycetes 769 fermentation products on main defense enzyme activity of rice., 2009, 31(4): 382-384, 389. (in Chinese)
[18] 張振魯, 隋麗, 張佳詩, 李啟云, 王金剛, 汪洋洲, 盛巖, 杜茜. 鏈霉菌769誘導對百日草抗病性的影響. 中國植保導刊, 2013, 33(12): 14-17.
ZHANG Z L, SUI L, ZHANG J S, LI Q Y, WANG J G, WANG Y Z, SHENG Y, DU Q. Inducing effect of769 on systemic resistance of., 2013, 33(12): 14-17. (in Chinese)
[19] 安俊霞, 李曉光, 汪洋洲, 張正坤, 馬嵩岳, 張靜, 楊會營, 文松, 杜茜, 李啟云. 公主嶺霉素在水稻育秧期應用技術研究. 東北農(nóng)業(yè)科學, 2019, 44(2): 28-33.
AN J X, LI X G, WANG Y Z, ZHANG Z K, MA S Y, ZHANG J, YANG H Y, WEN S, DU Q, LI Q Y. High efficiency application technology of gongzhulingmycin during rice seedling stage., 2019, 44(2): 28-33. (in Chinese)
[20] 吉林省農(nóng)科院植保所. 代汞拌種劑農(nóng)抗769. 農(nóng)業(yè)科技通訊, 1978(2): 32.
Institute of Plant Protection, Jilin Academy of Agricultural Sciences. Mercury seed dressing withn. var., 1978(2): 32. (in Chinese)
[21] 吳江. 吉林地區(qū)甜玉米種子低溫發(fā)芽臨界溫度的研究. 種子, 2018, 37(3): 96-97, 119.
WU J. Study on the critical temperature of germination of sweet corn seed in Jilin region., 2018, 37(3): 96-97, 119. (in Chinese)
[22] 曾霞, 王彥榮, 胡小文. 垂穗披堿草種子的萌發(fā)適宜溫度及溫度閾值. 草業(yè)科學, 2011, 28(6): 988-992.
ZENG X, WANG Y R, HU X W. Research on seed germination optimum temperature and temperature threshold of2011, 28(6): 988-992. (in Chinese)
[23] LIVAK K, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod., 2001, 25(4): 402-408.
[24] LEE D K, CHUNG P J, JEONG J S, JANG G, BANG S W, JUNG H, KIM Y S, HA S H, CHOI Y D, KIM J K. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance., 2017, 15(6): 754-764.
[25] YAU C P, WANG L, YU M, ZEE S Y, YIP W K. Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole-3-acetic acid and silver ions., 2004, 55(397): 547-556.
[26] 黃凱. 水稻C2H2型轉錄因子OsZFP151在低溫脅迫中的功能研究[D]. 長春: 吉林大學, 2017.
HUANG K. Functional analysis of C2H2 transcription factor OsZFP151 in rice (L.) under low temperature stress[D]. Changchun: Jilin University, 2017. (in Chinese)
[27] 關可興. 水稻耐冷性相關轉錄因子OsbZIP32的功能分析[D]. 長春: 吉林大學, 2015.
GUAN K X. Functional analysis of transcriptional factor, OsbZIP32 for cold tolerance in rice[D]. Changchun: Jilin University, 2015. (in Chinese)
[28] 麥麥提艾力·熱合曼, 海利力·庫爾班, 郭立華, 邱德文. 灰霉菌激活蛋白誘導抗病相關的酶活性提高番茄抗病性. 中國生物防治學報, 2014, 30(6): 780-786.
RAHMAN M, KURBAN H, GUO L H, QIU D W.activator protein induce resistance-related enzyme activities and enhancement of disease resistance in tomato plants., 2014, 30(6): 780-786. (in chinese)
[29] 原向陽, 郭平毅, 張麗光, 王鑫, 趙銳, 郭秀, 宋喜娥. 干旱脅迫下草甘膦對抗草甘膦大豆幼苗保護酶活性及脂質(zhì)過氧化作用的影響. 中國農(nóng)業(yè)科學, 2010, 43(4): 698-705.
YUAN X Y, GUO P Y, ZHANG L G, WANG X, ZHAO R, GUO X, SONG X E. Glyphosate and post-drought rewatering on protective enzyme activities and membrane lipid peroxidation in leaves of glyphosate-resistant soybean [glycine max (L.) merr.] seedlings., 2010, 43(4): 698-705. (in chinese)
[30] 郭彩明, 陳宗明, 陳春麗. 精氨酸脫羧酶基因通過調(diào)節(jié)超氧化物歧化酶和過氧化氫酶活性增強擬南芥耐鹽性. 植物生理學報, 2015, 51(7): 1067-1074.
GUO C M, CHEN Z M, CHEN C L.enhances salt tolerance through regulating activities of superoxide dismutase and catalase in., 2015, 51(7): 1067-1074. (in chinese)
[31] KUMAR B, VERMA S K, SINGH H P. Effect of temperature on seed germination parameters in Kalmegh (Wall.ex Nees.)., 2011, 34(1): 1241-1244.
[32] 劉雪梅,尚慶茂,張志剛. 辣椒不同品種種子萌芽期耐低溫性及評價方法研究. 中國生態(tài)農(nóng)業(yè)學報,2010,18(3): 521-527.
LIU X M, SHANG Q M, ZHANG Z G. Low-temperature tolerance of pepper at germination stage and its evaluation method.,2010, 18(3): 521-527. (in chinese)
[33] 郭仰東, 張磊, 李雙桃, 曹蕓運, 齊傳東, 王晉芳. 蔬菜作物應答非生物逆境脅迫的分子生物學研究進展. 中國農(nóng)業(yè)科學, 2018, 51(6): 1167-1181.
GUO Y D, ZHANG L, LI S T, CAO Y Y, QI C D, WANG J F. Progresses in research on molecular biology of abiotic stress responses in vegetable crops., 2018, 51(6): 1167-1181. (in chinese)
[34] NAKASHIMA K, TRAN L S, VAN NGUYEN D, FUJITA M, MARUYAMA K, TODAKA D, ITO Y, HAYASHI N, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice., 2007, 51(4): 617-630.
[35] KUSANO T, BERBERICH T, TATEDA C, TAKAHASHI Y. Polyamines: essential factors for growth and survival., 2008, 228(3): 367-381.
[36] ROYA M, WU R. Overexpression of-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance., 2002, 163(5): 987-992.
[37] 張楠楠, 薛冬, 崔曉霞, 趙晉銘, 郭娜, 王海棠, 邢邯. 大豆組成型三重反應基因的克隆與功能分析. 中國農(nóng)業(yè)科學, 2017, 50(16): 3082-3091.
ZHANG N N, XUE D, CUI X X, ZHAO J M, GUO N, WANG H T, XING H. Cloning and functional analysis of thesoybean., 2017, 50(16): 3082-3091. (in chinese)
[38] 茹京娜, 于太飛, 陳雋, 陳明, 周永斌, 馬有志, 徐兆師, 閔東紅. 小麥鋅指轉錄因子對低溫的響應及其互作蛋白的篩選. 中國農(nóng)業(yè)科學, 2017, 50(13): 2411-2422.
RU J N, YU T F, CHEN J, CHEN M, ZHOU Y B, MA Y Z, XU Z S, MIN D H. Response of wheat zinc-finger transcription factor TaDi19A to cold and its screening of interacting proteins.,2017, 50(13): 2411-2422. (in chinese)
[39] 侯思宇, 孫朝霞, 郭彬, 王玉國, 李貴全, 韓淵懷. 大豆兩個C2H2型轉錄因子基因序列特征及表達分析. 植物生理學報, 2014, 50(5): 665-674.
HOU S Y, SUN Z X, GUO B, WANG Y G, LI G Q, HAN Y H. Cloning and expression analysis of two C2H2 transcription factors in soybean., 2014, 50(5): 665-674. (in chinese)
[40] HUANG J, SUN S J, XU D Q, YANG X, BAO Y M, WANG Z F, TANG H J, ZHANG H S. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245., 2009, 389(3): 556-561.
[41] RAY P D, HUANG B W, TSUJI Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling., 2012, 24(5): 981-990.
[42] KORAMUTLA M K, KAUR A, NEGI M, VENKATACHALAM P, BHATTACHARYA R. Elicitation of jasmonate-mediated host defense in(L.) attenuates population growth of mustard aphid(Kalt.)., 2014, 240(1): 177-194.
[43] 喬俊卿, 張心寧, 梁雪杰, 劉永鋒, 劉郵洲. 枯草芽孢桿菌PTS-394誘導番茄對灰霉病的系統(tǒng)抗性. 中國生物防治學報, 2017, 33(2): 219-225.
QIAO J Q, ZHANG X N, LIANG X J, LIU Y F, LIU Y Z. Plant system resistance triggered by root-colonizingPTS-394 and its control effect on tomato gray mold., 2017, 33(2): 219-225. (in chinese)
[44] HAO Z N, WANG L P, HE Y P, LIANG J G, TAO R X. Expression of defense genes and activities of antioxidant enzyme in rice resistance to rice stripe virus and small brown planthopper., 2011, 49(7): 744-751.
[45] 孫璐, 黃瑞冬. 高粱幼苗保護酶系統(tǒng)對鹽脅迫的初期響應. 沈陽農(nóng)業(yè)大學學報, 2014, 45(2): 134-137.
SUN L, HUANG R D. Responses to salt stress of protective enzyme system in sorghum seedlings., 2014, 45(2): 134-137. (in chinese)
[46] 李春燕, 徐雯, 劉立偉, 楊景, 朱新開, 郭文善. 低溫條件下拔節(jié)期小麥葉片內(nèi)源激素含量和抗氧化酶活性的變化. 應用生態(tài)學報, 2015, 26(7): 2015-2022.
LI C Y, XU W, LIU L W, YANG J, ZHU X K, GUO W S. Changes of endogenous hormone contents and antioxidative enzyme activities in wheat leaves under low temperature stress at jointing stage., 2015, 26(7): 2015-2022. (in chinese)
Induction of Cold Tolerance in Rice at the Breeding Stage by Gongzhulingmycin
AN JunXia1,2, ZHAO Yu1, ZHANG ZhengKun1, SHI HaiPeng3, JI DongMing4, CAO HongYi5, DU Qian1, Li QiYun1
(1Institute of Plant Protection, Jilin Academy of Agricultural Sciences/Jilin Key laboratory of Agricultural Microbiology/Key laboratory of Integrated Pest Management on Crops in Northeast, Ministry of Agriculture and Rural Affairs, Changchun 130033;2College of Plant Protection, Jilin Agricultural University, Changchun 130118;3Agricultural Technology Extension Station of Yitong Manchu Autonomous County, Yitong 130700, Jilin;4Plant Protection Station of Siping City, Siping 136000, Jilin;5Life Science and Technology Academy, Harbin Normal University, Harbin 150080)
【】The objective of this study is to investigate the effects of gongzhulingmycin on rice seedling growth, cold tolerance genes expression and defense enzyme activities based on chilling stress exposure, and to elucidate the change in cold tolerance induced by gongzhulingmycin at the breeding stage of rice.【】Rice variety ‘Jijing88’was used as the experimental material, the seed germination and seedling growth were investigated under different temperatures and the critical temperature of seed germination was calculated after seed priming by gongzhulingmycin. The solid fermentation product of gongzhulingmycin was powdered and added into the rice seedling substrate before sowing. Taking ‘Jijing88’ as the experimental material, the rice seedlings were subjected to cold stress treatment in simulated cold environment in late spring at the needle appearance stage of rice. Gradually warmed up and sampled continuously within 1-8 d after treatment and sampled every 7 days when plant temperature raised to 28℃. Taking ‘Jihong 6’ as the experimental material, the rice seedlings were raised in the greenhouse and sampled when the seedlings grew to one leaf at a time. The expression of 4 cold tolerance genes (,,and) under the simulated cold environment in late spring and greenhouse seedling environment was analyzed by real-time quantitative PCR (RT-qPCR). The changes of defense enzyme activities such as superoxide dismutase (SOD), catalase (CAT), phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO) in greenhouse seedlings before transplanting were detected.【】The gongzhulingmycin could improve seed germination rate and germination index, shorten mean germination time, and its promoting effect on seedling growth was gradually obvious with the decrease of temperature. G-500x showed the best performance, which reduced the critical temperature of rice seed germination by 4.09%, and the subsequent experimental study was carried out based on this concentration. At the condition of low temperature simulation of the late spring cold, the application of gongzhulingmycin significantly increased the expression of,,, and rapid response could be achieved to cope with low temperature stress by accelerating the response speed. The control mainly regulated the response speed and expression ofto cope with low temperature stress, but the expression ofwas also increased after gongzhulingmycin application compared to the control. After the rice seedlings were subjected to low temperature stress at the needle appearance stage of rice, the expression peaks of,andthe seedlings treated with gongzhulingmycin appeared 1-2 d earlier than that in the control, and were increased by 38.57%, 74.66% and 130.61%, respectively, compared with the control.The maximum expression ofwas 2 d later than that of the control, but the maximum expression was 34.91% higher than that of the control. The optimum added weight of the solid fermentation productivepowder of gongzhulingmycin was 8 g·m-2in rice seedling substrate in the greenhouse seedling raising.when the seedlings grew to one leaf at a time after the addition of gongzhulingmycin, the expression levels of,,andthe leaves were higher than those in the control group. The expression of,andwas significantly increased.when the added weight was 8g·m-2, the expressionlevel ofwas the highest (261.20). when the added weight was 5g·m-2, the expressionlevel ofwas the highest, which was increased by 126.30% than that of the control. when the added weight was 8g·m-2, the expressionlevel ofwas the highest, which was increased by 359.81% than that of the control. Gongzhulingmycin could increase the defense enzyme activities of rice seedlings at the four-leaf stage before transplanting. The activities of SOD, POD, PPO and PAL were all increased, especially the SOD and PPO activities increased by 57.18% and 28.53%, respectively.【】Proper application of gongzhulingmycin before sowing can decrease the critical temperature of germination, promote the growth of seedlings, significantly improve the seedling quality, increase the expression levels of cold tolerance genes, improve the response speed to low temperature stress and raise defense enzyme activities to stimulate the cold tolerance in rice seedlings.
gongzhulingmycin; rice; cold tolerance; gene expression; defense enzyme activity
10.3864/j.issn.0578-1752.2020.11.006
2019-10-30;
2019-12-23
國家重點研發(fā)計劃(2017YFD0201104)、吉林省農(nóng)業(yè)科技創(chuàng)新工程自由創(chuàng)新項目(CXGC2018ZY022)、吉林省農(nóng)業(yè)科技創(chuàng)新工程研究生基金(安俊霞2018)
安俊霞,E-mail:1780120470@qq.com。通信作者李啟云,E-mail:qyli@cjaas.com。通信作者杜茜,E-mail:dqzjk@163.com
(責任編輯 岳梅)