梁芳 張燕 牛蘇燕 袁秀云 崔波
摘 要: 為探討NAC轉(zhuǎn)錄因子在蝴蝶蘭低溫脅迫響應(yīng)中的分子調(diào)控機(jī)理,該研究以蝴蝶蘭的葉片為材料,運(yùn)用RT-PCR及RACE技術(shù)克隆得到一條蝴蝶蘭的NAC轉(zhuǎn)錄因子基因完整的cDNA序列,命名為PhNAC1(GenBank登錄號(hào)MF797909),并分析了其在兩種低溫條件下的表達(dá)模式。結(jié)果表明:PhNAC1基因cDNA序列全長(zhǎng)1 442 bp,ORF全長(zhǎng)942 bp,編碼313個(gè)氨基酸。預(yù)測(cè)其蛋白分子量為35.22 kDa,等電點(diǎn)為6.95,屬于穩(wěn)定親水性蛋白。二級(jí)結(jié)構(gòu)預(yù)測(cè)表明,無(wú)規(guī)則卷曲和延伸鏈為該蛋白的主要結(jié)構(gòu)元件,與三級(jí)結(jié)構(gòu)預(yù)測(cè)結(jié)果基本相符。PhNAC1編碼的氨基酸序列與其他已登錄的蘭科植物NAC蛋白進(jìn)行同源序列比對(duì),表明與小蘭嶼蝴蝶蘭(XP_0205763790)親緣關(guān)系較近,序列一致性達(dá)97%,其次為鐵皮石斛(XP_020695081),一致性為84%。實(shí)時(shí)熒光定量PCR分析表明,PhNAC1基因在營(yíng)養(yǎng)器官和生殖器官中均有表達(dá),在蕊柱中的表達(dá)量最高。在11 ℃/6 ℃低溫條件下,PhNAC1基因的轉(zhuǎn)錄表達(dá)水平在前5天隨著處理時(shí)間逐漸升高,到第7天開(kāi)始下降;在4 ℃低溫條件下,PhNAC1基因的表達(dá)水平在處理0.5 h時(shí)表達(dá)量有所下降,1 h后表達(dá)量上升至對(duì)照水平,之后無(wú)明顯變化,在處理24至48 h又逐漸升高,推測(cè)PhNAC1基因參與蝴蝶蘭低溫脅迫響應(yīng)。
關(guān)鍵詞: 蝴蝶蘭, NAC轉(zhuǎn)錄因子, 表達(dá)特性, 低溫脅迫, 序列分析
中圖分類號(hào): Q785;Q786 ?文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào): 1000-3142(2020)06-0845-09
開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID) :
Abstract: NAC transcription factors are involved in many processes of plant development, which play an important role in stress response. The NAC transcription factor named PhNAC1 (GenBank accession No. MF797909) was cloned from the leaves of Phalaenopsis using RT-PCR and RACE method. The full-length of PhNAC1 was 1 442 bp, which contained a 942 bp ORF that encoding a protein with 313 amino acids residues. The molecular weight of the putative protein was 35.22 kDa and the theoretical pI was 6.95, a hydrophilic and unstable protein. Prediction of secondary structure showed that the random coil and extended strand were the main structural elements of the protein, which conformed to the prediction of tertiary structure. Amino acid sequence alignment and phylogenetic tree analysis between the protein of PhNAC1 and NACs from other Orchids showed that PhNAC1 was close to Phalaenopsis equestris (XP_020576379) with the sequence identity of 97%, followed by the Dendrobium catenatum (XP_020695081) with 84%. The qRT-PCR analysis indicated that the PhNAC1 gene was expressed in both of the vegetative and reproductive organs, and the expression level was the highest in the column. Under the cold stress of 11 ℃/6 ℃, the expression level of PhNAC1 gene was increased significantly with treatment time in leaves during the first five days, and then decreased at the 7th day. Under the cold stress of 4 ℃, the expression level was decreased slightly at 0.5 h, then recovered and remained to the initial level at 1 h after treatment, whereas the expression level was increased obviously after treating for 24、48 h, indicating that PhNAC1 may be involved in cold stress response of Phalaenopsis. This research will be useful for study of molecular mechanism of NAC transcription factor in cold stress response in Phalaenopsis species.
Key words: Phalaenopsis, NAC transcription factor, expression pattern, cold stress, sequence analysis
基因的轉(zhuǎn)錄調(diào)控控制著植物生長(zhǎng)發(fā)育的許多重要生理過(guò)程,如逆境應(yīng)答、信號(hào)轉(zhuǎn)導(dǎo)、形態(tài)建成等。轉(zhuǎn)錄因子通過(guò)與特異的目的基因啟動(dòng)子區(qū)相結(jié)合,激活或抑制目的基因的轉(zhuǎn)錄效率,從而使植物對(duì)外界刺激做出響應(yīng)。近年來(lái),NAC、MYB、WRKY、AP2/EREBP等轉(zhuǎn)錄因子在植物逆境中的響應(yīng)機(jī)制被廣泛研究(Scarpecie et al., 2013;Xue et al., 2014;Guan et al., 2014;Butt et al., 2017)。其中,NAC轉(zhuǎn)錄因子是目前發(fā)現(xiàn)數(shù)量最大的植物特有的轉(zhuǎn)錄因子家族之一(Olsen et al., 2005)。最早在矮牽牛NAM、擬南芥ATAF1/2和CUC2基因編碼蛋白的N端發(fā)現(xiàn)一段高度保守的氨基酸序列,以此3個(gè)基因的首字母命名為NAC結(jié)構(gòu)域,并將包含NAC結(jié)構(gòu)域的蛋白稱為NAC轉(zhuǎn)錄因子。NAC轉(zhuǎn)錄因子的研究多集中在被子植物。通過(guò)對(duì)擬南芥和水稻的NAC轉(zhuǎn)錄因子進(jìn)化分析,NAC結(jié)構(gòu)域可分為兩組18個(gè)亞組,NAC結(jié)構(gòu)域高度保守,僅有少數(shù)氨基酸差異,在NAC蛋白C端轉(zhuǎn)錄激活區(qū)有13個(gè)保守基序(Ooka et al., 2003)。
NAC轉(zhuǎn)錄因子參與植物生長(zhǎng)發(fā)育諸多過(guò)程,包括胚的發(fā)育(Larsson et al., 2011;Zhao et al., 2011)、側(cè)根形成(Hao et al., 2011)、葉片衰老(Jia et al., 2018)、果實(shí)成熟(Kou et al., 2012)、激素信號(hào)傳遞和調(diào)控(Wang et al., 2014)等。此外,NAC轉(zhuǎn)錄因子在植物逆境應(yīng)答過(guò)程中起著關(guān)鍵作用(Shao et al., 2015)。現(xiàn)已在許多植物中分離到NAC基因證明其能提高植物對(duì)低溫脅迫的抗性,如水稻SNAC2(Hu et al., 2008)、小麥TaNAC8(Xia et al., 2010)、TaNAC2(Mao et al., 2012)和TaNAC47(Zhang et al., 2015)、芒草MlNAC5(Yang et al., 2015)和MlNAC9(Zhao et al., 2016)、苜蓿MfNAC3(Qu et al., 2016)等。雖然與抗逆相關(guān)的NAC轉(zhuǎn)錄因子在擬南芥和水稻中研究較為深入,但在蘭花中的研究還見(jiàn)之甚少,僅見(jiàn)Mita et al.(2006)報(bào)道蕙蘭(Cymbidium faberi)CyNAC1轉(zhuǎn)錄因子參與高溫(25~30 ℃)導(dǎo)致幼嫩花芽的壞死過(guò)程,發(fā)現(xiàn)在變異的抗高溫植株中,該基因表達(dá)量明顯比野生型低。關(guān)于蘭科植物在低溫脅迫過(guò)程中NAC轉(zhuǎn)錄因子的相關(guān)研究目前尚未見(jiàn)報(bào)道。
蝴蝶蘭(Phalaenopsis amabilis)是世界著名的高檔花卉,在我國(guó)各地廣泛栽培。原產(chǎn)于熱帶亞熱帶地區(qū),性喜暖畏寒,生長(zhǎng)適溫為18~28 ℃,溫度過(guò)高或過(guò)低均會(huì)限制蝴蝶蘭的生長(zhǎng)。因此,低溫是影響蝴蝶蘭生長(zhǎng)的重要環(huán)境因子之一。我國(guó)北方地區(qū)蝴蝶蘭均在現(xiàn)代化溫室內(nèi)種植,冬春季節(jié)溫度較低時(shí)需對(duì)溫室進(jìn)行加溫,因此導(dǎo)致生產(chǎn)成本升高,耗能巨大制約了蝴蝶蘭產(chǎn)業(yè)的健康發(fā)展。因此,研究蝴蝶蘭抗冷的生理生化機(jī)制,培育抗冷性新品種,對(duì)于蝴蝶蘭產(chǎn)業(yè)的健康可持續(xù)發(fā)展具有重要意義。
1 材料與方法
1.1 材料與處理
所用材料為蝴蝶蘭栽培品種“大辣椒”(Phalaenopsis hybrid ‘Big Chili),由鄭州師范學(xué)院生物工程研究所提供。兩種低溫處理?xiàng)l件:將5葉期的蝴蝶蘭植株置于植物人工光照培養(yǎng)箱(美國(guó),PERCIVAL E-41HO2)內(nèi)27 ℃/22 ℃預(yù)培養(yǎng)15 d,使所有的實(shí)驗(yàn)苗Fv/Fm≥0.79。實(shí)驗(yàn)采用模擬自然狀態(tài)逐步降溫法,分為兩個(gè)階段,第一階段低溫馴化:晝夜溫度20 ℃/16 ℃處理3 d,16 ℃/11 ℃處理3 d;第二階段11 ℃/6 ℃低溫處理7 d。其他培養(yǎng)條件:光暗比12 h/12 h,光強(qiáng)為60 μmol·m-2·s-1,相對(duì)濕度70%~90%。取樣方法:以27 ℃/22 ℃預(yù)培養(yǎng)結(jié)束取樣為對(duì)照,晝夜溫度11 ℃/6 ℃處理第1、2、3、5、7天取樣。另外4 ℃低溫處理,用蝴蝶蘭3葉期瓶苗,置于4 ℃冰箱內(nèi)分別于0、0.5、1、2、4、8、12、24和48 h取樣。
1.2 方法
1.2.1 總RNA的提取和cDNA第一鏈的合成 各樣品總RNA的提取采用多糖多酚植物總RNA提取試劑盒。對(duì)提取的總RNA經(jīng)檢測(cè)合格后,用M-MLV反轉(zhuǎn)錄酶對(duì)其進(jìn)行反轉(zhuǎn)錄合成單鏈cDNA第一鏈,用于PhNAC1基因的克隆;用PrimeScript RT reagent Kit with gDNA Eraser試劑盒反轉(zhuǎn)錄成cDNA第一鏈,用于實(shí)時(shí)熒光定量PCR(qRT-PCR)檢測(cè)目的基因表達(dá)量。
1.2.2 PhNAC1基因全長(zhǎng)的擴(kuò)增及ORF的預(yù)測(cè)與驗(yàn)證 利用DNAMAN和Primer 5.0軟件,以GenBank中已登錄的JF831198(鐵皮石斛, Dendrobium candidum)、KC954544(鐵皮石斛, Dendrobium officinale)和AB257312(蕙蘭, Cymbidium hybrid)為模板,設(shè)計(jì)1對(duì)簡(jiǎn)并引物PhNAC1-F和PhNAC1-R(表1),用于擴(kuò)增蝴蝶蘭NAC基因中間保守片段。將得到的中間保守序列經(jīng)BLAST比對(duì)正確后,分別設(shè)計(jì)1對(duì)5′端特異引物(GSP5-1、GSP5-2)和3′端特異引物(GSP3-1、GSP3-2)。對(duì)中間保守區(qū)片段、5′-RACE擴(kuò)增片段和3′-RACE擴(kuò)增片段進(jìn)行分析比對(duì)并拼接, 通過(guò)BLAST對(duì)得到的基因全長(zhǎng)進(jìn)行同源性比對(duì),確定得到的基因?yàn)镹AC基因。在ORF區(qū)兩端設(shè)計(jì)特異引物ORF-F和ORF-R對(duì)ORF序列進(jìn)行驗(yàn)證。
1.2.3 PhNAC1基因的生物信息學(xué)分析 蝴蝶蘭PhNAC1基因蛋白結(jié)構(gòu)域、理化性質(zhì)、親疏水性、磷酸化位點(diǎn)、以及蛋白質(zhì)的二級(jí)和三級(jí)結(jié)構(gòu)等采用在線軟件進(jìn)行分析。此外,核苷酸與氨基端序列的同源性用DNAMAN軟件進(jìn)行比對(duì)分析,并用Clustal X和MEGA構(gòu)建系統(tǒng)進(jìn)化樹(shù)。
1.2.4 PhNAC1基因的表達(dá)特性分析 取蝴蝶蘭的根、葉(第2片)、花葶、花芽、萼片、翼瓣、唇瓣及蕊柱,迅速投入液氮中速凍后-80 ℃冰箱保存,用于PhNAC1基因在不同組織中的表達(dá)分析。低溫脅迫處理均取第2片成熟葉,每個(gè)取樣點(diǎn)有三個(gè)生物學(xué)重復(fù),每個(gè)重復(fù)由三株不同植株混合而成。
根據(jù)得到的ORF序列,設(shè)計(jì)qRT-PCR引物PhNAC1-qF和PhNAC1-qR,以蝴蝶蘭Actin基因作為內(nèi)參基因。采用SYBR Premix Ex Taq II試劑盒進(jìn)行qRT-PCR,反應(yīng)體系為25 μL,反應(yīng)條件:95 ℃ 15 s,58 ℃ 15 s,72 ℃ 15 s(40個(gè)循環(huán)),反應(yīng)在Eppendorf Mastercycler熒光定量PCR儀上進(jìn)行,每個(gè)樣品重復(fù)3次,同時(shí)做陰性對(duì)照。基因相對(duì)表達(dá)量用公式2-ΔΔCt來(lái)計(jì)算(Vandesompele et al., 2002)。
2 結(jié)果與分析
2.1 PhNAC1基因全長(zhǎng)的擴(kuò)增
以蝴蝶蘭葉片cDNA為模板,以引物PhNAC1-F和PhNAC1-R進(jìn)行中間片段的擴(kuò)增,得到約350 bp的保守片段(圖1:A),經(jīng)BLASTn比對(duì)分析表明克隆的片段為NAC基因片段。根據(jù)該片段序列,利用引物GSP3-1和GSP3-2進(jìn)行3′-RACE擴(kuò)增,得到大小約780 bp目的片段(圖1:B),利用引物GSP5-1和GSP5-2進(jìn)行5′-RACE擴(kuò)增,得到大小約320 bp目的片段(圖1:C)。將測(cè)序得到的中間保守區(qū)片段、5′-RACE擴(kuò)增片段及3′-RACE擴(kuò)增片段進(jìn)行分析拼接,得到全長(zhǎng)為1 442 bp的基因序列,其中包括一個(gè)完整的長(zhǎng)為942 bp ORF,編碼313個(gè)氨基酸。對(duì)ORF區(qū)進(jìn)行克隆驗(yàn)證,得到997 bp的片段(圖1:D), 與全長(zhǎng)部分序列完全相M. DL2000 DNA 標(biāo)記; 1. 中間保守片段; 2. 3′-RACE片段; 3. 5′-RACE片段; 4. 開(kāi)放閱讀框。
同。經(jīng)BLAST分析, 所得的核苷酸序列與小蘭嶼蝴蝶蘭(Phalaenopsis equestris, XP_020576379)一致性為98%,與小野芭蕉(Musa acuminata)NAC79基因序列一致性為79%,通過(guò)比對(duì)分析表明克隆的基因?yàn)镹AC家族基因。將該基因命名為PhNAC1,GenBank登錄號(hào)MF797909。
2.2 PhNAC1基因的生物信息學(xué)分析
2.2.1 PhNAC1蛋白的基本性質(zhì)及空間結(jié)構(gòu)分析 通過(guò)對(duì)PhNAC1基因推導(dǎo)的氨基酸序列進(jìn)行分析,表明該蛋白屬于植物特有的NAC轉(zhuǎn)錄因子家族。CDD數(shù)據(jù)庫(kù)分析結(jié)果表明,該蛋白第8至第134個(gè)氨基酸為NAC結(jié)構(gòu)域。生物信息分析結(jié)果表明PhNAC1蛋白屬于親水性蛋白,該蛋白分子質(zhì)量約為35.22 kDa、理論等電點(diǎn)pI為6.95,分子式為C1563H2375N417O477S18;正負(fù)電荷殘基總數(shù)均為35。在組成PhNAC1蛋白的20種氨基酸中,Ser所占的比例最高,為10.2%,His和Cys所占比例最低,僅為1.6%。該蛋白脂肪指數(shù)56.10,不穩(wěn)定指數(shù)為33.53,屬于穩(wěn)定蛋白。PhNAC1蛋白序列中存在41個(gè)潛在的磷酸化位點(diǎn),包括21個(gè)Ser位點(diǎn)、14個(gè)Thr位點(diǎn)和6個(gè)Tyr位點(diǎn)。對(duì)PhNAC1蛋白進(jìn)行二級(jí)結(jié)構(gòu)預(yù)測(cè),結(jié)果表明該蛋白二級(jí)結(jié)構(gòu)由α螺旋(Hh)、伸展鏈(Ee)和無(wú)規(guī)則卷曲(Cc)組成,其中無(wú)規(guī)則卷曲占70.6%,伸展鏈占27.48%,α螺旋僅占1.92%。
采用SWISS-MODEL同源建模的方法,以4dul.1 (擬南芥ANAC019)為模型對(duì)PhNAC1進(jìn)行蛋白質(zhì)三級(jí)結(jié)構(gòu)建模(圖2),結(jié)果表明PhNAC1與4dul.1相似性為56.33%,推測(cè)PhNAC1是與脅迫響應(yīng)相關(guān)的NAC轉(zhuǎn)錄因子。
2.2.2 PhNAC1基因同源性與系統(tǒng)進(jìn)化分析 將蝴蝶蘭PhNAC1基因編碼的氨基酸序列(AXF50252)與已登錄到NCBI上的其他4種蘭科植物的 NAC蛋白進(jìn)行序列比對(duì)分析(圖3),PhNAC1與小蘭嶼蝴蝶蘭(Phalaenopsis equestris, XP_020576379)的氨基酸序列一致性最高為97%,均為313個(gè)氨基酸,二者僅有8個(gè)氨基酸的差異;其次為鐵皮石斛(Dendrobium catenatum, XP_020695081),二者序列一致性為84%;與深圳擬蘭(Apostasia shenzhenica, PKA66962)和雜交蘭(Cymbidium hybrid, BAF36563)的一致性較低,分別為51%和32%。將PhNAC1氨基酸序列經(jīng)BLAST比對(duì),選擇序列一致性較高的15種植物,利用NJ法構(gòu)建無(wú)根系統(tǒng)進(jìn)化樹(shù)(圖4),顯示蝴蝶蘭與小蘭嶼蝴蝶蘭、鐵皮石斛、深圳擬蘭親緣關(guān)系最近,其次為番紅花(Crocus sativus, ABU40776),與其他植物的親緣關(guān)系較遠(yuǎn)。
2.3 PhNAC1基因的表達(dá)特性分析
由圖5可知,PhNAC1基因在蝴蝶蘭的營(yíng)養(yǎng)器官和生殖器官中均有表達(dá),在蕊柱中的表達(dá)水平最高,明顯高于其他組織,在根、葉和翼瓣中表達(dá)水平最低。在11 ℃/6 ℃低溫條件下,PhNAC1基因的轉(zhuǎn)錄表達(dá)水平在處理1、2、3、5 d逐漸升高,處理第7天明顯下降(圖6:A);在4 ℃低溫條件下,PhNAC1基因的表達(dá)水平在處理0.5 h表達(dá)量下降,處理1 h后表達(dá)量上升至對(duì)照水平,之后無(wú)明顯變化,在處理24 h和48 h后又明顯升高(圖6:B)。
3 討論與結(jié)論
NAC轉(zhuǎn)錄因子是一類數(shù)量巨大的植物轉(zhuǎn)錄因子,在植物的生長(zhǎng)發(fā)育調(diào)控及抗逆響應(yīng)中發(fā)揮重要的作用(Sun et al., 2018;Singh et al., 2016)。Liu et al.(2019)報(bào)道NAC轉(zhuǎn)錄因子參與高溫誘導(dǎo)的荔枝花序敗育。Wang et al.(2014)首次報(bào)道西瓜NAC轉(zhuǎn)錄因子CcNAC1和CcNAC2參與光信號(hào)途徑和生長(zhǎng)激素信號(hào)途徑。通過(guò)抑制ABA信號(hào)通路相關(guān)基因,過(guò)表達(dá)ONAC066可以提高水稻對(duì)稻瘟病和白葉枯病的抗性(Liu et al., 2018)。本文從蝴蝶蘭中通過(guò)同源克隆的方法得到一個(gè)NAC轉(zhuǎn)錄因子基因PhNAC1,對(duì)該基因編碼的氨基酸序列進(jìn)行分析,發(fā)現(xiàn)在N端具有NAC結(jié)構(gòu)域,該結(jié)構(gòu)域是NAC轉(zhuǎn)錄因子特有的結(jié)構(gòu)域。運(yùn)用生物信息學(xué)方法對(duì)PhNAC1蛋白進(jìn)行分析預(yù)測(cè),PhNAC1是一種穩(wěn)定的親水性蛋白,具有多個(gè)潛在的磷酸化位點(diǎn)。將PhNAC1蛋白與其他已登錄的蘭科植物NAC蛋白序列進(jìn)行比較,發(fā)現(xiàn)都具有高度保守的N端和多變的C端,N端含有A、B、C、D、E 5個(gè)典型亞結(jié)構(gòu)域(Puranik et al., 2012)。進(jìn)化分析表明,PhNAC1與小蘭嶼蝴蝶蘭的親緣關(guān)系最近,僅有8個(gè)氨基酸的差異,序列一致性達(dá)到97%。三級(jí)空間結(jié)構(gòu)預(yù)測(cè)表明,PhNAC1與擬南芥ANAC019的相似度最高,推測(cè)PhNAC1是與脅迫響應(yīng)相關(guān)的NAC轉(zhuǎn)錄因子(Jenson et al., 2010)。
用實(shí)時(shí)熒光定量PCR對(duì)PhNAC1基因在蝴蝶蘭各個(gè)組織中的表達(dá)特性進(jìn)行了研究,發(fā)現(xiàn)PhNAC1基因在蝴蝶蘭的根、葉及各個(gè)花器官組織A-E下劃線部分分別代表NAC結(jié)構(gòu)域中5個(gè)保守的亞結(jié)構(gòu)域。
中均有表達(dá),其中在蕊柱中的表達(dá)量明顯高于其他部位和組織。蝴蝶蘭的蕊柱(Column)是雄蕊和花柱、柱頭完全愈合而成的一種柱狀體,頂端著生一個(gè)花粉塊。PhNAC1基因在蕊柱中的高表達(dá)機(jī)理還有待進(jìn)一步研究。PhNAC1基因在低溫脅迫條件下的表達(dá)分析表明,在11 ℃/6 ℃的晝夜溫度條件下,該基因的表達(dá)水平隨著處理時(shí)間逐漸升高,到第5天表達(dá)量是對(duì)照的34倍,第7 天表達(dá)量開(kāi)始下降。在4 ℃低溫條件下,處理0.5 h表達(dá)量有所下降,之后開(kāi)始上升恢復(fù)到對(duì)照水平維持至12 h,到24 h后表達(dá)量又開(kāi)始上升,由此推測(cè)PhNAC1基因在蝴蝶蘭低溫脅迫響應(yīng)中發(fā)揮作用。擬南芥和水稻全基因組表達(dá)譜研究表明,一些NAC基因受到高溫、干旱、低溫或病害中的一個(gè)或多個(gè)因素誘導(dǎo)表達(dá)。如擬南芥中的ANAC019、ANAC055、ANAC072(RD26)均對(duì)不同非生物脅迫有應(yīng)答反應(yīng)(Fujita et al., 2004;Delessert et al., 2005;Fang et al., 2008);在水稻中,OsNAC6和SNAC2超量表達(dá)可以提高幼苗發(fā)育階段對(duì)干旱、高鹽和低溫的耐受性(Lu et al., 2007;Nuruzzaman et al., 2010)。
本研究首次克隆了蝴蝶蘭的NAC基因PhNAC1,分析了其在兩種低溫條件下的表達(dá)模式,結(jié)果顯示其在低溫脅迫24 h后即開(kāi)始上調(diào)表達(dá),表明蝴蝶蘭PhNAC1轉(zhuǎn)錄因子能夠?qū)Φ蜏刈龀龇e極響應(yīng),以及時(shí)調(diào)節(jié)下游冷相關(guān)基因的表達(dá),減輕逆境對(duì)植物可能造成的傷害。
參考文獻(xiàn):
R2R3 MYB gene, in transgenic Arabidopsis plays an important role in drought tolerance [J]. BMC Plant Biol, 17(1): 142. Doi: 10.1186/s12870-017-1078-3.
DELESSERT C, KAZAN K, WILSON IW, et al., 2005. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis [J]. Plant J, 43(5): 745-757.
FANG Y, YOU J, XIE K, et al., 2008. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice [J]. Mol Genet Genom, 280(6): 547-563.
FUJITA M, FUGITA Y, MARUYAMA K, et al., 2004. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway [J]. Plant J, 39(6):863-876.
GUAN QM, YUE XL, ZENG HT, et al., 2014. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis [J]. Plant Cell, 26: 438-453.
HAO YJ, WEI W, SONG QX, et al., 2011. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants [J]. Plant J, 68: 302-313.
HU HH, YOU J, FANG Y, et al., 2008. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice [J]. Plant Mol Biol, 67(1-2): 169-181.
JENSEN MK, KJAERSGAAD T, NIELSEN MM, et al., 2010. The Arabidopsis thaliana NAC transcription factor family: Structure-function relationships and determinants of ANAC019 stress signaling [J]. Biochem J, 426(2): 183-196.
JIA D, GONG X, LI M, et al., 2018. Overexpression of a novel apple NAC transcription factor gene, MdNAC1, Confers the dwarf phenotype in transgenic apple (Malus domestica) [J]. Genes, 9(5): 229. Doi:10.3390/genes9050229.
KOU X, WATKINS CB, GAN S, 2012. Arabidopsis AtNAP regulates fruit senescence [J]. J Exp Bot, 63: 6139-6147.
LARSSON E, SITBON F, SUNDSTROM J, et al., 2011. NAC regulation of embryo development in conifers [J]. BMC Proceed, 5(7): 67. Doi: 10.1186/1753-6561-5-S7-P67.
LIU H, WANG CC, CHEN H, et al., 2019. Genome-wide transcriptome analysis reveals the molecular mechanism of high temperature-induced floral abortion in Litchi chinensis [J]. BMC Genomics, 20(1):127. Doi: 10.1186/s12864-019-5493-8
LIU Q, YAN SJ, HUANG WJ, et al., 2018. NAC transcription factor ONAC066 positively regulates disease resistance by suppressing the ABA signaling pathway in rice [J]. Plant Mol Biol, 98(4-5):289-302.
LU PL, CHEN NZ, AN R, et al., 2007. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive gene in Arabidopsis [J]. Plant Mol Biol, 63(2): 289-305.
MAO X, ZHANG H, QIAN X, et al., 2012. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis [J]. J Exp Bot, 63(8): 2933-2946.
MITA S, HENMI R, OHNO H, 2006. Enhanced expression of genes for ACC synthase, ACC oxidase, and NAC protein during high-temperature-induced necrosis of young inflorescences of Cymbidium [J]. Physiol Plant, 128: 476-486.
NURUZZAMAN M, MANIMEKALAI R, SHARONI MA, et al., 2010. Genome-wide analysis of NAC transcription factor family in rice [J]. Gene, 465: 30-44.
OLSEN NA, ERNST AH, LEGGIO LL, et al., 2005. NAC transcription factors: Structurally distinct, functionally diverse [J]. Trends Plant Sci, 10(2): 80-88.
OOKAH, SATOH K, DOI K, et al., 2003. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana [J]. DNA Res, 10(6): 239-247.
PURANIK S, SAHU PP, SRIVASTAVA PS, et al., 2012. NAC proteins: Regulation and role in stress tolerance [J]. Trends Plant Sci, 17(6): 369-381.
QU YT, DUAN M, ZHANG ZQ, et al., 2016. Overexpression of the Medicago falcata NAC transcription factor MfNAC3 enhances cold tolerance in Medicago truncatula [J]. Environ Exp Bot, 129: 67-76.
SCARPECI ET, ZANOR IM, MUELLER-ROEBER B, et al., 2013. Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana [J]. Plant Mol Biol, 83(3): 265-277.
SHAO H, WANG H, TANG X, 2015. NAC transcription factors in plant multiple abiotic stress responses: Progress and prospects [J]. Front Plant Sci, 6: 902. Doi: 10.3389/fpls.2015.00902.
SINGH S, GROVER A, NASIM M, 2016. Biofuel potential of plants transformed genetically with NAC family genes [J]. Front Plant Sci, 7: 22. Doi: 10.3389/fpls.2016.00022.
SUN H, HU ML, LI JY, et al., 2018. Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton [J]. BMC Plant Biol, 18(1): 150. Doi: 10.1186/s12870-018-1367-5.
VANDESOMPELEJ, PRETER DK, PATTYN F, et al., 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes [J]. Genom Biol, 3(7):1-11.
WANG Z, RASHOTTE AM, DANE F, 2014. Citrullus colocynthis NAC transcription factors CcNAC1 and CcNAC2 are involved in light and auxin signaling [J]. Plant Cell Rep, 33(10): 1673-1686.
XIA N, ZHANG G, SUN YF, et al., 2010. TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses [J]. Physiol Mol Plant Pathol, 74(5-6): 394-402.
XUE Y, WANG YY, PENG HR, et al., 2014. Transcription factor MdCBF1 gene increases freezing stress tolerance in transgenic Arabidopsis thaliana [J]. Biol Plantarum, 58(3): 499-506.
YANG XW, WANG XY, JI L, et al., 2015. Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis [J]. Plant Cell Rep, 34(6): 943-958.
ZHAO P, WANG WJ, SUN MX, 2011. Characterization and expression pattern analysis of DcNAC gene in somatic embryos of Dendrobium candidum Wall Ex Lindl [J]. Plant Cell Tissue Organ Cult, 107(1): 151-159.
ZHAO X, YANG XW, PEI SQ, et al., 2016. The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis [J]. Gene, 586: 158-169.
ZHANG LN, ZHANG LC, XIA C, et al., 2015. The novel wheat transcription factor TaNAC47 enhances multiple abiotic stress tolerances in transgenic plants [J]. Front Plant Sci, 6: 1174. Doi: 10.3389/fpls.2015.01174.
ZHOU Y, HUANG WF, LIU L, et al., 2013. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence [J]. BMC Plant Biol, 13: 132. Doi: 10.1186/1471-2229-13-132.
(責(zé)任編輯 何永艷)