徐海軍 陳威宇 李海建 彭南江 梁志
摘 要:電驅動橋的NVH性能與齒輪的重合度有密切關系。文章以我司實際開發(fā)的一款電驅動橋產(chǎn)品為例,在傳動系統(tǒng)分析軟件MASTA中進行齒輪設計和分析優(yōu)化,比較了大螺旋角和細高齒兩種設計方案對齒輪重合度的提升和對系統(tǒng)的影響,得出細高齒設計要優(yōu)于大螺旋角設計,并通過實車測試驗證了細高齒優(yōu)秀的NVH性能。該設計方法推廣應用于后續(xù)開發(fā)的電驅動橋產(chǎn)品中,同樣取得了優(yōu)秀的NVH表現(xiàn)。
關鍵詞:圓柱齒輪;細高齒;NVH;電驅動橋
中圖分類號:U463.212+.42 ?文獻標識碼:A ?文章編號:1671-7988(2020)10-88-05
Application of High?Tooth?Gear Design in NVH Optimization of Electric Drive Axle
Xu Haijun, Chen Weiyu, Li Haijian, Peng Nanjiang, Liang Zhi
(?Liuzhou Wuling Automobile Industry Co., Ltd, Guangxi LiuZhou 545007?)
Abstract:?The NVH performance of the electric drive axle is closely related to the contact ratio of the gears. In this paper, an electric drive axle product developed by our company is taken as an example.The gear design and analysis optimization was carried out in MASTA - a software for the analysis of drive line systems.Comparing the designs of large helix angle and high?tooth?gear to the contact ratio of the gears and the influence on the system, it is concluded that the high?tooth?gear design is superior to the large helix angle design, and the excellent NVH performance of high?tooth?gear is verified by a practical test. This design method has been further used for the subsequent electric drive axle products, and also achieved excellent NVH performance.
Keywords:?Cylindrical gear;?High?tooth?gear;?NVH;?Electric drive axle
CLC NO.: U463.212+.42 ?Document Code: A ?Article ID:?1671-7988(2020)10-88-05
1?前言
隨著我國社會經(jīng)濟發(fā)展水平的提高,消費者對汽車乘坐舒適性的要求越來越高,NVH(noise噪聲,vibration振動,harshness聲振粗糙度)已成為汽車性能的關鍵指標之一。電動汽車與燃油汽車相比,動力源電機的噪聲比發(fā)動機有所降低,驅動橋的噪聲會更為突出,因此提高驅動橋的NVH性能對電動汽車的品質具有重要意義。
對于驅動橋和變速箱NVH的研究表明,齒輪的傳遞誤差波動是傳動系統(tǒng)噪聲的主要激勵[1],基本上可以說齒輪是驅動橋NVH問題的源頭,因此圓柱齒輪的設計對電驅動橋的品質至關重要。過去圓柱齒輪受限于制造因素和理論研究水平,多采用標準齒輪設計,并使用標準齒輪刀具進行加工制造。時至今日,標準齒輪已無法滿足汽車行業(yè)越來越高的NVH性能要求,采用具有高重合度的細高齒設計成為提升電驅動橋NVH性能的有效手段。
2?齒輪理論研究
齒輪傳動是依靠各對齒輪的依次嚙合來實現(xiàn)的,實際嚙合線長度與基圓齒距的比值稱為重合度(如圖1所示)。為了使齒輪能夠連續(xù)傳動,應該保證前一對齒輪脫離嚙合前,后一對齒輪已經(jīng)進入嚙合,即重合度必須大于1。作為衡量齒輪連續(xù)傳動的條件,重合度越大,表明齒輪傳動的連續(xù)性和平穩(wěn)性越好。
圖1中,Rb1、Rb2分別為主被齒基圓半徑,R1、R2分別為主被齒工作節(jié)圓直徑,Ro1、Ro2分別為主被齒外徑。
齒輪重合度:
ε=DB/Pb ??(1)
式中,DB為嚙合線長度;Pb為基圓齒距。
許多學者通過理論和實驗的方法對齒輪的動態(tài)特性進行了研究,表明重合度是影響圓柱齒輪NVH的關鍵因素。某大學的研究者通過改變齒輪的設計參數(shù),如壓力角、螺旋角、齒頂高系數(shù)、齒寬等,改變齒輪的重合度,并通過CAE方法研究了齒輪嚙合線長度和嚙合剛度的變化[2]。結果表明理論上齒輪設計的重合度越高,齒輪的嚙合線長度和嚙合剛度的波動越小,齒輪的動態(tài)激勵越小,越有利于齒輪傳動系統(tǒng)獲得低的振動和噪聲,而重合度為整數(shù)時,齒輪的嚙合線長度和嚙合剛度趨于恒定。國外另一組學者進行了更進一步的研究,得到了軸向重合度、端面重合度與噪聲分貝值的關系[3]。如圖2所示,軸向重合度(εβ)和端面重合度(εα)增大時噪聲(dB)呈下降趨勢,而軸向重合度和端面重合度分別趨近整數(shù)時,噪聲進入低谷。
根據(jù)以上研究,在齒輪設計中合理地提升重合度有利于獲得好的NVH性能。
3?齒輪設計和分析優(yōu)化
齒輪作為電驅動橋的核心部件,直接決定了驅動橋的速比、中心距等主要參數(shù),且決定了整個主減的受力狀態(tài),進而決定了軸、軸承、殼體等主要零部件的強度和剛度要求,間接影響了整個主減幾乎每個零部件的設計。根據(jù)電驅動橋產(chǎn)品的性能要求,齒輪設計的原則是在滿足強度的前提下盡可能提高NVH性能,且不增加總成的尺寸和重量。可見電驅動橋的齒輪設計并不是孤立的,不能一味地追求高重合度,必須考慮齒輪設計對電驅動橋總成其他零部件的影響。
以我司開發(fā)的一款電驅動橋產(chǎn)品A為例,在前期設計階段,利用專業(yè)的傳動系統(tǒng)分析軟件MASTA建立了包含齒輪、軸、軸承、殼體等主要零部件的分析模型(如圖3所示),對齒輪參數(shù)進行設計和分析。在最初的設計方案中,兩級齒輪均采用標準齒輪設計,齒輪設計滿足速比和中心距要求,但考慮到一級齒輪轉速很高,在高速工況下可能產(chǎn)生NVH問題,影響整車舒適性,故優(yōu)化齒輪設計以提高一級齒輪重合度。
其中一個方案為通過加大螺旋角來提高重合度。如圖4所示,將一級齒輪螺旋角加大3°,并調整相應齒輪參數(shù),經(jīng)過分析,一級齒輪軸向重合度提高13.4%,最大扭矩工況下軸向力增大13.4%,一軸左軸承基本額定壽命降低21.7%??梢娂哟舐菪请m然能提高重合度,但同時也會帶來更大的軸向力,導致軸承壽命降低。大螺旋角帶來的大軸向力對軸和殼體的強度剛度也會造成不良的影響。
另一個方案為細高齒設計,如圖5所示,將一級齒輪齒頂高系數(shù)加大,并調整相應齒輪參數(shù),經(jīng)過分析,一級齒輪全齒高增大17.8%,端面重合度提高了17.5%,而齒輪大徑增加不到1mm,且軸向力沒有增加。
對比以上兩個方案,細高齒設計可以有效增加齒輪的重合度,而不會帶來額外的軸向力對總成其他零部件造成的不良影響,且尺寸和重量的增加微乎其微,可見細高齒設計要優(yōu)于大螺旋角設計,本產(chǎn)品采用該設計方案并展開詳細的分析、設計與校核:
1)齒形分析
如圖6所示,將原標準齒設計改為細高齒設計,齒形變得細長,齒面接觸長度增加,齒頂厚度和齒根厚度變小,齒頂圓直徑略微變大。
2)強度分析
如圖7所示,將原標準齒設計改為細高齒設計,接觸面增大,齒面接觸應力減小,接觸強度提高;但齒根厚度減小,齒根彎曲應力增大,彎曲強度降低。
3)重合度分析
如圖8所示,將原標準齒設計改為細高齒設計,可以獲得更高的重合度,有利于降低噪聲,獲得好的NVH性能。
4)齒面修型設計
為了進一步提升NVH性能,對該設計方案進行齒面微觀修型以改善接觸區(qū)和降低TE(Transmission Error - 傳遞誤差)。
根據(jù)電驅動橋高速化的特點和以往的NVH開發(fā)經(jīng)驗,該產(chǎn)品主要針對高速工況進行齒面微觀修型設計。從產(chǎn)品配套電機的特性曲線中讀取電機高速工況下的轉速、扭矩、功率作為電驅動橋的輸入條件,在該工況下分析齒輪軸、軸承、殼體等系統(tǒng)剛度對齒輪嚙合的影響,計算齒輪嚙合錯位量,以此為依據(jù)進行螺旋角修型、壓力角修型、齒向和齒廓起鼓修型以及齒頂拋物線修型等一系列齒面微觀修型。
如圖9所示,經(jīng)過修型,該設計方案齒輪在高速工況下獲得了良好的接觸區(qū),有利于獲得好的NVH性能。
如圖10所示,經(jīng)過修型,該設計方案齒輪TE峰峰值由0.4315下降到0.257,TE降低有利于獲得好的NVH性能。
5)強度校核
考慮到細高齒設計會對齒輪齒根彎曲強度造成一定的削弱,對更改后的設計方案進行齒輪強度校核,依照ISO 6336:2006標準計算齒輪應力,按疲勞條件和材料S-N曲線計算許用應力,如圖11所示,齒根彎曲疲勞強度和齒面接觸疲勞強度均滿足要求。
綜上所述,通過兩個方案對比和一系列設計分析優(yōu)化工作,從理論上提高了一級齒輪的NVH性能,且保證了齒輪本身的強度和避免了對總成其他零部件造成的不良影響,達到了電驅動橋齒輪設計要求。
4 試驗驗證
采用以上設計方法,搭載了一級細高齒、二級標準齒輪的電驅動橋產(chǎn)品A,順利通過了齒輪疲勞試驗和總成靜扭試驗,驗證了齒輪和電驅動橋總成強度設計的合理性,并安裝到整車進行路試,測試其NVH性能。如圖12所示,最上方的紅線為整車噪聲,中間的綠線為二級齒輪階次噪聲,最下方的藍線為一級齒輪階次噪聲,可見二級標準齒輪表現(xiàn)較差,最高階次噪聲59dB,存在突出峰值,峰值距離整車噪聲較近,約11dB,對整車噪聲具有一定的貢獻度;而一級細高齒表現(xiàn)優(yōu)秀,最高階次噪聲44dB,且曲線非常平穩(wěn)不存在明顯峰值,基本上全程距離整車噪聲20dB以上,對整車噪聲貢獻度很低。
根據(jù)以上試驗結果,可見細高齒的NVH表現(xiàn)要明顯優(yōu)于標準齒輪,體現(xiàn)了高重合度齒輪的優(yōu)勢。
5 產(chǎn)品提升
理論分析和實驗驗證相結合,有效證明了電驅動橋產(chǎn)品A齒輪優(yōu)化設計帶來的提升效果,此經(jīng)驗推廣應用于后續(xù)開發(fā)的電驅動橋產(chǎn)品B,該產(chǎn)品兩級齒輪均采用了細高齒設計,且進一步減小了螺旋角,減少了齒輪軸向力對總成的不利影響,同時又保證了齒輪的高重合度。該產(chǎn)品搭載在兩款不同的車型上,均進行了NVH試驗驗證。
如圖13所示,裝在車型I上進行測試,整車噪聲加速工況最高81dB,滑行工況最高78dB;二級齒輪階次噪聲加速工況最高51dB,滑行工況最高51dB;一級齒輪階次噪聲加速工況最高41dB,滑行工況最高32dB。
如圖14所示,裝在車型II上進行測試,整車噪聲加速工況最高75dB,滑行工況最高72dB;二級齒輪階次噪聲加速工況最高45dB,滑行工況最高42dB;一級齒輪階次噪聲加速工況最高41dB,滑行工況最高31dB。
根據(jù)測試結果,電驅動橋產(chǎn)品B在兩種不同的車型上,各種工況下,兩級齒輪的階次噪聲值都很低,且曲線平穩(wěn)無明顯峰值,基本上全程距離整車噪聲20dB以上,對整車噪聲貢獻度很低,NVH表現(xiàn)優(yōu)秀。通過顧客試駕反饋,相比其他競品,該產(chǎn)品的噪聲表現(xiàn)很好。
無論客觀數(shù)據(jù)還是主觀評價,都證明了該產(chǎn)品優(yōu)秀的NVH性能。
6 結論
1)電驅動橋的NVH性能與齒輪的重合度有密切關系,齒輪設計中合理地提升重合度有利于獲得好的NVH性能。
2)加大螺旋角雖然能提高重合度,但會帶來額外的軸向力,對軸承、軸和殼體等其他零部件的強度剛度造成不良的影響;而采用細高齒設計可以避免這些不良影響同時提高齒輪的重合度。
3)對比電驅動橋產(chǎn)品A兩級齒輪和電驅動橋產(chǎn)品B的NVH表現(xiàn),可見細高齒設計可以有效提高電驅動橋的NVH性能。同時也證明了小螺旋角設計可以獲得好的NVH表現(xiàn)。
4)細高齒設計會對齒輪齒根彎曲強度造成一定的削弱,但通過設計校核和試驗驗證的方法,可以避免齒輪強度不足造成的失效。
參考文獻
[1] 馬振輝,趙軍.基于MASTA的某重型變速器性能開發(fā)[J].傳動技術,2018,32(1).
[2] Lan Liu,Yunfei Ding. Effects of Contact Ratios on Mesh Stiffness of Helical Gears for Lower Noise Design. Power Transmission Engine?-ering, 2015.
[3] Müller,R: Schwingungs- und Ger?uschanregung bei Stirnr?dern, Diss. TU München,1991” and Advanced study of noise and vibrations from FZG to GEBOX gearbox.