藍(lán)蔚青 趙亞楠 劉 琳 謝 晶
臭氧水處理在水產(chǎn)品殺菌保鮮中的應(yīng)用研究進(jìn)展*
藍(lán)蔚青1,2趙亞楠1劉 琳1謝 晶1,2①
(1. 上海海洋大學(xué)食品學(xué)院 上海 201306;2. 上海水產(chǎn)品加工及貯藏工程技術(shù)研究中心 食品科學(xué)與工程國(guó)家級(jí)實(shí)驗(yàn)教學(xué)示范中心(上海海洋大學(xué)) 上海 201306)
水產(chǎn)品自身帶有或貯運(yùn)期間污染的微生物是導(dǎo)致其腐敗變質(zhì)的主因。為減少微生物對(duì)水產(chǎn)品品質(zhì)影響,延長(zhǎng)其貨架期,減菌化前處理是減少其加工貯藏過(guò)程中微生物污染的關(guān)鍵技術(shù)。本文在分析比較水產(chǎn)品常用減菌化處理水的作用機(jī)理與主要特點(diǎn)的基礎(chǔ)上,重點(diǎn)介紹了臭氧水在水產(chǎn)品殺菌保鮮中的應(yīng)用研究進(jìn)展,提出其存在問(wèn)題與解決辦法,闡明將臭氧水與流化冰、氣調(diào)保鮮及其他保鮮處理技術(shù)相結(jié)合的優(yōu)勢(shì),并對(duì)臭氧水在水產(chǎn)品貯藏加工中的應(yīng)用前景予以展望。
水產(chǎn)品;臭氧水;殺菌;保鮮
我國(guó)漁業(yè)蓬勃發(fā)展,據(jù)《2019年中國(guó)漁業(yè)統(tǒng)計(jì)年鑒》顯示,2018年的水產(chǎn)養(yǎng)殖面積達(dá)7449.03×103hm2,總產(chǎn)量為6457.66×104t,進(jìn)出口量為954.42×104t,其中,總產(chǎn)量和進(jìn)出口量同比2017年分別增加0.19%和3.33%(農(nóng)業(yè)農(nóng)村部漁業(yè)漁政管理局, 2019)。目前,市場(chǎng)上供應(yīng)的水產(chǎn)品主要是鮮活水產(chǎn)品,其次為加工制品,截至2018年底,水產(chǎn)品加工總量達(dá)2156.85×104t,同比下降1.79%。由于水產(chǎn)品易受季節(jié)、地域與運(yùn)輸條件等影響,其在品質(zhì)與風(fēng)味上易發(fā)生劣變(Jiang, 2019)。水產(chǎn)品產(chǎn)量呈逐年遞增的同時(shí),中國(guó)水產(chǎn)品在綜合加工利用程度方面與發(fā)達(dá)國(guó)家相比,仍存在一定差距。
水產(chǎn)品因其特殊口感風(fēng)味,且富含不飽和脂肪酸與優(yōu)質(zhì)蛋白源等特點(diǎn),廣受消費(fèi)者喜愛(ài)。然而,其死后由于內(nèi)源酶和微生物的作用,易發(fā)生自溶、蛋白質(zhì)與氨基酸分解、產(chǎn)生堿性胺類物質(zhì)等一系列變化,極易腐敗變質(zhì)(馮豪杰等, 2019)。目前,水產(chǎn)品加工方式趨于多樣化,生食水產(chǎn)品為保證其原有口感,須在低溫條件下減菌化處理。在保證其安全衛(wèi)生的同時(shí),最大程度保留其營(yíng)養(yǎng)與風(fēng)味。
目前,國(guó)內(nèi)外常用的減菌化處理方式有電解水、臭氧水、二氧化氯水及有機(jī)酸處理等。其作用機(jī)理與主要優(yōu)缺點(diǎn)見(jiàn)表1。由表1可知,臭氧水與其他減菌化用水相比,存在一定優(yōu)勢(shì)。首先,臭氧水具有強(qiáng)氧化性和抑菌殺菌能力,其作用食品后能分解成O2,無(wú)殘留,F(xiàn)DA早在2001年就將O3列入可直接與食品接觸的添加劑中(袁成豪等, 2019)。目前,被廣泛應(yīng)用于果蔬農(nóng)副產(chǎn)品、畜禽類、水產(chǎn)品與乳制品的滅菌保鮮中,效果良好(李娜等, 2018; 肖子寒等, 2018; Papachristodoulou, 2017)。O3溶于水制得臭氧水,作為殺菌劑用于水產(chǎn)品貯藏前期的減菌化處理,也可作為脫腥劑和漂白劑使用(李學(xué)鵬等, 2019)。
O3的制備方式根據(jù)其工作原理,可分為電解法、電暈放電法、紫外線照射法等(黃玉婷, 2014; 宣偉, 2011),其工作原理及優(yōu)缺點(diǎn)等如表2所示。
本文在對(duì)比分析水產(chǎn)品常用減菌化處理水作用機(jī)理與主要優(yōu)缺點(diǎn)的基礎(chǔ)上,對(duì)臭氧水在水產(chǎn)品殺菌保鮮中的應(yīng)用研究進(jìn)展及存在的主要問(wèn)題予以介紹,提出將臭氧水與流化冰、氣調(diào)保藏、微納米氣泡水等技術(shù)相結(jié)合的解決途徑,并對(duì)其應(yīng)用前景予以展望,以期為臭氧水處理技術(shù)在水產(chǎn)品貯藏保鮮中的應(yīng)用提供理論參考。
表1 不同減菌化處理水的主要作用機(jī)理與優(yōu)缺點(diǎn)比較
Tab.1 Comparison of main action mechanism, advantages and disadvantages of different antibacterial treatment water
表2 臭氧制備方法的主要工作原理及優(yōu)缺點(diǎn)比較
Tab.2 Comparison of main working principles, advantages and disadvantages of ozone preparation methods
O3具有強(qiáng)氧化性與抑菌殺菌能力,在魚片及魚糜制品漂白脫色、異味去除及殺菌保鮮,甚至是加工設(shè)備清洗消毒、循環(huán)水養(yǎng)殖等領(lǐng)域中得到廣泛應(yīng)用(趙永強(qiáng)等, 2013; 黃濱等, 2016)。目前,已有學(xué)者從臭氧水處理濃度、溫度、時(shí)間與處理方式等方面研究其對(duì)水產(chǎn)品減菌效果與品質(zhì)風(fēng)味影響,也將其作用后對(duì)人體的安全性予以評(píng)價(jià)。其中,趙永強(qiáng)等(2014)通過(guò)急性毒性與遺傳毒性實(shí)驗(yàn)得出,經(jīng)4.5 mg/L臭氧水減菌化處理30 min的羅非魚()魚片對(duì)SD大鼠()未表現(xiàn)有遺傳毒性,骨髓微核試驗(yàn)和染色體畸變?cè)囼?yàn)均為陰性,SD大鼠的最大耐受劑量大于15 g/kg;Wedemeyer等(1979)研究表明,經(jīng)臭氧水處理后虹鱒魚()的急性毒性,結(jié)果得出臭氧平均致死閾值為8 μg/L,2 μg/L的臭氧水不會(huì)對(duì)虹鱒魚引起明顯的生物損傷。因此,采用適宜濃度的臭氧水處理,對(duì)魚體及人體都不會(huì)產(chǎn)生毒副作用。
微生物的種類與含量同水產(chǎn)品新鮮程度與腐敗程度關(guān)系密切,臭氧水對(duì)鼠傷寒沙門氏菌()、大腸桿菌()、李斯特菌()等均有高效滅活能力,是廣譜殺菌和高安全性的殺菌劑(Gibson, 2019)。其中,Cao等(2010)研究發(fā)現(xiàn),以牡蠣()為實(shí)驗(yàn)對(duì)象,經(jīng)5.0×10–6g/L臭氧水處理后,可有效減少牡蠣表面的初始菌數(shù),保持新鮮品質(zhì),延長(zhǎng)貨架期2 d;魯建云等(2018)實(shí)驗(yàn)得出,臭氧水在制得后0~10 min內(nèi),其濃度衰減速度較快,且在 20℃~30℃時(shí),0.3 mg/L的臭氧水對(duì)金黃色葡萄球菌()、大腸桿菌等病原微生物殺菌效率達(dá)100%;劉偉等(2016)采用3.60 mg/L的臭氧水噴淋減菌處理冷鮮草魚() 發(fā)現(xiàn),噴淋時(shí)間為3 min時(shí),其對(duì)金黃色葡萄球菌與大腸桿菌的殺菌率分別達(dá)60%與80%,臭氧水減菌前處理后樣品置于4℃環(huán)境貯藏可延長(zhǎng)保質(zhì)期2 d;Silva等(2017)研究不同濃度的臭氧水和不同處理時(shí)間對(duì)羅非魚的減菌效果及理化影響,研究表明,采用1.5 mg/L的臭氧水處理15 min,對(duì)羅非魚魚片的減菌率達(dá)88.25%,且不影響魚片pH和色澤;Gelman等(2005)研究O3處理對(duì)活魚在0℃和5℃下貯藏期間的品質(zhì)變化及貨架期,經(jīng)微生物檢測(cè),與5℃下貯藏經(jīng)臭氧處理的羅非魚相比,在0℃下結(jié)合O3貯藏是其延長(zhǎng)保質(zhì)期的有效手段??梢?jiàn),臭氧水對(duì)細(xì)菌、真菌、原生動(dòng)物及病毒等有不同程度的抑制或滅活作用,具有處理時(shí)間短、抑菌濃度低的優(yōu)點(diǎn);此外,臭氧水濃度與減菌率正相關(guān),振動(dòng)狀態(tài)的臭氧水還可在實(shí)際生產(chǎn)中增加臭氧利用率和殺菌效果(孫繼英等, 2013)。
在適當(dāng)條件下,適宜濃度的臭氧水處理水產(chǎn)品及魚糜制品可顯著提高其凝膠強(qiáng)度和肌原纖維蛋白羰基含量,延緩總揮發(fā)性鹽基氮值(Total volatile base nitrogen, TVB-N)與值的升高,抑制pH變化與水分流失,具有較好的保鮮作用(李學(xué)鵬等, 2019)。同時(shí),O3的強(qiáng)氧化性也會(huì)導(dǎo)致樣品發(fā)生輕微的蛋白質(zhì)氧化變性和脂肪氧化,但相較于其能延長(zhǎng)貨架期的保鮮能力相比,該作用可忽略不計(jì)(Okpala, 2017; 安玥琦等, 2015)。其中,張紅杰等(2015)研究發(fā)現(xiàn),羅非魚片經(jīng)4.0 mg/L流動(dòng)臭氧水處理后,在冰藏期間可加快蛋白質(zhì)變性,其肌原纖維蛋白鹽溶性、巰基含量與Ca2+-ATPase活性較對(duì)照組低,而羰基含量與肌動(dòng)球蛋白表面疏水性較對(duì)照組高;Karamah等(2019)研究臭氧水接觸時(shí)間、溫度與劑量對(duì)金槍魚(sp.)品質(zhì)影響,研究表明,在一定濃度范圍內(nèi),臭氧水濃度越高,其品質(zhì)劣變?cè)骄徛?,金槍魚采用0.3 mg/L減菌化處理120 min后,在8℃時(shí)貯藏168 h后,水分含量增加1.20%、蛋白質(zhì)僅減少0.67%、pH降至5.58、減菌率達(dá)91.2%;Okpala等(2017)研究發(fā)現(xiàn),當(dāng)臭氧水排放濃度、處理溫度、洗滌時(shí)間分別為100 mg/h、25℃、1~5 min時(shí),隨臭氧水接觸時(shí)間的延長(zhǎng),太平洋白蝦()冰藏期間的蛋白質(zhì)、脂肪與水分含量無(wú)明顯變化,且對(duì)黏度、硬度也無(wú)顯著影響;安玥琦等(2015)采用7.8 mg/L臭氧水淋洗鳙魚()頭5 min,發(fā)現(xiàn)可顯著降低其值與TVB-N值,減菌率達(dá)90.43%,處理后對(duì)硫代巴比妥酸值與pH無(wú)顯著影響;刁石強(qiáng)等(2011)研究表明,鳳尾魚()經(jīng)2~3 mg/L的臭氧水處理后,在–1.1℃~0℃下可延緩其脂質(zhì)氧化變質(zhì),貯藏3~4 d后仍保持二級(jí)鮮度,可延長(zhǎng)貨架期1~2 d;Xie等(2009)研究表明,擂潰工序中,在40℃、水浴35 min下,添加0.8 mg/L臭氧水處理,鰱魚()魚丸的持水性、色澤與質(zhì)構(gòu)特性最佳。臭氧水減菌處理可有效保持水產(chǎn)品的鮮度,延長(zhǎng)其貨架期,但會(huì)加速蛋白質(zhì)變性與脂肪氧化。
臭氧水具有高氧化性,會(huì)增加魚體白度與亮度,在一定條件下會(huì)產(chǎn)生與H2O2相同的漂白效果(Al-Omiri, 2018)。同其他減菌化處理水相比,還可有效去除水產(chǎn)品中的土腥素,保持其水分含量和良好的蛋白特性,且對(duì)其質(zhì)構(gòu)特性影響不顯著。其中, 閆師杰等(2010)研究得出,濃度為5和7 mg/L的臭氧水可有效延緩鯰魚()TVB-N值、pH值、值的升高,延緩值和值的下降,尤其是5 mg/L臭氧水處理效果最佳;Zhang等(2016)研究表明,3.3~7.6 mg/L臭氧水與0.3 m3/h臭氧氣體浮選洗滌5~20 min可分別消除魚肉中42.09%~54.28%與42.78%~69.19%的土腥素,臭氧水處理是一種更溫和有效的處理方式,可改善鳙魚蛋白的理化特性并消除不良風(fēng)味;Chen等(1997)用臭氧水洗滌鯖魚()肉末10~20 min具有較好的脫色效果,但會(huì)使脂肪氧化,pH值下降顯著,凝膠強(qiáng)度不理想。
臭氧水雖具有高氧化性,但其易分解為O2,穩(wěn)定性不佳;同時(shí),其在水溶液中半衰期短,殺菌能力也會(huì)隨之下降;O3制取條件嚴(yán)格(純氧、低溫、干燥),且在相對(duì)濕度大的水產(chǎn)品加工車間,以空氣這種混合氣體為介質(zhì)制得的O3氣體純度不高,一般為3%~6%,加之O3的溶解度小,故制得的臭氧水濃度極低且濃度不可控,其實(shí)際利用率達(dá)不到預(yù)期效果。同時(shí),高壓電暈條件下制O3伴隨N2O、NO與N2O3等毒氮氧化物產(chǎn)生,會(huì)損傷深部呼吸道與肺泡,甚至引發(fā)呼吸道窘迫綜合征(袁成豪等, 2019)。此外,臭氧水產(chǎn)生的活性氧自由基還會(huì)加速魚肉蛋白質(zhì)變性與脂肪氧化,使質(zhì)地口感下降(劉慈坤, 2019)。水產(chǎn)品長(zhǎng)時(shí)間浸泡在臭氧水中,會(huì)使其蛋白質(zhì)溶解性與交聯(lián)聚集等功能特性隨之下降,影響其彈性、嫩度及風(fēng)味等(Bao, 2018)。在實(shí)際生產(chǎn)中使用低濃度臭氧水或短時(shí)間處理會(huì)使其減菌效果不理想,高濃度長(zhǎng)時(shí)間處理又會(huì)對(duì)水產(chǎn)品品質(zhì)造成不可逆影響,且操作人員長(zhǎng)期在高濃度臭氧水環(huán)境下可能會(huì)損害呼吸道,出現(xiàn)頭疼乏力與記憶減退等癥狀。人體對(duì)O3的嗅覺(jué)臨界值濃度為0.15 mg/L,而當(dāng)濃度達(dá)到10 mg/L以上時(shí)為中毒限值。因此,將臭氧水與其他處理方式相結(jié)合,既可減少其用量,還能更好發(fā)揮協(xié)同效應(yīng),實(shí)現(xiàn)綜合作用效果。
流化冰作為一種可直接利用海水制作的高效低耗冷卻介質(zhì),其冰晶細(xì)小圓潤(rùn),易流動(dòng),可迅速降低水產(chǎn)品的體表溫度;用其完全浸沒(méi)魚體,可增大其接觸表面積,抑制微生物的生長(zhǎng)繁殖(張皖君等, 2016)。目前,流化冰在日本、美國(guó)、加拿大等國(guó)家已應(yīng)用廣泛,在我國(guó)還剛起步。將O3與流化冰結(jié)合,能保持O3原有的性能功效;抑制肌肉軟化,減緩蛋白質(zhì)變性,延長(zhǎng)水產(chǎn)品貨架期(劉鋒等, 2018)。其中, 黃玉婷(2014)將(0.82±0.04) mg/L臭氧水與流化冰結(jié)合用于梅魚()保鮮,發(fā)現(xiàn)該處理在維持梅魚良好感官品質(zhì)的同時(shí),還可延長(zhǎng)其冰藏貨架期9 d,而使用流化冰僅延長(zhǎng)7 d;Chen等(2016)使用0.1 mg/kg臭氧流化冰保鮮鳙魚,通過(guò)凝膠電泳與掃描電鏡綜合分析發(fā)現(xiàn),O3結(jié)合流化冰可延遲鳙魚肌原纖維蛋白的降解,鳙魚貨架期達(dá)18 d,比單獨(dú)使用流化冰、片冰分別延長(zhǎng)了3與9 d。O3聯(lián)合流化冰處理可有效保護(hù)肌原纖維蛋白的空間結(jié)構(gòu),減緩魚體蛋白質(zhì)的降解變性。在延緩水產(chǎn)品感官品質(zhì)下降的同時(shí),低溫能降低O3分解,提高O3的利用率。將高效環(huán)保的流化冰與O3處理相結(jié)合,將兼具雙重保鮮作用,且操作性好,該技術(shù)應(yīng)用于水產(chǎn)品保鮮將成為必然趨勢(shì)。
氣調(diào)保鮮是將食品放置在保護(hù)性的氣體內(nèi)并進(jìn)行成分和濃度調(diào)控,能起到抑制或延緩微生物的繁殖及品質(zhì)劣變速度,實(shí)現(xiàn)其理想的保鮮效果(Nikzade, 2019)。將臭氧水與低溫氣調(diào)保鮮相結(jié)合,利用O3殺菌性能可殺滅或抑制水產(chǎn)品中腐敗微生物生長(zhǎng),鈍化內(nèi)源酶,減緩ATP降解,最大程度保持其品質(zhì)。其中,陳麗嬌等(2012)研究臭氧水與氣調(diào)(50% CO2+10% O2+40% N2)處理結(jié)合對(duì)1℃下冷藏鱘魚()片的保鮮效果,結(jié)果發(fā)現(xiàn),臭氧水預(yù)處理20 min的魚片,其初始菌數(shù)由1000減至30 CFU/g,貨架期延長(zhǎng)3~5 d;Gon?alves等(2019)將太平洋白蝦浸入1.0 mg/L的15℃冷臭氧水中進(jìn)行10 min預(yù)處理,瀝干后100% CO2氣調(diào)包裝,發(fā)現(xiàn)能使其冷藏貨架期達(dá)11~24 d,得出O3預(yù)處理可更好替代氯水來(lái)保鮮蝦。因此,臭氧水減菌處理能提高氣調(diào)處理對(duì)微生物的控制作用,二者聯(lián)用可更好達(dá)到延長(zhǎng)水產(chǎn)品貨架期及防腐保鮮的目的。
除上述主要保鮮技術(shù)外,臭氧水還可與微納米氣泡、液氮冷凍、鍍冰衣技術(shù)以及其他保鮮劑等相結(jié)合,發(fā)揮其協(xié)同增效作用。微納米臭氧氣泡可對(duì)水產(chǎn)品進(jìn)行清洗,增大殺菌劑與制品的接觸面積,深入到食品內(nèi)部,提高O3利用率,延長(zhǎng)其貨架期,且對(duì)肉質(zhì)損傷小(劉玉德等, 2017)。將微納米氣泡技術(shù)與O3相結(jié)合處理,能共同發(fā)揮其在水產(chǎn)品清洗消毒與貯藏保鮮中的作用,強(qiáng)化O3在水中傳質(zhì)與氧化能力,用于魚體凈白處理(鮑旭騰等, 2016);Shirade(2012)將水中含O3的微泡添加到魚醬產(chǎn)品原料中,使魚醬制品的原材料中具有含氣體的微氣泡,能保持含O3微氣泡壽命,通過(guò)該法可生產(chǎn)無(wú)菌魚醬產(chǎn)品;還有學(xué)者提出,將可食用涂膜用于水產(chǎn)品,隔絕微生物與污染物,來(lái)延長(zhǎng)水產(chǎn)品的保質(zhì)期(Yu, 2019; 張杰等, 2010)。貯藏初期,臭氧水可有效減少初始菌數(shù),后期O3分解迅速導(dǎo)致濃度下降,不能抑制微生物繁殖,因此,需要結(jié)合保鮮劑維持其原有保鮮效果。如宣偉(2011)研究了殼聚糖植酸復(fù)配結(jié)合臭氧水處理中國(guó)對(duì)蝦(),得出先用1.0 mg/L臭氧水處理對(duì)蝦,再用2%殼聚糖植酸溶液涂膜后樣品置于–2℃微凍真空保鮮,發(fā)現(xiàn)該處理能使其貨架期延長(zhǎng)10 d;姜瓊一(2009)發(fā)現(xiàn)在10℃時(shí),使用2.0 mg/L臭氧水處理鮑魚8 min后,與液氮冷凍結(jié)合貯藏,其TVB-N值與菌落數(shù)均小于傳統(tǒng)冷凍工藝處理組,且感官品質(zhì)更接近新鮮樣品。施建兵等(2013)評(píng)價(jià)冷藏、超冷和超冷結(jié)合臭氧水對(duì)鯧魚()片品質(zhì)影響,結(jié)果顯示,冷藏組貨架期為6 d,而超冷和1.8 mg/L臭氧水與超冷結(jié)合的貨架期能分別增至10與11 d,超冷與臭氧水聯(lián)合使用具有預(yù)處理的輔助功能,且運(yùn)行成本低。綜上所述,O3與其他殺菌保鮮技術(shù)結(jié)合具有協(xié)同增效的優(yōu)點(diǎn),可從不同程度上抑制有害微生物生長(zhǎng),提升水產(chǎn)品品質(zhì),延長(zhǎng)其貨架期。
目前,隨著消費(fèi)者對(duì)生鮮水產(chǎn)品需求量的逐年增長(zhǎng)與健康飲食理念的深入人心,要保障水產(chǎn)品在市場(chǎng)上的正常供應(yīng),不僅應(yīng)聚焦于水產(chǎn)品的運(yùn)輸流通方面,還需重視減菌化前處理,從源頭確保其良好品質(zhì)和安全性。未來(lái)水產(chǎn)品減菌化處理技術(shù)不再是使用某種單一殺菌技術(shù),而是將其與其他保鮮技術(shù)或保鮮劑相結(jié)合,在抑制微生物生長(zhǎng)和酶鈍化的同時(shí),保持其原有的色澤風(fēng)味、質(zhì)構(gòu)與營(yíng)養(yǎng)成分。20世紀(jì)80年代以來(lái),O3及臭氧水在美國(guó)、歐洲等發(fā)達(dá)國(guó)家已廣泛用于與食品貯藏保鮮,而我國(guó)對(duì)O3及臭氧水的研究由于起步晚仍然有待完善。
隨著水產(chǎn)品保鮮技術(shù)的發(fā)展,臭氧水以其廣譜殺菌、處理時(shí)間短、安全無(wú)殘留與運(yùn)營(yíng)成本低廉等優(yōu)勢(shì),在水產(chǎn)品殺菌保鮮中應(yīng)用前景廣闊。臭氧水能分解魚、貝類的異臭,改善色澤,保持其鮮度,延長(zhǎng)貨架期,是對(duì)人體安全無(wú)毒、環(huán)境友好的殺菌保鮮劑。O3通過(guò)噴淋、浸泡與流動(dòng)水處理等方式,還可與其他保鮮技術(shù)和殺菌保鮮劑相結(jié)合,發(fā)揮其綜合保鮮作用,為臭氧水在非熱殺菌中的應(yīng)用提供新思路。合理利用臭氧水,既可保證水產(chǎn)品品質(zhì)又能延長(zhǎng)貨架期,而使用不當(dāng),也會(huì)對(duì)水產(chǎn)品品質(zhì)及操作人員帶來(lái)不利影響。因此,研究人員還應(yīng)根據(jù)不同水產(chǎn)品的特性差異,考慮如何獲得O3最適處理濃度、處理時(shí)間與處理方式,制定適用于不同水產(chǎn)品的減菌化最佳工藝參數(shù)。水中O3溶解度在0.1~10 mg/L,而根據(jù)O3行業(yè)標(biāo)準(zhǔn),在對(duì)生魚片、蝦仁等水產(chǎn)品進(jìn)行臭氧水處理時(shí),其濃度應(yīng)為0.8~1.0×10–6。因此,政府、研究機(jī)構(gòu)與相關(guān)企業(yè)須完善O3殺菌技術(shù)標(biāo)準(zhǔn),確保臭氧水理論研究成果與實(shí)際生產(chǎn)生活相適應(yīng),以實(shí)現(xiàn)水產(chǎn)品理想的減菌化與綜合保鮮效果。最后,O3的使用安全性問(wèn)題仍可作為研究切入點(diǎn)。由于,國(guó)際臭氧協(xié)會(huì)制定的O3安全標(biāo)準(zhǔn)為在0.1×10–6時(shí),人體可接觸10 h。因此,操作人員需控制O3的操作時(shí)間與使用濃度。此外,為使O3在水產(chǎn)品加工貯藏中的使用更加安全、方便且有效,應(yīng)繼續(xù)推進(jìn)其作用機(jī)理與耐受臭氧微生物抗臭氧機(jī)制分析,以期為臭氧水更好發(fā)揮其綜合作用效果提供理論依據(jù)。
Afari GK, Hung YC. A meta-analysis on the effectiveness of electrolyzed water treatments in reducing foodborne pathogens on different foods. Food Control, 2018, 93: 150–164
Al-Omiri MK, Lamfon HA, Nazeh AAA,. Randomized clinical trial on the comparison of bleaching outcomes using either ozone or hydrogen peroxide. Quintessence International, 2018, 49(8): 625–634
An YQ, Guo DJ, Jia L,. Effect of ozone water on sterilization pretreatments and freshness qualityof bighead carp heads. Journal of Food Safety and Quality, 2015, 6(11): 4571–4577 [安玥琦, 郭丹婧, 賈磊, 等. 臭氧水濃度對(duì)鳙魚頭減菌效果及鮮度品質(zhì)的影響. 食品安全質(zhì)量檢測(cè)學(xué)報(bào), 2015, 6(11): 4571–4577]
Bao XT, Chen QY, Xu ZQ,. Overview of research advances and application of micro-nano bubbles technology in fishery and aquaculture sector. Water Purification Technology, 2016, 35 (4): 16–22 [鮑旭騰, 陳慶余, 徐志強(qiáng), 等. 微納米氣泡技術(shù)在漁業(yè)水產(chǎn)行業(yè)的研究進(jìn)展及應(yīng)用綜述. 凈水技術(shù), 2016, 35(4): 16–22]
Bao YL, Boeren S, Ertbjerg P. Myofibrillar protein oxidation affects filament charges, aggregation and water-holding. Meat Science, 2018, 135: 102–108
Bureau of fishery and fishery administration, ministry of agriculture and rural areas, national aquatic technology promotion station, China fisheries society. 2019 China fisheries statistics yearbook. Beijing: China Agriculture Press, 2019 [農(nóng)業(yè)農(nóng)村部漁業(yè)漁政管理局, 全國(guó)水產(chǎn)技術(shù)推廣總站, 中國(guó)水產(chǎn)學(xué)會(huì). 2019年中國(guó)漁業(yè)統(tǒng)計(jì)年鑒. 北京: 中國(guó)農(nóng)業(yè)出版社, 2019]
Cao H, Shi CL, Jia XY,. Toxicity mechanism of cadmium- induced reactive oxygen species and protein oxidation in testes of the frog. Acta Ecologica Sinica, 2012, 32(13): 4199–4206
Cao R, Liu Q, Yin BZ,. Combined effect of ozonated water and chitosan on the shelf-life of Pacific oyster (). Innovative Food Science and Emerging Technologies, 2010, 11(1): 108–112
Chen HH, Chiu EM, Huang JR. Color and gel‐forming properties of horse mackerel () as related to washing conditions. Journal of Food Science, 1997, 62(5): 985–991
Chen J, Huang J, Deng SG,. Combining ozone and slurry ice to maximize shelf life and quality of bighead croaker (). Journal of Food Science and Technology, 2016, 53(10): 3651–3660
Chen LJ, Liu Y, Cheng Y,. Modified atmosphere packaging combined with ozone treatment for keeping sturgeon fillets quality. Journal of Fujian Fisheries, 2012, 34 (1): 26–30 [陳麗嬌, 劉楊, 程艷, 等. 氣調(diào)包裝結(jié)合臭氧預(yù)處理保鮮鱘魚片. 福建水產(chǎn), 2012, 34(1): 26–30]
Cho WI, Chung MS. Antimicrobial effect of a combination of herb extract and organic acid againstspores. Food Science and Biotechnology, 2017, 26(5): 1423–1428
Diao SQ, Li LH, Cen JW,Preservation effect of ozone water on anchovy () during controlled freezing-point storage. South China Fisheries Science, 2011, 7(3): 8–13 [刁石強(qiáng), 李來(lái)好, 岑劍偉, 等. 冰溫臭氧水對(duì)鳀保鮮效果的研究. 南方水產(chǎn)科學(xué), 2011, 7(3): 8–13]
Ding NP, Xia FG, Zhao PJ,. Disinfection effect and safety evaluation of slightly acidic electrolyzed water on cucumber. Journal of Food Safety and Quality, 2018, 9(4): 930–934 [丁年平, 夏楓耿, 趙培靜, 等. 微酸性電解水對(duì)黃瓜的消毒效果及安全性評(píng)價(jià). 食品安全質(zhì)量檢測(cè)學(xué)報(bào), 2018, 9(04): 930–934]
Feng HJ, Lan WQ, Liu DY,. Effect of different ways of reducing bacteria on quality change of puffer fish during cold storage. Food Science, 2020, 41(7): 210–217 [馮豪杰, 藍(lán)蔚青, 劉大勇, 等. 不同減菌化處理方式對(duì)暗紋東方鲀冷藏期間品質(zhì)變化影響. 食品科學(xué), 2020, 41(7): 210–217]
Gelman A, Sachs O, Khanin Y,Effect of ozone pretreatment on fish storage life at low temperatures. Journal of Food Protection, 2005, 68(4): 778–784
Gibson KE, Almeida G, Jones SL,. Inactivation of bacteria on fresh produce by batch wash ozone sanitation. Food Control, 2019, 106: 106747
Gon?alves AA, Santos TCL. Improving quality and shelf-life of whole chilled Pacific white shrimp () by ozone technology combined with modified atmosphere packaging. LWT–Food Science and Technology, 2019, 99: 568–575
Han Q, Gao HY , Chen HJ ,. Effects of ClO2Treatment and packing methods on storage quality of fresh walnut kernel.Journal of Chinese Institute of Food Science and Technology, 2017, 17(5): 130–137 [韓強(qiáng), 郜海燕, 陳杭君, 等. ClO2處理和包裝方法對(duì)鮮核桃仁貯藏品質(zhì)的影響. 中國(guó)食品學(xué)報(bào), 2017, 17(5): 130–137]
Huang B, Ma T, Liu BL,. Effects of ozone concentration on the activity of biofilm and its effectiveness of purification in recirculating aquaculture systems. Progress in Fisheries Science, 2016, 37(3): 143–147 [黃濱, 馬騰, 劉寶良, 等. 不同濃度臭氧對(duì)循環(huán)水養(yǎng)殖系統(tǒng)生物膜活性及其凈化效能的影響. 漁業(yè)科學(xué)進(jìn)展, 2016, 37(3): 143–147]
Huang YT. Study on the effect of ozone fluidizing ice on preservation of Meiyu. Master′s Thesis of Zhejiang Ocean University, 2014 [黃玉婷. 臭氧—流化冰對(duì)梅魚保鮮效果的研究. 浙江海洋學(xué)院碩士研究生學(xué)位論文, 2014]
Ji XT, Nian YY, Xue P,. Effect of chlorine dioxide on pomfret quality during superchilled storage. Meat Research, 2018, 32(2): 60–65 [季曉彤, 年益瑩, 薛鵬, 等. 二氧化氯對(duì)鯧魚微凍貯藏品質(zhì)的影響. 肉類研究, 2018, 32(2): 60–65]
Jiang QQ, Nakazawa N, Hu YQ,. Changes in quality properties and tissue histology of lightly salted tuna meat subjected to multiple freeze-thaw cycles. Food Chemistry, 2019, 293(4): 178–186
Jiang QY. Study on the application of ozone sterilization combined with liquid nitrogen deep freezing technology in abalone processing. Master′s Thesis of Fujian Agricultural and Forestry University, 2009 [姜瓊一. 臭氧殺菌結(jié)合液氮深冷凍結(jié)技術(shù)在鮑魚加工中的應(yīng)用研究. 福建農(nóng)林大學(xué)碩士研究生學(xué)位論文, 2009]
Karamah EF, Ilmiyah AP, Ismaningtyas N. The application of ozonated water to maintain the quality of tuna meat: The effect of contact time, contact temperature and ozone dosage. IOP Conference Series: Materials Science and Engineering, 2019, 509(1): 137–145
Li N, Xie J. Research progress of preservation technology of squid. Packaging Engineering, 2018, 39(1): 40–46 [李娜, 謝晶. 魷魚保鮮技術(shù)的研究進(jìn)展. 包裝工程, 2018, 39(1): 40–46]
Li XP, Liu CK, Wang JX,. Research progress on protein oxidation and its effect on the structure of protein and the quality of aquatic products during storage and processing. Food Industry Technology,2019, 40(18): 319–325, 333 [李學(xué)鵬, 劉慈坤, 王金廂, 等. 水產(chǎn)品貯藏加工中的蛋白質(zhì)氧化對(duì)其結(jié)構(gòu)性質(zhì)及水產(chǎn)品品質(zhì)的影響研究進(jìn)展. 食品工業(yè)科技, 2019, 40(18): 319–325, 333]
Liu CK. Effect of ozone mediated myofibrillar protein oxidation on water holding capacity of grass carp surimi gel. Master′s Thesis of Bohai University, 2019 [劉慈坤. 臭氧介導(dǎo)的肌原纖維蛋白質(zhì)氧化對(duì)草魚魚糜凝膠持水性的影響機(jī)制研究. 渤海大學(xué)碩士研究生學(xué)位論文, 2019]
Liu F, Xie J. Application of slurry ice combined with ozone in preservation of aquatic products. Food and Machinery, 2018, 34(5): 173–176 [劉鋒, 謝晶. 流化冰結(jié)合臭氧在水產(chǎn)品保鮮中的應(yīng)用. 食品與機(jī)械, 2018, 34(5): 173–176]
Liu W, Sun J, Liu Q,. Application of ozone water sterilization in cold and fresh fish. Jiangsu Agricultural Science, 2016, 44(7): 343–346 [劉偉, 孫杰, 劉芹, 等. 臭氧水減菌化處理在冷鮮魚肉中的應(yīng)用. 江蘇農(nóng)業(yè)科學(xué), 2016, 44(7): 343–346]
Liu YD, Wu G, Zhang H,. Characteristics of micro-nano- bubble and its application in fruits and vegetables. Journal of Food Science and Technology, 2017(3): 87–92 [劉玉德, 吳剛, 張浩, 等. 微納米氣泡的特性及其在果蔬中的應(yīng)用.食品科學(xué)技術(shù)學(xué)報(bào), 2017(3): 87–92]
Liu ZX, Wang YG, Zhang Z,. Germicidal efect of several disinfectants on the pathogenic bacteria of acute hepatopancreatic necrosis disease (AHPND) in. Progress in Fishery Science, 2018, 39(3): 112–119 [劉志軒, 王印庚, 張正, 等. 幾種消毒劑對(duì)凡納濱對(duì)蝦致病性弧菌的殺滅作用. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(3): 112–119]
Lu JY, Li MM, Gao LH,. Attenuation rules and germicidal efficacy of ozoneted water. Journal of Central South University (Medical Edition), 2018, 43(2): 143–146 [魯建云, 李苗苗, 高麗華, 等. 臭氧水濃度衰減及其殺菌作用. 中南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2018, 43(2): 143–146]
Nikzade V, Sedaghat N, Yazdi FT,. Development of shelf life kinetic model for fresh rainbow trout () fillets stored under modified atmosphere packaging. Journal of Food Science and Technology, 2019, 56(2): 663–673
Okpala COR. Changes in some proximate, colour and textural characteristics of ozone processed shrimp: Combined effects of increasing ozone discharge and iced storage. Iranian Journal of Fisheries Sciences, 2017, 16(2): 625–638
Papachristodoulou M, Koukounaras A, Siomos AS,. The effects of ozonated water on the microbial counts and the shelf life attributes of fresh-cut spinach. Journal of Food Processing and Preservation, 2017, 42(1): e13404
Shi JB, Xie J, Gao ZL,Effects of ozone water dipping and super-chilling on improving preservation quality of pomfret fillet. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(6): 274–279 [施建兵, 謝晶, 高志立,等. 臭氧水浸漬后冰溫貯藏提高鯧魚塊的保鮮品質(zhì). 農(nóng)業(yè)工程學(xué)報(bào), 2013, 29(06): 274–279]
Shirade T. Process for sterilization and production of fish meat paste product with use of microbubble and sterile fish meat paste product obtained by the process. Patent Application, 2012
Silva AMDM, Gon?alves AA. Effect of aqueous ozone on microbial and physicochemical quality of Nile tilapia processing. Journal of Food Processing and Preservation, 2017, 41(6): e13298
Sun JY, Wu YY, Yang XQ,. Sterilization and quality effects of ozone water on cobia fillets. South Fisheries Science, 2013, 9(6): 66–71 [孫繼英, 吳燕燕, 楊賢慶, 等. 臭氧水對(duì)軍曹魚片的減菌效果和品質(zhì)的影響. 南方水產(chǎn)科學(xué), 2013, 9(6): 66–71]
Ummat V, Singh AK, Sidhu GK. Effect of aqueous ozone on quality and shelf life of shredded green bell pepper (). Journal of Food Processing and Preservation, 2018, 42(10): 1–14
Wedemeyer GA, Nelson NC, Yasutake WT. Physiological and biochemical aspects of ozone toxicity to rainbow trout (). Journal of the Fisheries Research Board of Canada, 1979, 36(6): 605–614
Xiao ZH, Wang L, Fan XL,. Effect of ozone treatment on quality and physiological indexes of Korla pears. Packaging Engineering, 2018, 39(5): 58–62 [肖子寒, 王亮, 樊曉嵐, 等. 臭氧處理對(duì)香梨品質(zhì)和生理指標(biāo)的影響. 包裝工程, 2018, 39(5): 58–62]
Xie SD, Chen LH, Zhang Y,. Effect of ozone on the quality of fish-ball made from silver carp. Journal of Fujian Agriculture and Forestry University (Natural Science), 2009, 38(5): 552–557
Xuan W. Studies on application of ozone sterilization combined with chitosan on chinese shrimp. Master′s Thesis of Zhejiang University of technology, 2011 [宣偉. 臭氧殺菌結(jié)合殼聚糖涂膜對(duì)中國(guó)對(duì)蝦保鮮的研究. 浙江工商大學(xué)碩士研究生學(xué)位論文, 2011]
Yan SJ, Liang LY, Song ZM,. Preservative effect of ozone water treatment on catfish meat. Food Science, 2010, 31(24): 465–468 [閆師杰, 梁麗雅, 宋振梅, 等. 臭氧水對(duì)鯰魚肉保鮮效果的研究. 食品科學(xué), 2010, 31(24): 465–468]
Ye ZY, Wang S, Chen T,. Inactivation mechanism ofinduced by slightly acidic electrolyzed water. Scientific Reports, 2017, 7(1): 6–279
Yu D, Regenstein JM, Xia W. Bio-based edible coatings for the preservation of fishery products: A review. Critical Reviews in Food Science and Nutrition, 2019, 59(3): 41–46
Yuan CH, Liu YL, Huang YQ,. Ozone ice preparation technology and its research advances in food preservation. Food and Machinery, 2019, 35(5): 224–230 [袁成豪, 劉永樂(lè), 黃軼群, 等. 臭氧冰制備技術(shù)及其在食品保鮮中的應(yīng)用研究進(jìn)展. 食品與機(jī)械, 2019, 35(5): 224–230]
Zhang HJ, Zhao YQ, Li LH,. Changes in biochemical properties of muscle protein from Nile tilapia fillets sterilized by ozone treatment during iced storage. Journal of Fisheries of China, 2015, 39(10): 1569–1576 [張紅杰, 趙永強(qiáng), 李來(lái)好, 等. 臭氧減菌化處理羅非魚片冰溫貯藏過(guò)程中蛋白質(zhì)生化特性的變化. 水產(chǎn)學(xué)報(bào), 2015, 39(10): 1569–1576]
Zhang J, Wang YJ, Liu JZ,Study on application of antimicrobial sodium alginate films in Tilapia fillet preservation. Progress in Fishery Science, 2010, 31(2): 102–108 [張杰, 王躍軍, 劉均忠, 等. 抗菌性海藻酸鈉涂膜在羅非魚片保鮮中的應(yīng)用. 漁業(yè)科學(xué)進(jìn)展, 2010, 31(2): 102–108]
Zhang T, Xue Y, Li ZJ,Effects of ozone on the removal of geosmin and the physicochemical properties of fish meat from bighead carp (). Innovative Food Science and Emerging Technologies, 2016, 34: 16–23
Zhang WJ, Lan WQ, Xiao L,. Research progress on application of slurry ice for aquatic products preservation. Food and Machinery, 2016, 32(7): 214–218 [張皖君, 藍(lán)蔚青, 肖蕾, 等. 流化冰在水產(chǎn)品保鮮中的應(yīng)用研究進(jìn)展. 食品與機(jī)械, 2016, 32(7): 214–218]
Zhao YQ, Li LH, Yang XQ,. Applications of ozone in aquatic products processing: A review. South Aquatic Science, 2013, 9(5): 149–154 [趙永強(qiáng), 李來(lái)好, 楊賢慶, 等. 臭氧在水產(chǎn)品加工中應(yīng)用綜述. 南方水產(chǎn)科學(xué), 2013, 9(5): 149–154]
Zhao YQ, Yang XQ, Li LH,. Acute toxicity test and genetic toxicity study of Nile tilapia fillets sterilized by ozone treatment. Journal of Fisheries of China, 2014, 38(8): 1182–1189 [趙永強(qiáng), 楊賢慶, 李來(lái)好, 等. 臭氧減菌化處理羅非魚片的急性毒性與遺傳毒性. 水產(chǎn)學(xué)報(bào), 2014, 38(8): 1182–1189]
Research Progress on the Applications of Ozonated Water in the Sterilization and Preservation of Aquatic Products
LAN Weiqing1,2, ZHAO Yanan1, LIU Lin1, XIE Jing1,2①
(1. Shanghai Ocean University, College of Food Science and Technology, Shanghai 201306; 2. Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306)
Aquatic products may be contaminated by microorganisms during storage and transportation, leading to product spoilage and quality deterioration. Aquatic products are prone to deterioration by decomposition, putrefaction, degradation of proteins and amino acids, and production of basic amines. Pretreatment by sterilization is required to reduce the effects of microorganisms on the quality and shelf life of aquatic products during processing and storage. The mechanisms, main advantages, and disadvantages of common water treatment methods, including electrolysis or ozonation of water and use of chlorine dioxide solution were compared and analyzed. The research focused on the application of ozonated water in the sterilization and preservation of aquatic products. Ozone exhibits strong oxidizability as well as bacteriostatic and bactericidal effects. In addition, treatment with ozonated water is convenient and plays an important role during storage and preservation by spraying, immersion, and flowing water treatment. Ozonated water is widely used to bleach and decolorize fish fillets and surimi products and to remove strong scents. Additionally, it is also used for product sterilization and preservation, and for cleaning and disinfection of processing equipment. However, ozonated water is associated with poor stability, which may affect its sterilization ability. Therefore, the combination of ozonated water with other preservation technologies may prolong the shelf life of aquatic products to a greater extent than that by ozonated water alone. The combination of ozone water with slurry ice, modified atmosphere packaging, and other freshness preservation methods were described. Researchers should consider using orthogonal experiments or response surface methodology to identify the optimal treatment concentration and duration, and to develop optimal process parameters based on the individual characteristics of different aquatic products.
Aquatic products; Ozonated water; Sterilization; Preservation
XIE Jing, E-mail: jxie@shou.edu.cn
10.19663/j.issn2095-9869.20191218001
http://www.yykxjz.cn/
藍(lán)蔚青, 趙亞楠, 劉琳, 謝晶. 臭氧水處理在水產(chǎn)品殺菌保鮮中的應(yīng)用研究進(jìn)展. 漁業(yè)科學(xué)進(jìn)展, 2020, 41(4): 190–197
Lan WQ, Zhao YN, Liu L, Xie J. Research progress on the applications of ozonated water in the sterilization and preservation of aquatic products. Progress in Fishery Sciences, 2020, 41(4): 190–197
* “十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃重點(diǎn)專項(xiàng)(2019YFD0901602)、現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-47-G26)和上海水產(chǎn)品加工及貯藏工程技術(shù)研究中心能力提升項(xiàng)目(19DZ2284000)共同資助[This work was supported by National Key Research and Development Program of China (2019YFD0901602], China Agriculture Research System (CARS-47-G26), and Ability Promotion Project of Shanghai Municipal Science and Technology Commission Engineering Center (19DZ2284000)]. 藍(lán)蔚青,E-mail: wqlan@shou.edu.cn
謝 晶,教授,E-mail: jxie@shou.edu.cn
2019-12-18,
2020-01-08
S983
A
2095-9869(2020)04-0190-08
(編輯 陳 輝)