熊 鋼 王曉清 王 佩 陳貞年 周先文,3 康 驪 曾志南
泥東風(fēng)螺EST-SSR開發(fā)及其群體遺傳多樣性分析*
熊 鋼1,2王曉清2①王 佩2陳貞年2周先文2,3康 驪1曾志南4
(1. 湖南生物機(jī)電職業(yè)技術(shù)學(xué)院動物科技系 長沙 410127;2. 湖南農(nóng)業(yè)大學(xué)動物科技學(xué)院 長沙 410128;3. 湘西州水產(chǎn)工作站 吉首 416000;4. 福建省水產(chǎn)研究所 廈門 361013)
本研究采用MISA軟件分析泥東風(fēng)螺()轉(zhuǎn)錄組中微衛(wèi)星信息。結(jié)果顯示,從轉(zhuǎn)錄組中共獲得16324個(gè)SSR,共有181種重復(fù)基元;泥東風(fēng)螺轉(zhuǎn)錄組中不同類型微衛(wèi)星的重復(fù)基元具有不同的分布特征,其中,二核苷酸重復(fù)基元中AC/GT(70.58%)重復(fù)基元以重復(fù)6次出現(xiàn)頻率占優(yōu);長度為12~20 bp的SSR占63.95%,長度為21~25 bp的SSR占9.14%,總體的平均長度為18.4 bp。隨機(jī)選取其中50條序列設(shè)計(jì)引物,通過對福建野生泥東風(fēng)螺群體(WP)DNA樣本進(jìn)行PCR擴(kuò)增和分型,結(jié)果獲得23個(gè)多態(tài)性位點(diǎn),等位基因數(shù)目為2~7個(gè)不等,期望雜合度(e)為0.190~0.937,觀察雜合度(o)為0.065~0.936,多態(tài)性信息含量(PIC)為0.061~0.777,有4個(gè)位點(diǎn)顯著偏離哈迪溫伯格平衡(Hardy-Weinberg equilibrium, HWE) (<0.05)。對野生群體和養(yǎng)殖群體(BP)遺傳多樣性分析顯示,野生群體和養(yǎng)殖群體的平均e分別為0.491和0.544,平均o分別為0.477和0.564,平均PIC分別為0.541和0.407。is結(jié)果顯示,野生群體和養(yǎng)殖群體分別有13個(gè)和9個(gè)位點(diǎn)雜合子過剩。群體間遺傳分化指數(shù)(st)為0.001~0.655,平均值為0.053 (0.05 泥東風(fēng)螺;轉(zhuǎn)錄組;EST-SSR;遺傳多樣性 東風(fēng)螺(sp)隸屬于軟體動物的腹足綱、新腹足目、蛾螺科、東風(fēng)螺屬(王如才等, 1988),俗稱花螺、泥螺、南風(fēng)螺等,分布于熱帶和亞熱帶海域,是我國沿海重要的經(jīng)濟(jì)軟體動物。我國現(xiàn)有方斑東風(fēng)螺()、泥東風(fēng)螺()和臺灣東風(fēng)螺 () 3種(張漢華等, 2004; 陳利雄等, 2004)。泥東風(fēng)螺分布于我國福建至廣西沿海地區(qū)。隨著人類活動對海洋的影響,海洋中野生泥風(fēng)螺銳減,我國研究人員已開展了泥東風(fēng)螺的人工選育(葉泉土等, 2015a; 林國清等, 2015)、人工養(yǎng)殖(葉泉土等, 2015b)、人工增殖放流(葉泉土等, 2015b)和群體遺傳多樣性AFLP分析(秦溱等, 2014)的相關(guān)研究。 簡單重復(fù)序列(Simple sequence repeats, SSR)又稱微衛(wèi)星DNA、短串聯(lián)重復(fù)序列,一般以1~6個(gè)堿基為核心序列,廣泛存在真核生物的基因組中,具有數(shù)量豐富、多態(tài)性高、共顯性等特點(diǎn)(Powell, 1996)。Morgante等(1993)將微衛(wèi)星用于遺傳和物理圖譜的構(gòu)建、品種鑒定、基因定位、遺傳多樣性、分類和進(jìn)化及比較基因組等方面的研究。目前,SSR標(biāo)記主要分為基因組SSR(Genomic SSR, gSSR)和表達(dá)序列標(biāo)簽SSR(Expressed sequence tag SSR, EST-SSR)兩種。EST-SSR反映的是基因的編碼部分,可為功能基因提供更可靠的功能性標(biāo)記,所以它在物種起源與進(jìn)化、資源多樣性、遺傳作圖、功能基因的發(fā)現(xiàn)與定位和比較基因組學(xué)研究等方面都有重要的利用價(jià)值。EST-SSR多態(tài)性可能與基因功能直接相關(guān),因此,比gSSR標(biāo)記具有更高通用性(Eujayl, 2002)。新一代測序技術(shù)可以對全基因組范圍內(nèi)的轉(zhuǎn)錄本進(jìn)行大規(guī)模的高通量測序,并能產(chǎn)生海量的轉(zhuǎn)錄組數(shù)據(jù)(Simon, 2009),這為功能基因組SSR標(biāo)記的開發(fā)提供了更豐富和極有價(jià)值的可利用資源(Graham, 2010)。我國研究工作者采用新一代測序技術(shù)已從曼氏無針烏賊()(管奧等, 2018)、長江刀鱭()(于愛清等, 2018)、櫛江珧()(李東明等, 2017)、凡納濱對蝦()(李東宇等, 2017)、扇貝() (張廣明等, 2018; 倪守勝等, 2018)、黃口荔枝螺()(李威等, 2015)和泥蚶() (史松富等, 2013)等水生動物中成功開發(fā)并應(yīng)用于物種群體遺傳多樣性分析的SSR標(biāo)記。本課題組利用軟件分析泥東風(fēng)螺轉(zhuǎn)錄組數(shù)據(jù)中微衛(wèi)星分布特點(diǎn)和規(guī)律,利用篩選SSR標(biāo)記對野生群體和養(yǎng)殖群體的遺傳多樣性進(jìn)行分析,可為泥東風(fēng)螺微衛(wèi)星標(biāo)記的開發(fā)及應(yīng)用研究奠定基礎(chǔ)。 野生泥東風(fēng)螺采自福建連江和長樂,共62只。養(yǎng)殖群體來源于福建長樂泥東風(fēng)螺育種場,共206只。 1.2.1 泥東風(fēng)螺轉(zhuǎn)錄組數(shù)據(jù)來源 泥東風(fēng)螺轉(zhuǎn)錄組數(shù)據(jù)是由腹足和肝胰腺組織的mRNA建立混合池,經(jīng)Illumina HiSeqTM2000高通量測序平臺獲得的轉(zhuǎn)錄組數(shù)據(jù)文庫。 1.2.2 泥東風(fēng)螺轉(zhuǎn)錄組SSR的篩選及引物設(shè)計(jì) 利用軟件MISA(Kanehisa, 2008) (http://pgrc. ipk-gatersleben.de/misa/)對泥東風(fēng)螺轉(zhuǎn)錄組中Unigene的cDNA序列數(shù)據(jù)進(jìn)行SSR搜索,設(shè)置參數(shù):單堿基最少重復(fù)10次以上,雙堿基最少重復(fù)6次以上,3~6堿基最少重復(fù)5次以上;混合重復(fù)的2個(gè)重復(fù)之間的距離不能大于100 bp。隨機(jī)挑選EST-SSR序列,參照引物設(shè)計(jì)原則(張新宇等, 2004),利用軟件Primer premier 5.0在重復(fù)序列兩側(cè)保守區(qū)設(shè)計(jì)微衛(wèi)星擴(kuò)增引物。 1.2.3 DNA提取 取泥東風(fēng)螺腹足,采用天澤基因柱式動物DNA提取試劑盒提取泥東風(fēng)螺總DNA。總DNA用1%瓊脂糖凝膠電泳檢測,?20℃保存?zhèn)溆?。SSR分析采用20 μl PCR擴(kuò)增反應(yīng)體系,擴(kuò)增條件為:94℃預(yù)變性5 min;94℃變性30 s,退火(退火溫度見表3) 30 s,72℃延伸30 s,30個(gè)循環(huán);72℃延伸5 min,在4℃條件下保存。擴(kuò)增產(chǎn)物采用8%變性聚丙烯酰胺凝膠電泳,銀染顯色,人工讀帶后記錄帶型。 1.2.4 EST-SSR分析 用PopGene 1.3.1(Yeh, 1997)軟件計(jì)算有效等位基因數(shù)(Effective numbers of allele,e)、觀測雜合度(Observed heterozygosity,o)、(Expected heterozygosity,e)、群體間基因流(m)、固定系數(shù)(st)和群體近交系數(shù)(is)。位點(diǎn)多態(tài)性(Polymorphis information content, PCI)采用軟件包計(jì)算,Cervus 3.03 (Kalinowsk, 2007)軟件計(jì)算哈迪溫伯格平衡(Hardy-Weinberg equilibrium, HWE)。 利用MISA軟件對Unigenes的cDNA序列數(shù)據(jù)中篩選1 kb以上的Unigenes進(jìn)行SSR分析,共篩選到16324個(gè)SSR符合設(shè)置條件(表1),泥東風(fēng)螺轉(zhuǎn)錄組中SSR種類豐富,共有181種重復(fù)類型;各種類型的出現(xiàn)頻率差異較大,主要集中在單核苷酸重復(fù)、二核苷酸重復(fù)和三核苷酸重復(fù),分別占SSR總數(shù)量的40.17%、29.75%和15.27%,四核苷酸重復(fù)和五核苷酸重復(fù)數(shù)量少,分別占0.76%和0.04%,未發(fā)現(xiàn)多于5個(gè)核苷酸重復(fù)。SSR在整個(gè)泥東風(fēng)螺轉(zhuǎn)錄組中的出現(xiàn)頻率和發(fā)生頻率分別為13.62%和6.86%,平均每350.78 kb出現(xiàn)1個(gè)SSR。各種重復(fù)基元出現(xiàn)頻率差異大(表2),如:AC/GT重復(fù)基元占二核苷酸重復(fù)的70.58%,AGG/CCT和ACC/GGT重復(fù)基元分別占三核苷酸重復(fù)的22.60%和20.50%。從整體分布分析中發(fā)現(xiàn)多核苷酸重復(fù)序列以重復(fù)6次出現(xiàn)頻率占優(yōu)勢。長度為12~20 bp的SSR占63.95%,長度為21~25 bp的SSR占9.14%,總體的平均長度為18.4 bp。 表1 泥東風(fēng)螺轉(zhuǎn)錄組中EST-SSRs重復(fù)次數(shù)分布 Tab.1 Repeat number of EST-SSRs in B. lutosa transcriptome 表2 二核苷酸和三核苷酸EST-SSRs不同重復(fù)基元分布比例 Tab.2 Percentage of different motifs dinucleotide and trinucleotide EST-SSRs 隨機(jī)選取其中50條序列設(shè)計(jì)引物,通過對福建野生泥東風(fēng)螺62只個(gè)體DNA樣本進(jìn)行PCR擴(kuò)增和分型,獲得23個(gè)多態(tài)性位點(diǎn)(表3)。23個(gè)位點(diǎn)的等位基因數(shù)為2~7個(gè)不等,平均a為3.5,平均e為0.491,平均o為0.477,平均PIC為0.451。HWE平衡檢驗(yàn)顯示,4個(gè)位點(diǎn)顯著偏離平衡(<0.05)(表4)。 表3 泥東風(fēng)螺EST-SSR引物信息 Tab.3 Information of EST-SSR primer in the B. lutosa 利用23個(gè)多態(tài)性位點(diǎn)分析泥東風(fēng)螺野生群體和養(yǎng)殖群體遺傳多樣性(表4),結(jié)果顯示,福建野生群體e值為0.190~0.937,o為0.065~0.936,PIC為0.061~ 0.777,其中,9個(gè)微衛(wèi)星位點(diǎn)表現(xiàn)為高度多態(tài)性(PIC>0.5),11個(gè)位點(diǎn)表現(xiàn)為中度多態(tài)性(0.5>PIC>0.25),3個(gè)位點(diǎn)表現(xiàn)為低度多態(tài)性(PIC<0.25)。養(yǎng)殖群體e(0.183~0.979)和o(0.130~0.980)的平均值均高于野生群體,但PIC(0.020~0.787)的平均值低于野生群體。SPSS分析群體間e、o和is差異顯著(<0.05),PIC差異極顯著((<0.01)。養(yǎng)殖群體高度多態(tài)性位點(diǎn)和低度多態(tài)性位點(diǎn)分別為7個(gè)和5個(gè)。在養(yǎng)殖群體樣本中檢測到B05、B08、B12、B15、B16和B20位點(diǎn)中出現(xiàn)等位基因缺失現(xiàn)象。野生群體和養(yǎng)殖群is分別為–0.214~0.377和–0.130~0.129,群體的is平均值都大于0,在野生群生群體和養(yǎng)殖群體中,位點(diǎn)is<0的分別有13個(gè)和9個(gè)。HWE平衡檢驗(yàn)顯示,野生群體和養(yǎng)殖群體分別有4個(gè)和9個(gè)位點(diǎn)偏離平衡。 Popgene分析野生群體與養(yǎng)殖體間的位點(diǎn)基因流值(m)為0.132~543.787(表4),平均m為4.450,說明這2個(gè)群體間的遺傳分化小。群體間位點(diǎn)遺傳分化指數(shù)(st)為0.001~0.655(表4),平均st為0.053,屬于遺傳分化中等(0.05 不同物種轉(zhuǎn)錄組數(shù)據(jù)庫中微衛(wèi)星分布的頻率存在差異。本研究分析了泥東風(fēng)螺轉(zhuǎn)錄組中SSR的分布頻率和重復(fù)基元的特點(diǎn)。從泥東風(fēng)螺SSR重復(fù)基元來看,二核苷酸重基元中AC/GT占70.58.%,這與其他水產(chǎn)動物中AC/GT重復(fù)最多一致(曾聰?shù)? 2013)。三核苷酸重基元占總數(shù)15.27%,其中,CCG/CGG重復(fù)基元數(shù)量最少,這與一些真核生物中發(fā)現(xiàn)一定比例的CCG/CGG重復(fù)相似(Toth, 2000)。Schlottere等(1992)推測微衛(wèi)星的長度因在復(fù)制過程中的滑動而反映了微衛(wèi)星位點(diǎn)獲得(或失去)重復(fù)基元的活躍程度。Schlotterer(2000)認(rèn)為,SSR位點(diǎn)的變異頻率與基元重復(fù)數(shù)存在一定正相關(guān),即重復(fù)次數(shù)越多,SSR產(chǎn)生變異的可能性越大。Temnykh等(2001)進(jìn)一步研究表明,SSR的長度是影響其多態(tài)性高低的重要因素,據(jù)此分析,泥東風(fēng)螺轉(zhuǎn)錄組基因所含的微衛(wèi)星長度絕大部分分布在12~25 bp之間,推測是受到強(qiáng)烈趨同選擇的壓力影響。 表4 泥東風(fēng)螺23個(gè)EST-SSR位點(diǎn)的野生群體和養(yǎng)殖群體遺傳多樣性分析 Tab.4 Genetic diversity of wild and breeding populations in B. lutosa at 23 EST-SSR loci 對福建野生群體和養(yǎng)殖群體的位點(diǎn)各項(xiàng)參數(shù)進(jìn)行分析,結(jié)果顯示,野生群體雜合子過剩(is<0,表明存在雜合子過剩)現(xiàn)象比養(yǎng)殖群體多4個(gè)位點(diǎn)。養(yǎng)殖群體有6個(gè)位點(diǎn)檢測到等位基因缺失,這可能與本研究選取樣本數(shù)量較少及養(yǎng)殖群體選擇的親本來自不同地理群體有關(guān)。o和e是判定群體遺傳多樣性水平的重要指標(biāo),養(yǎng)殖群體中平均o和e顯著高于野生群體,推測是因目前養(yǎng)殖群體選育采用的技術(shù)策略導(dǎo)致養(yǎng)殖群體的遺傳多樣性發(fā)生變化。 野生群體和養(yǎng)殖群體間st為0.053 (0.05 本研究中,泥東風(fēng)螺養(yǎng)殖群體的遺傳多樣性顯著低于野生群體,這與中國明對蝦()(王軍等, 2018)、草魚()(王沈同等, 2018)、大黃魚() (趙廣泰等, 2010)、鱖()(鄭荷子等, 2013)水產(chǎn)動物養(yǎng)殖群體比野生群體遺傳多性低的研究結(jié)果一致,其原因可能為目前養(yǎng)殖泥東風(fēng)螺繁育親本群體來源和個(gè)體數(shù)量問題。研究表明,本研究所開發(fā)的SSR具有較高的多態(tài)性,研究的群體具有較高的遺傳多樣性,具有進(jìn)一步選育的價(jià)值。 SSR標(biāo)記在水生生物之間通用性較好(張瓊等, 2010; 劉必謙等, 2007),SSR遺傳作圖將使物種之間連鎖信息的轉(zhuǎn)換更快,實(shí)現(xiàn)多個(gè)圖譜整合,從而更有利于比較基因組學(xué)的研究。本研究開發(fā)的泥東風(fēng)螺EST-SSR標(biāo)記對泥東風(fēng)螺的親子譜系分析、群體遺傳結(jié)構(gòu)分析、圖譜構(gòu)建、增殖放流效果評估和分子輔助育種等研究方面具有重要的意義。 Chen LX, Wu JF. Culture technique and industrial prospect of ivory shell. Shandong Fisheries, 2004, 21(10): 9–11 [陳利雄, 吳進(jìn)鋒. 東風(fēng)螺的增養(yǎng)殖技術(shù)及產(chǎn)業(yè)化前景. 齊魯漁業(yè), 2004, 21(10): 9–11] Eujayl I, Sorrells ME, Baum M,. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theoretical and Applied Genetics, 2002, 104(2–3): 399–407 Graham IA, Besser K, Blumer S,. The genetic map ofL. identifies loci affecting yield of the antimalarial drug artemisinin. Science, 2010, 327(5963): 328–331 Guan A, Wu YT, Chen Y,. Deep sequence-based transcriptome analysis of microsatellites in the cuttlefish (). Progress in Fishery Sciences, 2018, 39(3): 144–151 [管奧, 毋玉婷, 陳宇, 等. 曼氏無針烏賊轉(zhuǎn)錄組微衛(wèi)星特征分析. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(3): 144–151] Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 2007, 16(5): 1099–1106 Kanehisa M, Araki M, Goto S,. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 2008, 36: D480–D484 Li DM, Yang AG, Wu B,. Development and application of the EST-SSR markers in. Progress in Fishery sciences, 2017, 38(2): 137–142 [李東明, 楊愛國, 吳彪, 等. 櫛江珧() EST-SSR標(biāo)記的開發(fā)與應(yīng)用. 漁業(yè)科學(xué)進(jìn)展, 2017, 38(2): 137–142] Li DY, Meng XH, Kong J,. The difference of genetic diversity and the comparison of growth performance between selected population and hybridized population of pacific white shrimp () under low temperature conditions. Progress in Fishery sciences, 2017, 38(4): 69–77 [李東宇, 孟憲紅, 孔杰, 等. 凡納濱對蝦()選育群體與雜交群體遺傳多樣性差異及其在低溫條件下生長性能的比較. 漁業(yè)科學(xué)進(jìn)展, 2017, 38(4): 69–77] Li W, Zhao S, Jiao HF,. Characterization and analysis of microsatellite markers inusing next generation sequencing. Marine Sciences, 2015, 39(11): 61–67 [李威, 趙姍, 焦海峰, 等. 黃口荔枝螺轉(zhuǎn)錄組數(shù)據(jù)的微衛(wèi)星標(biāo)記開發(fā)與分析. 海洋科學(xué), 2015, 39(11): 61–67] Lin GQ, Lin D, Chen XF,. Research on the scale artificial breeding technique and the morphological observation of the early developmental stages of. Journal of Fujian Fisheries, 2015, 37(1): 20–28 [林國清, 林丹, 陳曦飛, 等. 泥東風(fēng)螺()規(guī)?;斯び缂夹g(shù)和早期發(fā)育觀察. 福建水產(chǎn), 2015, 37(1): 20–28] Liu BQ, Zeng QG, Wang YJ,. The cross-species amplification and validation of EST-SSR loci in. Acta Hydrobiolonica Sinica, 2007, 31(2): 149–154 [劉必謙, 曾慶國, 王亞軍, 等. 條斑紫菜EST-SSR引物種間轉(zhuǎn)移擴(kuò)增真實(shí)性研究. 水生生物學(xué)報(bào), 2007, 31(2): 149–154] Morgante M, Olivieri AM. PCR-amplified microsatellites as markers in plant genetics. Plant Journal, 1993, 3(1): 175–182 Ni SS, Yang Y, Liu SF,. Microsatellite analysis ofusing next-generation sequencing method. Progress in Fishery sciences, 2018, 39(1): 107–113 [倪守勝, 楊鈺, 柳淑芳, 等. 基于高通量測序的蝦夷扇貝基因組微衛(wèi)星特征分析. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(1): 107–113] Powell WMGCP. Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1996, 7(1): 215–222 Qin Z, Wang XQ, Zeng ZN,. Genetic distance in four populations of(Lamer) assessed by AFLP makers. Journal of Hunan Agricultural University (Natural Sciences), 2014, 40(3): 299–304 [秦溱, 王曉清, 曾志南, 等. 泥東風(fēng)螺4個(gè)群體遺傳多樣性的AFLP分析. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 40(3): 299–304] Schlotterer C, Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Research, 1992, 20(2): 211–215. Schlotterer C. Evolutionary dynamics of microsatellite DNA. Chromosoma, 2000, 109(6): 365–371 Shi SF, Yao HH, Lin ZH,. Characterization and analysis of 24 polymorphic EST-SSR loci in. Marine Sciences, 2013, 37(8): 42–46 [史松富, 姚韓韓, 林志華, 等. 24個(gè)泥蚶EST-SSR標(biāo)記的開發(fā)與分析. 海洋科學(xué), 2013, 37(8): 42–46] Simon SA, Zhai J, Nandety RS,. Short-read sequencing technologies for transcriptional analyses. Annual Review of Plant Biology, 2009, 60: 305–333 Temnykh S, DeClerck G, Lukashova A,. Computational and experimental analysis of microsatellites in rice (L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Research, 2001, 11(8): 1441–1452 Toth G, Gaspari Z, Jurka J. Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Research, 2000, 10(7): 967–981 Wang J, Wang QY, Kong J,. SSR analysis on genetic diversity in breeding and wild populations of. Progress in Fishery sciences, 2018, 39(2): 104–111 [王軍, 王清印, 孔杰, 等. 中國明對蝦人工選育群體與野生群體遺傳多樣性的SSR分析. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(2): 104–111] Wang RC. China aquatic shellfish primary color guide. Hangzhou: Zhejiang Science and Technology Press, 1988 [王如才. 中國水生貝類原色圖鑒. 杭州: 浙江科學(xué)技術(shù)出版社, 1988] Wang ST, Shen YB, Meng XZ,. Genetic variability in wild and selected populations ofusing microsatellite markers. Journal of Fisheries of China, 2018(8): 1273–1284 [王沈同, 沈玉幫, 孟新展, 等. 草魚野生與選育群體遺傳變異微衛(wèi)星分析. 水產(chǎn)學(xué)報(bào), 2018(8): 1273–1284] Ye QT, Liu Y, Zeng ZN,. Tracking survey after enhancement and releasing ofand its effects analysis. Journal of Fujian Fisheries, 2015a, 37(2): 140–147 [葉泉土, 劉勇, 曾志南, 等. 泥東風(fēng)螺增殖放流跟蹤調(diào)查及效果分析. 福建水產(chǎn), 2015a, 37(2): 140–147] Ye QT, Wu QS, Zeng ZN,. Effect of different bottom sowing density on growth and survival ofjuveniles. Journal of Fujian Fisheries, 2015b, 37(1): 36–42 [葉泉土, 巫旗生, 曾志南, 等. 不同底播密度對泥東風(fēng)螺()幼螺生長和存活的影響. 福建水產(chǎn), 2015b, 37(1): 36–42] Yeh FC,Boyle TJB. Population genetic analysis of codominant and dominant markers and quantitative traits. Belgian Journal of Botany, 1997, 129–157 Yu AQ, Shi YH, Xu JB,. Characteristic analysis of microsatellites in the selectedbased on transcriptome dataset. Progress in Fishery Sciences, 2019, 40(5): 101–109 [于愛清, 施永海, 徐嘉波, 等. 長江刀鱭選育群體轉(zhuǎn)錄組EST-SSR的分布特征分析. 漁業(yè)科學(xué)進(jìn)展, 2019, 40(5): 101–109] Zeng C, Gao ZX, Luo W,. Characteristics of microsatllites in blunt snout bream () EST sequences using 545 FLX. Acta Hydrobiolonica Sinica, 2013, 37(5): 982–988 [曾聰, 高澤霞, 羅偉, 等. 基于454GS FLX高通量測序的團(tuán)頭魴ESTs中微衛(wèi)星特征分析. 水生生物學(xué)報(bào), 2013, 37(5): 982–988] Zhang GM, Sun XJ, Wu B,. Transferability of EST-SSR frominto. Progress in Fishery Sciences, 2018, 39(4): 1–8 [張廣明, 孫秀俊, 吳彪, 等. 蝦夷扇貝EST-SSR標(biāo)記在櫛孔扇貝中的通用性研究. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(4): 1–8] Zhang HH, Wu JF, Chen LX,. Prospect of artificial breeding, breeding and industrialization of. Southern Aquaculture, 2004(11): 2–5 [張漢華, 吳進(jìn)鋒, 陳利雄, 等. 東風(fēng)螺人工育苗、養(yǎng)殖及產(chǎn)業(yè)化發(fā)展前景. 南方水產(chǎn), 2004(11): 2–5] Zhang Q, Liu XL, Li XL,. Application of simple sequence repeats derived from expression sequence tags (EST-SSRs) in aquatic animal genomics. Fisheries Science, 2010, 29(5): 302–306 [張瓊, 劉小林, 李喜蓮, 等. EST-SSR分子標(biāo)記在水生動物遺傳研究中的應(yīng)用. 水產(chǎn)科學(xué), 2010, 29(5): 302–306] Zhang XY, Gao YN. To design PCR primers with Oligo 6 and Primer premier 5. China Journal of Bioinformatics, 2004, 2(4): 15–18 [張新宇, 高燕寧. PCR引物設(shè)計(jì)及軟件使用技巧. 生物信息學(xué), 2004, 2(4): 15–18] Zhao GT, Liu XD, Wang ZY,. Genetic structure and genetic diversity analysis of four consecutive breeding generations of large yellow croaker () using microsatellite markers. Journal of Fisheries of China, 2010, 34(4): 500–507 [趙廣泰, 劉賢德, 王志勇, 等. 大黃魚連續(xù)4代選育群體遺傳多樣性與遺傳結(jié)構(gòu)的微衛(wèi)星分析. 水產(chǎn)學(xué)報(bào), 2010, 34(4): 500–507] Zheng HZ, Yi TL, Liang XF,. Genetic structure and genetic diversity analysis of four consecutive breeding generations of. Freshwater Fisheries, 2013, 43(6): 8–12 [鄭荷子, 易提林, 梁旭方, 等. 翹嘴鱖連續(xù)4代選育群體遺傳多樣性及遺傳結(jié)構(gòu)分析. 淡水漁業(yè), 2013, 43(6): 8–12] Development and Genetic Diversity Analysis ofwith EST-SSR Markers XIONG Gang1,2, WANG Xiaoqing2①, WANG Pei2, CHEN Zhennian2, ZHOU Xianwen2,3, KANG Li1, ZENG Zhinan4 (1. Department of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127;2. College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128;3. Station of Aquaculture in Xiang xi, Jishou 416000;4. Fisheries Research Institute of Fujian, Xiamen 361013) is a marine shellfish that has high economic values. In recent decades, the natural resource ofhas declined due to the environment destruction and overfishing. To further understand the level of genetic diversity and population genetic structure ofwe have evaluated the information characteristics of’s microsatellites, after obtaining transcriptome sequences using MISA software. The results show that a total of 16342 microsatellites and 181 nucleotide repeat motifs were identified. Different types of repeat microsatellites had considerably different distribution characteristics. Mononucleotide and dinucleotide microsatellite repeating units were the most abundant in thetranscriptome, in which 6 repeats of AC/GT (70.58%) were the dominant repeating dinucleotide units. The length of the dominant repeating units was 12~20 bp (63.95%) and 21~25 bp (9.14%), respectively, and the average length was 18.4 bp. Among the 50 designed primer pairs, 23 proved to be polymorphic microsatellite markers in thewild populations (WP). The results showed that the allele number of these microsatellites ranged from 2 to 7. The expected heterozygosity (e) and observed heterozygosity (o) ranged from 0.190 to 0.937, and 0.065 to 0.936, respectively. The polymorphism information content (PIC) ranged from 0.061 to 0.777. Theevalues of the WP and breeding population (BP) were 0.491 and 0.544, respectively. Theovalues of the WP and BP populations were 0.477 and 0.564, respectively. The PIC values for WP and BP were 0.541 and 0.407, respectively. There were 13 population loci that were heterozygote excesses in WP, and 13 population loci in BP. The genetic differentiation index (st) ranged from 0.001 to 0.655, with an average value of 0.053 (0.05 ; Transcriptome; EST-SSR; Polymorphism WANG Xiaoqing, E-mail: wangxiao8258@126.com S917.4 A 2095-9869(2020)04-0117-08 10.19663/j.issn2095-9869.20190417002 http://www.yykxjz.cn/ 熊鋼, 王曉清, 王佩, 陳貞年, 周先文, 康驪, 曾志南. 泥東風(fēng)螺EST-SSR開發(fā)及其群體遺傳多樣性分析. 漁業(yè)科學(xué)進(jìn)展, 2020, 41(4): 117–124 Xiong G, Wang XQ,Wang P, Chen ZN, Zhou XW, Kang L, Zeng ZN. Development and genetic diversity analysis ofwith EST-SSR markers. Progress in Fishery Sciences, 2020, 41(4): 117–124 * 海洋公益性行業(yè)科研專項(xiàng)經(jīng)費(fèi)項(xiàng)目(201205021)、國家自然科學(xué)基金(31672640)、湖南省自然科學(xué)基金(2017JJ3134; 2016NK2115)和湖南省教育廳基金項(xiàng)目(17C0935)共同資助[This work was supported by Public Science and Technology Research Funds Projects of Ocean (201205021), National Natural Science Foundation of China (31672640), Natural Science Foundation of Hunan Province(2017JJ3134; 2016NK2115), and Scientific Research Fund of Hunan Province Education Department (17C0935)]. 熊 鋼,E-mail: xionggang709@126.com 王曉清,教授,E-mail: wangxiao8258@126.com 2019-04-17, 2019-05-12 (編輯 馮小花)1 材料與方法
1.1 材料
1.2 方法
2 結(jié)果
2.1 轉(zhuǎn)錄組中EST-SSR特性
2.2 擴(kuò)增位3點(diǎn)的多態(tài)性
2.3 野生群體和養(yǎng)殖群體遺傳多樣性
2.4 野生群體和養(yǎng)殖群體遺傳分化
3 討論
3.1 轉(zhuǎn)錄組中EST-SSR分布
3.2 EST-SSR在泥東風(fēng)螺野生和養(yǎng)殖群體中的多態(tài)性變化
3.3 泥東風(fēng)螺野生群體和養(yǎng)殖群體遺傳多樣性與遺傳分化