寇華日 王珂 李喜飛 丁書(shū)江
摘要 為了應(yīng)對(duì)日益加重的能源危機(jī)和環(huán)境污染問(wèn)題,二次能源技術(shù)得到了越來(lái)越多的重視,發(fā)展新一代能源材料是其中的關(guān)鍵。原子層沉積技術(shù)(Atomic Layer Deposition,ALD)是一種有效的材料沉積和表面改性技術(shù)。ALD技術(shù)在基底表面沉積的薄膜具有致密、均一的特點(diǎn),并且能夠有精確控制微納米級(jí)至亞納米級(jí)厚度的薄膜的生長(zhǎng)。該技術(shù)能夠制備多種具有優(yōu)良特性的金屬單質(zhì)、金屬氧化物、金屬硫化物、金屬氮化物薄膜材料,因而在眾多方面得到了研究應(yīng)用。本文簡(jiǎn)要介紹了原子層沉積技術(shù)的相關(guān)原理,在鋰離子電池、鋰硫電池和燃料電池方面的應(yīng)用成果,并對(duì)原子層沉積技術(shù)在能源存儲(chǔ)和轉(zhuǎn)化材料中的應(yīng)用前景進(jìn)行了展望。
關(guān) 鍵 詞 原子層沉積技術(shù);薄膜材料;鋰離子電池;鋰硫電池;燃料電池
中圖分類(lèi)號(hào) O6-1 ? ? 文獻(xiàn)標(biāo)志碼 A
0 引言
隨著經(jīng)濟(jì)社會(huì)的快速發(fā)展,人類(lèi)社會(huì)對(duì)能源的需求日益增長(zhǎng)。傳統(tǒng)的化石能源,尤其是煤、石油和天然氣等不可再生能源面臨枯竭的危險(xiǎn)。與此同時(shí)這些能源的大量、低效利用使得環(huán)境污染問(wèn)題愈發(fā)嚴(yán)峻,酸雨、霧霾、水污染等問(wèn)題嚴(yán)重威脅著人們的生存和發(fā)展。為了實(shí)現(xiàn)可持續(xù)發(fā)展,探索和發(fā)展新能源技術(shù)越來(lái)越受到政府和社會(huì)等各方面的重視。新型清潔能源,諸如:風(fēng)能、潮汐能、太陽(yáng)能等雖然儲(chǔ)量大、成本低,但是極易受到天氣、時(shí)間、地理位置等自然因素的影響[1-3]。為了獲得穩(wěn)定的能源供應(yīng),進(jìn)行能量?jī)?chǔ)存和轉(zhuǎn)換的二次能源技術(shù)就顯得尤為重要。
二次能源技術(shù)在近幾十年中受到了全世界各國(guó)的高度重視,其中鋰離子電池[2]、鋰硫電池[4-6]以及燃料電池[7-8]作為最具前途的二次能源技術(shù),更是得到了廣泛的關(guān)注和大量的研究。這些裝置與傳統(tǒng)的能源存儲(chǔ)和轉(zhuǎn)換裝置相比具有明顯的優(yōu)勢(shì),比如:更加清潔,更加便攜,具有更高的能量密度,具有更高的能量轉(zhuǎn)換效率,具有更長(zhǎng)的使用壽命,安全性更高。電極和電解質(zhì)材料作為能源存儲(chǔ)與轉(zhuǎn)換裝置的關(guān)鍵組成部分更是得到廣大研究工作者的極大重視。原子層沉積(Atomic Layer Deposition, ALD )技術(shù)作為一種材料制備與改性的有效手段,近年來(lái)在能源存儲(chǔ)和轉(zhuǎn)換材料研究方面也獲得了極大的發(fā)展和廣泛的應(yīng)用[9-14]。本文將對(duì)ALD技術(shù)在鋰離子電池、鋰硫電池、燃料電池3個(gè)方面的應(yīng)用進(jìn)行簡(jiǎn)要的總結(jié)和回顧。
1 ALD技術(shù)
1.1 ALD技術(shù)的介紹
ALD 技術(shù)是由芬蘭科學(xué)家Suntola[15]在20世紀(jì)70年代發(fā)明的。這項(xiàng)技術(shù)最初是用于硫化鋅的生長(zhǎng)研究,之后該技術(shù)逐漸發(fā)展成熟應(yīng)用范圍也逐漸擴(kuò)大。該技術(shù)最初被稱(chēng)為原子層外延(Atomic Layer Epitaxy, ALE),后來(lái)逐漸被更為準(zhǔn)確的原子層沉積名稱(chēng)所代替[10]。迄今為止,ALD技術(shù)已經(jīng)能制備眾多的材料,如金屬單質(zhì)[16-21]、金屬氟化物[22-24]、金屬氧化物[25-28]、金屬硫化物[29-33]、金屬氮化物[34-35]等,在材料的制備和表面改性方面獲得了極大的應(yīng)用。
在A(yíng)LD技術(shù)中利用了材料對(duì)于氣體吸附的自限性和自飽和性,通過(guò)將反應(yīng)物依次通入反應(yīng)艙內(nèi),使反應(yīng)試劑之間進(jìn)行反應(yīng)。一個(gè)反應(yīng)循環(huán)一般分為4個(gè)步驟: a)載氣將氣態(tài)的反應(yīng)試劑A帶入到反應(yīng)腔室中,試劑A被吸附在襯底表面形成一層單分子層;b)通入惰性氣體將腔室內(nèi)多余的氣體A和氣體副產(chǎn)物吹離;c)載氣將氣態(tài)的反應(yīng)試劑B帶入到反應(yīng)腔室中,試劑B與吸附在襯底表面的試劑A發(fā)生反應(yīng),形成一層產(chǎn)物的單分子層;d)通入惰性氣體將腔室內(nèi)多余的氣體以及副產(chǎn)物抽離。將以上4個(gè)步驟進(jìn)行循環(huán)可制備不同厚度、不同組分的薄膜。圖1展示了TiO2薄膜制備過(guò)程的原理。首先,TiCl4 蒸氣被N2帶入反應(yīng)室吸附在基底的表面,形成單層吸附層。接著,通入反應(yīng)室內(nèi)的N2將多余的未吸附TiCl4氣體帶出反應(yīng)室。然后,N2將水蒸氣帶入反應(yīng)室,水蒸氣與吸附的TiCl4 發(fā)生反應(yīng),生成HCl和Ti(OH)4。最后,產(chǎn)生的HCl和未反應(yīng)的水蒸氣被帶出反應(yīng)室。在下一個(gè)循環(huán)中,Ti(OH)4中的—OH將參與反應(yīng),最后獲得TiO2產(chǎn)物。
從反應(yīng)的原理可以得到ALD技術(shù)具有以下的優(yōu)勢(shì):a)ALD技術(shù)利用自限性飽和吸附反應(yīng),使得生成的薄膜具有良好的保形性、致密性和均一性;b)與化學(xué)氣相沉積(CVD)技術(shù)相比,ALD技術(shù)可在較低的溫度下進(jìn)行反應(yīng),一般不高于400 ℃,而CVD一般在600 ℃以上進(jìn)行,這樣就能極大地?cái)U(kuò)大了基底材料的范圍,同時(shí)也避免了高溫對(duì)于材料的破壞[9];c)ALD技術(shù)每個(gè)循環(huán)只生成一層產(chǎn)物,這就使得精確控制薄膜的厚度與超薄薄膜的制備變得更加便捷[36-38]。
1.2 能源存儲(chǔ)和轉(zhuǎn)化材料
能源存儲(chǔ)和轉(zhuǎn)化材料是二次能源設(shè)備的關(guān)鍵組成部分。本文討論的鋰離子電池、鋰硫電池、燃料電池具有非常相近的結(jié)構(gòu),主要都是由正負(fù)電極、隔膜、電解質(zhì)等組成。其中的正負(fù)極材料或其表面的催化劑的性質(zhì)是決定電池的容量、循環(huán)穩(wěn)定性、能量轉(zhuǎn)化效率等各方面性能的主要因素。傳統(tǒng)能源材料普遍存在材料利用率低,應(yīng)用過(guò)程中材料結(jié)構(gòu)變化大,壽命短穩(wěn)定性差等一系列問(wèn)題。設(shè)計(jì)和制備具有優(yōu)良性能的新型能源材料一直是二次能源技術(shù)發(fā)展進(jìn)步的重要研究?jī)?nèi)容。其中制備具有微納米精細(xì)結(jié)構(gòu)的材料被認(rèn)為是解決當(dāng)前能源材料發(fā)展問(wèn)題的有效手段之一。為此廣大研究者提出了水熱法[44-48]、電化學(xué)方法[49-54]、化學(xué)氣相沉積[55-59]等大量方法對(duì)材料進(jìn)行設(shè)計(jì)和合成。雖然這些方法取得了一定的效果,但是這些方法大都具有一定的局限性。例如,水熱法的高溫高壓液相環(huán)境無(wú)法精確控制反應(yīng)進(jìn)程,電化學(xué)方法對(duì)材料的電化學(xué)性能有一定的要求,化學(xué)氣相沉積方法需要材料耐受極高的溫度等。這些局限性極大地限制了這些方法的應(yīng)用范圍,而ALD技術(shù)在這些方面具有獨(dú)特的優(yōu)勢(shì)。ALD利用的是材料表面的吸附作用來(lái)吸附反應(yīng)前驅(qū)體分子,而常用的前驅(qū)體氫化物、烷基金屬化合物及金屬鹵化物能有效吸附在眾多材料的表面,這就使得該技術(shù)具有較廣的應(yīng)用范圍。金屬單質(zhì)、金屬氧化物、非金屬、非金屬氧化物都可以利用ALD技術(shù)進(jìn)行表面改性。同時(shí)ALD反應(yīng)一般溫度較低,且為高真空狀態(tài),這些反應(yīng)條件使得ALD技術(shù)具有一定的普適性。ALD技術(shù)在精確控制制備從微納米級(jí)厚度到單原子層厚度薄膜方面更是具有明顯的優(yōu)勢(shì)。ALD技術(shù)的獨(dú)特優(yōu)勢(shì)使得其在能源存儲(chǔ)與轉(zhuǎn)換裝置材料的設(shè)計(jì)合成方面獲得了大量的研究和應(yīng)用。
2 ALD技術(shù)的應(yīng)用
2.1 鋰離子電池
鋰離子電池作為現(xiàn)今發(fā)展最為成熟和應(yīng)用最廣的二次能源存儲(chǔ)裝置,依然面臨著巨大的挑戰(zhàn)。人們對(duì)于鋰離子電池的容量、循環(huán)壽命以及安全性等方面的要求也在不斷升高。鋰離子電池電極材料在整個(gè)電池反應(yīng)中發(fā)揮著關(guān)鍵作用,在充電過(guò)程中,鋰離子從正極脫出經(jīng)過(guò)電解液和隔膜到達(dá)負(fù)極發(fā)生反應(yīng)。在放電過(guò)程中鋰離子從負(fù)極返回正極嵌入正極材料。在鋰離子循環(huán)往復(fù)過(guò)程中,正極材料嵌入脫出鋰離子會(huì)使得自身體積的變化和晶型的轉(zhuǎn)變,甚至還會(huì)存在材料中過(guò)渡金屬的溶解等問(wèn)題,造成材料性能的下降。在負(fù)極材料中,材料和鋰離子會(huì)發(fā)生插層作用、氧化還原反應(yīng)以及合金化反應(yīng)中的一種或幾種。正是由于這些反應(yīng)的發(fā)生使得材料的體積發(fā)生成倍或者幾倍的變化。這種巨大的變化會(huì)導(dǎo)致負(fù)極材料的粉碎溶解、從集流體表面剝離脫落、電接觸變差等一系列問(wèn)題。這些問(wèn)題導(dǎo)致材料的容量和循環(huán)性能?chē)?yán)重下降。為了解決這些問(wèn)題,電極材料的重新設(shè)計(jì)和改性就顯得非常重要。ALD技術(shù)作為一種有效的薄膜制備和表面改性技術(shù),在鋰離子電池電極材料的制備和改性方面獲得了廣泛的研究和應(yīng)用。
2.1.1 電極材料的制備
ALD技術(shù)應(yīng)用于鋰離子電池負(fù)極材料的制備,如制備多孔的TiO2材料[60]、TiO2石墨烯復(fù)合材料[61]、對(duì)苯二酸鋰薄膜[62]以及MoNx、MoS2薄膜[63,64]等多種材料。近年來(lái),MXenes作為二維過(guò)渡金屬碳化物之一,由于其高的導(dǎo)電率、體積容量與獨(dú)特的二維結(jié)構(gòu)在鋰離子電池研究中得到了廣泛的應(yīng)用。然而MXene表面往往存在著多種親水性基團(tuán)(如—F,—OH),這大大影響了鋰離子的吸附和嵌入,進(jìn)而降低材料的儲(chǔ)鋰容量。通過(guò)化學(xué)方法在MXenes表面進(jìn)行涂覆是一種理想的手段。Ahmed等[65]通過(guò)ALD技術(shù)將SnO2均勻地沉積在Ti3C2 MXene上,此技術(shù)的使用保證了MXene結(jié)構(gòu)的完整性,進(jìn)而使得本身具有高理論容量的MXene的電化學(xué)性能進(jìn)一步提升。Aravindan等[66]利用等離子體輔助ALD技術(shù)直接將SnO2沉積在不銹鋼基底上作為鋰離子電池的負(fù)極材料。展示了這種材料優(yōu)異的電化學(xué)性能,可以看到在5 μA?cm-2的電流密度下在0.005~0.8 V的電壓范圍內(nèi)經(jīng)過(guò)250個(gè)循環(huán),可逆容量達(dá)到了646 mAh?g-1。在100 μA?cm-2的電流密度下經(jīng)過(guò)500個(gè)循環(huán),容量仍然達(dá)到了365 mAh?g-1,并且在整個(gè)過(guò)程中容量幾乎沒(méi)有衰減。Hong等[60]結(jié)合葡萄糖模板和ALD技術(shù)制備了銳鈦礦型多孔二氧化鈦負(fù)極材料[圖3(b)]。這種負(fù)極材料具有很高的比表面積,約為商業(yè)TiO2的5倍。從圖3c)中可以看到,這種方法獲得的多孔TiO2材料在1 C的電流密度下經(jīng)過(guò)100個(gè)循環(huán)仍然保持了初始容量的80%,其容量幾乎是相同條件下商業(yè)TiO2容量的2倍。這主要得益于A(yíng)LD形成的TiO2厚度極小,使得更多的TiO2處于材料表面,在增加材料的反應(yīng)位點(diǎn)的同時(shí)還能有效緩沖材料的體積膨脹。除此之外,ZnO由于其資源豐富,環(huán)境友好,高的理論容量(987 mAh?g-1)以及較高的鋰離子擴(kuò)散系數(shù)也成為研究廣泛的負(fù)極材料。但是,鑒于ZnO差的導(dǎo)電性和在鋰化與去鋰化過(guò)程中大的體積變化,Lu等[67]提出利用ALD技術(shù)將ZnO納米顆粒均勻地負(fù)載在炭黑(CB)上,這樣不僅可以有效地提供豐富的導(dǎo)電通路,同時(shí)由于引入ALD保證了ZnO與CB在體積膨脹過(guò)程中穩(wěn)定的接觸,進(jìn)而獲得穩(wěn)定SEI膜[在鋰離子電池首次充放電過(guò)程中,電極材料與電解液在固液相界面上發(fā)生反應(yīng),形成一層覆蓋于電極材料表面的鈍化層。這種鈍化層是一種界面層,具有固體電解質(zhì)的特征,是電子絕緣體卻是Li+ 的優(yōu)良導(dǎo)體,Li+ 可以經(jīng)過(guò)該鈍化層自由地嵌入和脫出,因此這層鈍化膜被稱(chēng)為“固體電解質(zhì)界面膜”( Solid Electrolyte Interface),簡(jiǎn)稱(chēng)SEI膜]。為了進(jìn)一步提高ZnO復(fù)合電極的導(dǎo)電性以及機(jī)械強(qiáng)度,Wang等[68]利用ALD技術(shù)依次在CC(碳布,Carbon Cloth)上沉積ZnO和TiO2,形成自支撐TiO2/ZnO/CC復(fù)合電極。TiO2的引入使電池循環(huán)的倍率性能和穩(wěn)定性得到了明顯的提升。最近,Cao等[69]在Cu箔上反復(fù)沉積ZnO與TiO2層電化學(xué)性能也得到了明顯的提升。Yu等[70]將ZnO和Al2O3 依次沉積在石墨烯上作為鋰離子電池負(fù)極材料,也取得了優(yōu)異的效果。在圖3d)中可以看到,Al2O3包覆的材料有效地抑制材料在充放電前10個(gè)循環(huán)中發(fā)生的容量衰減。在經(jīng)過(guò)100個(gè)循環(huán)之后,包覆效果最好的材料比容量約為原始材料的2倍。在這種材料中,Al2O3和ZnO緊密地貼合在石墨烯骨架上,石墨烯為材料提供了導(dǎo)電網(wǎng)絡(luò),同時(shí)Al2O3形成的保護(hù)層避免了ZnO的脫落從而保證了材料優(yōu)良的電化學(xué)性能。這也顯示了ALD技術(shù)形成的Al2O3層的良好的機(jī)械性能。圖3e)展示了Nandi等[63]利用[Mo(CO)6]和NH3的反應(yīng)沉積的MoNx薄膜作為鋰離子電池的負(fù)極材料。在這項(xiàng)研究中他們利用石英微天平精確測(cè)量了MoNx薄膜每循環(huán)0.2 nm的生長(zhǎng)速度,說(shuō)明了ALD技術(shù)確實(shí)能將薄膜的生長(zhǎng)控制在單原子層水平。這種薄膜作為鋰離子電池的負(fù)極測(cè)量同樣具有優(yōu)異的性能圖3f),在100個(gè)循環(huán)之后仍然具有700 mAh·g-1的可逆容量。將NH3換成H2S還可以生成MoS2[64]作為鋰離子電池負(fù)極材料,同樣取得了較好的結(jié)果。ALD技術(shù)不僅可以沉積單金屬?gòu)?fù)合物,還可以應(yīng)用于在基體上沉積超薄的有機(jī)物層。Wan等 [71]在Ti2Nb10O29微球上沉積一層聚酰亞胺,經(jīng)過(guò)高溫處理,便得到Ti2Nb10O29@N-C核殼復(fù)合材料。該材料得益于高導(dǎo)電性框架的存在,電子/離子的傳輸性能得到了大大的提升。
除了負(fù)極材料,還可以利用ALD技術(shù)來(lái)合成鋰離子電池的正極材料。?streng等[72]合成的V2O5正極材料具有極佳的結(jié)構(gòu)和力學(xué)性能。研究發(fā)現(xiàn)在V2O5的厚度為10 nm時(shí),材料具有最好的電化學(xué)性能,相比于1 C的電流密度,在120 C的電流密度下經(jīng)過(guò)1 500循環(huán),仍能保持80%的可逆容量,在960 C的高電流密度下還能保持約20%的循環(huán)容量。值得注意的是,在960 C的高電流密度下放電后,當(dāng)電流密度回到1 C時(shí),仍能回復(fù)將近95%的容量。最近,Zhao等[73]通過(guò)在多孔的N摻雜的石墨烯上沉積V2O5層制備得到的復(fù)合電極也表現(xiàn)出優(yōu)異的充放電性能。這些優(yōu)異的電化學(xué)性能從側(cè)面證明了ALD技術(shù)在合成超薄薄膜和納米級(jí)粒子方面巨大的優(yōu)勢(shì)。另外,鋰離子電池的安全性問(wèn)題一直受到極大重視,LiFePO4由于其較高的熱力學(xué)穩(wěn)定性,被認(rèn)為能替代LiCoO2成為下一代鋰離子電池正極材料。Liu等[74]通過(guò)將Fe2O3、POx和Li2O依次沉積在多壁碳納米管上的方法合成了LiFePO4/CNTs材料獲得了高循環(huán)壽命的鋰離子電池正極材料。這種材料在0.1 C的電流密度下可逆容量在160 mAh?g-1以上接近其理論值170 mAh?g-1。在1 C的電流密度下經(jīng)過(guò)2 000個(gè)循環(huán),其容量幾乎未發(fā)生衰減。同時(shí)在高倍率放電后,材料的容量也未觀(guān)察到明顯衰減。
從這些研究中可以發(fā)現(xiàn)在硫和電解液之間構(gòu)筑一層金屬氧化物阻隔層能夠有效地抑制穿梭效應(yīng),從而改善電池的循環(huán)性能。一般利用濕法化學(xué)手段難以形成均一、致密的金屬氧化物層。ALD技術(shù)能在材料表面形成致密的薄膜,不僅能有效控制材料在電解液中的溶解和流失,同時(shí)通過(guò)精確控制沉積薄膜的厚度還可以平衡薄膜在控制材料流失和影響材料導(dǎo)電性的作用。廣大研究者的工作也正是基于以上原因進(jìn)行了大量的研究工作。
因?yàn)殇嚵螂姵氐闹饕獑?wèn)題都是正極材料的問(wèn)題,所以研究工作也主要圍繞正極展開(kāi)。還原氧化石墨烯作為一種優(yōu)良的導(dǎo)體在鋰硫電池研究中有廣泛的應(yīng)用[91,105-108],但是由于其二維的開(kāi)放結(jié)構(gòu)使得在循環(huán)過(guò)程中對(duì)硫單質(zhì)的限制作用極其有限[109],利用ALD技術(shù)在材料表面沉積一層金屬氧化物保護(hù)層能夠很好地彌補(bǔ)材料的這一缺陷。Yu等[110]將硫負(fù)載到氮摻雜的還原氧化石墨烯上,并通過(guò)ALD技術(shù)在材料表面沉積TiO2,獲得具有優(yōu)異性能的鋰硫電池正極材料[圖5a)]。從圖5b)可以看出,在1 C的電流密度下經(jīng)過(guò)500個(gè)循環(huán),這種材料的可逆容量從1 100 mAh?g-1衰減到918 mAh?g-1。在相同條件下,未包覆TiO2的對(duì)照材料只保留了約600 mAh?g-1的可逆容量。還可以看到包覆TiO2的材料的庫(kù)侖效率接近100%,這也證明了這種具有包覆結(jié)構(gòu)的材料能夠有效地抑制材料中存在的穿梭效應(yīng),提高了硫的利用率。他們還報(bào)道了利用ZnO和MgO改性的還原氧化石墨烯和硫的復(fù)合材料[111],發(fā)現(xiàn)ZnO和MgO包覆層都能抑制電池容量的迅速衰減。圖5c)為包覆ZnO和MgO以及未包覆材料在0.2 C的電流密度下的循環(huán)性能??梢钥闯鱿啾扔贛gO包覆,ZnO的包覆取得了更好的改性效果。經(jīng)過(guò)100個(gè)循環(huán),ZnO包覆的材料可逆容量從最高998 mAh?g-1衰減到845 mAh?g-1,容量衰減約為16%。雖然MgO的包覆效果較ZnO差,但經(jīng)過(guò)100個(gè)循環(huán)仍然有767 mAh?g-1的可逆容量。圖5d)為100個(gè)循環(huán)后的電極材料的SEM圖。從圖中看出,未包覆的電極材料表面受到了嚴(yán)重的腐蝕破壞,而包覆了ZnO的電極材料的表面非常完好。這表明ZnO的包覆有效地保護(hù)了正極材料,減少了硫的流失。另外Li等[112]也報(bào)道利用Al2O3對(duì)鋰硫電池正極進(jìn)行改性達(dá)到了較好的效果。適當(dāng)厚度的Al2O3包覆有利于防止硫的溶解,提高硫的利用率。從圖5e)中可以看出,經(jīng)過(guò)Al2O3包覆的材料在循環(huán)中的庫(kù)倫效率顯著高于未包覆的材料,同樣顯示了Al2O3的包覆能夠有效抑制電極材料流失的作用。值得注意的是Al2O3自身的導(dǎo)電性較差,當(dāng)Al2O3的厚度超過(guò)一定范圍時(shí),會(huì)造成材料初始容量的下降。在這項(xiàng)工作中,當(dāng)Al2O3包覆圈數(shù)為2圈時(shí),材料的初始容量約為1 200 mAh?g-1,但當(dāng)包覆圈數(shù)為20時(shí),材料的初始容量只有約800 mAh?g-1。類(lèi)似地,Chen等[113]在Li2S-氧化石墨烯海綿上包覆了Al2O3,性能也得到了明顯的改善。
經(jīng)過(guò)多年的研究發(fā)現(xiàn),低的硫負(fù)載(質(zhì)量分?jǐn)?shù)為30%~60%)量往往導(dǎo)致電池的總?cè)萘拷档?而當(dāng)硫負(fù)載高于70%時(shí),又會(huì)造成電池的循環(huán)穩(wěn)定性下降。因此,設(shè)計(jì)新型的高的硫負(fù)載與穩(wěn)定的正極材料一直都備受關(guān)注。除了上面提到的石墨烯之外,Luo等[114]提出使用生物質(zhì)材料作為單質(zhì)硫的載體。樹(shù)木中存在著豐富的運(yùn)輸營(yíng)養(yǎng)物質(zhì)(用于新陳代謝的水、離子和小分子)的孔道,這些孔隙的存在可以很好地存儲(chǔ)硫。通過(guò)高溫碳化后,天然的碳纖維的導(dǎo)電性大大提高,同時(shí)上面的多孔結(jié)構(gòu)保留完整。但是,這些天然的孔道過(guò)于寬大而不能夠很好地限制多硫化物。Luo等[114]進(jìn)一步提出,通過(guò)ALD技術(shù)在天然的碳纖維上沉積5 nm厚的Al2O3,不僅可以很好地縮小碳纖維放入孔徑,提高限制多硫化物穿梭的能力,同時(shí)保留了較高的儲(chǔ)硫能力(70%)。
這些研究表明恰當(dāng)?shù)乩肁LD技術(shù)對(duì)鋰硫電池正極材料進(jìn)行表面改性,能夠有效減少硫化物與電解液的接觸,防止硫的溶解流失,同時(shí)提高硫的利用率。這些工作不僅為鋰硫電池的發(fā)展提供了新的思路,同時(shí)也表明了ALD技術(shù)在鋰硫電池發(fā)展中具有非常大的應(yīng)用潛力。
2.3 燃料電池
除了應(yīng)用于鋰離子電池和鋰硫電池,ALD技術(shù)在燃料電池研究中也發(fā)揮了巨大的作用。燃料電池作為一種能量轉(zhuǎn)換裝置,與傳統(tǒng)的水力發(fā)電、火力發(fā)電、核能發(fā)電相比具有明顯的優(yōu)勢(shì)。首先,燃料電池不經(jīng)過(guò)熱機(jī)過(guò)程,其理論能量轉(zhuǎn)換效率約為80%~90%,遠(yuǎn)高于內(nèi)燃機(jī)的效率。其次,燃料電池具有低污染、低噪聲的優(yōu)點(diǎn)。如果燃料電池使用氫氣或有機(jī)小分子等作為燃料,在整個(gè)反應(yīng)過(guò)程中僅有水和二氧化碳產(chǎn)生,能夠有效減少NOx、SO2等有害氣體的排放,極大地減小了對(duì)于環(huán)境的影響。同時(shí),燃料電池的燃料有廣泛的來(lái)源,這也進(jìn)一步提高了燃料電池的競(jìng)爭(zhēng)優(yōu)勢(shì)。另外,燃料電池還具有便攜、適應(yīng)能力強(qiáng)、應(yīng)用范圍廣的特點(diǎn),尤其是在近年來(lái)受到廣泛關(guān)注的電動(dòng)汽車(chē)、混合動(dòng)力汽車(chē)等方面擁有廣闊的應(yīng)用前景[8,115]。
燃料電池種類(lèi)繁復(fù),包括質(zhì)子交換膜燃料電池、磷酸燃料電池、堿性燃料電池、固體氧化物燃料電池以及熔融碳酸鹽燃料電池等。因此燃料電池也涉及許多種類(lèi)的材料,涉及金屬催化劑、非金屬催化劑、金屬氧化物催化劑、合金催化劑、固態(tài)電解質(zhì)以及金屬和金屬氧化物構(gòu)成的電極基底材料等。ALD技術(shù)作為一種有效的表面修飾改性技術(shù)和材料制備技術(shù),在這些材料的研究方面均有應(yīng)用。
2.3.1 鉑基催化劑制備
與鋰離子電池等相似,燃料電池主要由正負(fù)極、電解質(zhì)、隔膜等組成。與之不同的是正負(fù)極材料并不直接參與反應(yīng),而是為燃料(甲醇、氫氣等)和氧化劑(氧氣等)發(fā)生反應(yīng)提供場(chǎng)所。為了提高電池的效率,電極上一般都涂覆有催化劑。催化劑對(duì)整個(gè)電池的作用非常關(guān)鍵,催化劑的催化能力直接決定著燃料電池的性能。
鉑催化劑是燃料電池中應(yīng)用最早的催化劑,對(duì)比于非鉑基催化劑,鉑作為催化劑具有極為優(yōu)異的催化性能,能夠高效催化甲醇、乙醇等燃料氧化。鉑催化劑也有不容忽視的缺點(diǎn)。首先,鉑的存儲(chǔ)量低,價(jià)格昂貴,單一的鉑催化劑不可能大面積推廣應(yīng)用。其次,單一的鉑催化劑在燃料電池的反應(yīng)中容易中毒失活。因此,人們對(duì)于鉑基催化劑的大量研究都是希望在保持高催化性能和長(zhǎng)壽命的同時(shí),減少金屬鉑的用量,降低催化劑的成本。其中,提高材料的比表面積增加材料的活性位點(diǎn),作為提高材料利用率的有效手段被大量研究。
通過(guò)以上的這些工作,可以看出ALD技術(shù)在燃料電池研究的眾多方面,不論是在催化劑的設(shè)計(jì)合成方面,還是在固態(tài)電解質(zhì)及基底材料的改性方面均發(fā)揮出巨大的作用。這些應(yīng)用也證明了ALD技術(shù)作為一種良好的薄膜制備技術(shù)擁有其獨(dú)特的優(yōu)勢(shì),能在一定程度上推動(dòng)燃料電池的發(fā)展。
3 總結(jié)和展望
本文對(duì)于A(yíng)LD技術(shù)在能源存儲(chǔ)和轉(zhuǎn)化領(lǐng)域的應(yīng)用進(jìn)行了簡(jiǎn)要的回顧和總結(jié)。通過(guò)以上的回顧我們不難發(fā)現(xiàn)ALD技術(shù)在新型能源材料的合成改性等方面具有巨大的潛力。不論是在鋰離子電池電極材料的制備和改性,還是在鋰硫電池正極材料的優(yōu)化設(shè)計(jì),以及在燃料電池的催化劑、電解質(zhì)以及基底材料等眾多方面的研究中,都能發(fā)現(xiàn)ALD技術(shù)取得的眾多有意義的成果。對(duì)比傳統(tǒng)的材料合成方法,ALD技術(shù)有其獨(dú)特的優(yōu)勢(shì):1)ALD技術(shù)具有較強(qiáng)的適應(yīng)性,能夠?qū)Χ喾N類(lèi)型的材料進(jìn)行表面改性。同時(shí)隨著ALD反應(yīng)前驅(qū)體的開(kāi)發(fā),ALD技術(shù)能合成的材料種類(lèi)也越來(lái)越多;2)ALD技術(shù)通過(guò)精確控制反應(yīng)產(chǎn)物的生成量,能夠設(shè)計(jì)并合成具有獨(dú)特結(jié)構(gòu)和優(yōu)異性能的材料;3)ALD技術(shù)與其他薄膜制備技術(shù)相比制備的薄膜具有良好的致密性、均一性以及保形性。ALD技術(shù)為設(shè)計(jì)合成結(jié)構(gòu)新穎、性能優(yōu)異的新一代能源材料提供了有效手段。
盡管近年來(lái)ALD技術(shù)在能源材料方面得到廣泛的研究應(yīng)用,但是仍然面臨著許多問(wèn)題。雖然ALD技術(shù)能夠制備金屬氧化物、金屬氮化物等多種類(lèi)型的材料,但是在制備金屬單質(zhì)、非金屬單質(zhì)等材料方面依然受到很大的限制。另外,ALD的沉積速率遠(yuǎn)不能與PVD等方法相比,這也造成了ALD技術(shù)在制備納米級(jí)以上的材料上的應(yīng)用較少。同時(shí)在A(yíng)LD反應(yīng)過(guò)程中前驅(qū)體氣體以及副產(chǎn)物的殘留也會(huì)造成成膜質(zhì)量下降等問(wèn)題[11]。雖然ALD技術(shù)仍然存在著許多問(wèn)題和不足,但同時(shí)也表明了其仍具有廣闊的研究前景和發(fā)展空間。我們相信ALD技術(shù)在能源的存儲(chǔ)和轉(zhuǎn)換領(lǐng)域?qū)?huì)受到越來(lái)越多的重視和研究,在解決日益嚴(yán)峻的能源環(huán)境問(wèn)題方面發(fā)揮更大的作用。
參考文獻(xiàn):
[1] ? ?TURNER J A. A realizable renewable energy future[J]. Science,1999,285(5428):687-689.
[2] ? ?GOODENOUGH J B,KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials,2010,22(3):587-603.
[3] ? ?DUNN B,KAMATH H,TARASCON J M. Electrical energy storage for the grid:a battery of choices[J]. Science,2011,334(6058):928-935.
[4] ? ?BRUCE P G,F(xiàn)REUNBERGER S A,HARDWICK L J,et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials,2012,11(1):19-29.
[5] ? ?MANTHIRAM A,F(xiàn)U Y Z,CHUNG S H,et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews,2014,114(23):11751-11787.
[6] ? ?YAN B,LI X F,BAI Z M,et al. A review of atomic layer deposition providing high performance lithium sulfur batteries[J]. Journal of Power Sources,2017,338:34-48.
[7] ? ?STEELE B C H,HEINZEL A. Materials for fuel-cell technologies[J]. Nature,2001,414(6861):345-352.
[8] ? ?SINGHAL S C. Advances in solid oxide fuel cell technology[J]. Solid State Ionics,2000,135(1):305-313.
[9] ? ?LESKEL? M,RITALA M. Atomic layer deposition(ALD): from precursors to thin film structures[J]. Thin Solid Films,2002,409(1):138-146.
[10] ?GEORGE S M. Atomic layer deposition:an overview[J]. Chemical Reviews,2010,110(1):111-131.
[11] ?LESKEL? M,RITALA M. Atomic layer deposition chemistry:recent developments and future challenges[J]. Angewandte Chemie International Edition,2003,42(45):5548-5554.
[12] ?MENG X B,WANG X W,GENG D S,et al. Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology[J]. Materials Horizons,2017,4(2):133-154.
[13] ?TIURIN O,EIN-ELI Y. A critical review:the impact of the battery electrode material substrate on the composition and properties of atomic layer deposition (ALD) coatings[J]. Advanced Materials Interfaces,2019,6(24):1901455.
[14] ?ZHAO Y,SUN X L. Molecular layer deposition for energy conversion and storage[J]. ACS Energy Letters,2018,3(4):899-914.
[15] ?SUNTOLA T,HYVARINEN J. Atomic layer epitaxy[J]. Annual Review of Materials Science,1985,15(1):177-195.
[16] ?LUO X Y,PIERNAVIEJA-HERMIDA M,LU J,et al. Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition:an effective electrochemical catalyst for Li-O2 battery[J]. Nanotechnology,2015,26(16):164003.
[17] ?LIM B S,RAHTU A,GORDON R G. Atomic layer deposition of transition metals[J]. Nature Materials,2003,2(11):749-754.
[18] ?KIM H,CABRAL C,LAVOIE C,et al. Diffusion barrier properties of transition metal thin films grown by plasma-enhanced atomic-layer deposition[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2002,20(4):1321.
[19] ?CHHOWALLA M,SHIN H S,EDA G,et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry,2013,5(4):263-275.
[20] ?KIM H. Atomic layer deposition of metal and nitride thin films:Current research efforts and applications for semiconductor device processing[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2003,21(6):2231.
[21] ?AALTONEN T,RITALA M,SAJAVAARA T,et al. Atomic layer deposition of platinum thin films[J]. Chemistry of Materials,2003,15(9):1924-1928.
[22] ?KRAYTSBERG A,DREZNER H,AUINAT M,et al. Atomic layer deposition of a particularized protective MgF2Film on a Li-ion battery LiMn1. 5Ni0. 5O4Cathode powder material[J]. ChemNanoMat,2015,1(8):577-585.
[23] ?PARK J S,MANE A U,ELAM J W,et al. Amorphous metal fluoride passivation coatings prepared by atomic layer deposition on LiCoO2 for Li-ion batteries[J]. Chemistry of Materials,2015,27(6):1917-1920.
[24] ?JACKSON D H K,LASKAR M R,F(xiàn)ANG S Y,et al. Optimizing AlF3 atomic layer deposition using trimethylaluminum and TaF5:Application to high voltage Li-ion battery cathodes[J]. Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2016,34(3):031503.
[25] ?WOO J H,TRAVIS J J,GEORGE S M,et al. Utilization of Al2O3Atomic layer deposition for Li ion pathways in solid state Li batteries[J]. Journal of the Electrochemical Society,2015,162(3):A344-A349.
[26] ?LASKAR M R,JACKSON D H K,GUAN Y X,et al. Atomic layer deposition of Al2O3-Ga2O3 alloy coatings for Li[Ni0. 5Mn0. 3Co0. 2]O2 cathode to improve rate performance in Li-ion battery[J]. ACS Applied Materials & Interfaces,2016,8(16):10572-10580.
[27] ?XIE M,SUN X,SUN H T,et al. Stabilizing an amorphous V2O5/carbon nanotube paper electrode with conformal TiO2 coating by atomic layer deposition for lithium ion batteries[J]. Journal of Materials Chemistry A,2016,4(2):537-544.
[28] ?AHMED B,SHAHID M,NAGARAJU D H,et al. Surface passivation of MoO3 nanorods by atomic layer deposition toward high rate durable Li ion battery anodes[J]. ACS Applied Materials & Interfaces,2015,7(24):13154-13163.
[29] ?MENG X B,LIBERA J A,F(xiàn)ISTER T T,et al. Atomic layer deposition of gallium sulfide films using hexakis(dimethylamido)digallium and hydrogen sulfide[J]. Chemistry of Materials,2014,26(2):1029-1039.
[30] ?MENG X B,HE K,SU D,et al. Gallium sulfide-single-walled carbon nanotube composites:high-performance anodes for lithium-ion batteries[J]. Advanced Functional Materials,2014,24(34):5435-5442.
[31] ?KIM S B,SINSERMSUKSAKUL P,HOCK A S,et al. Synthesis of N-heterocyclic stannylene (Sn(II)) and germylene (Ge(II)) and a Sn(II) amidinate and their application as precursors for atomic layer deposition[J]. Chemistry of Materials,2014,26(10):3065-3073.
[32] ?MENG X B,COMSTOCK D J,F(xiàn)ISTER T T,et al. Vapor-phase atomic-controllable growth of amorphous Li2S for high-performance lithium-sulfur batteries[J]. ACS Nano,2014,8(10):10963-10972.
[33] ?TAN L K,LIU B,TENG J H,et al. Atomic layer deposition of a MoS2film[J]. Nanoscale,2014,6(18):10584-10588.
[34] ?JUPPO M,RITALA M,LESKELA? M. Use of 1,1-dimethylhydrazine in the atomic layer deposition of transition metal nitride thin films[J]. Journal of the Electrochemical Society,2000,147(9):3377.
[35] ?RITALA M,KALSI P,RIIHEL? D,et al. Controlled growth of TaN,Ta3N5,and TaOxNy thin films by atomic layer deposition[J]. Chemistry of Materials,1999,11(7):1712-1718.
[36] ?GUAN C,WANG J. Recent development of advanced electrode materials by atomic layer deposition for electrochemical energy storage[J]. Advanced Science,2016,3(10):1500405.
[37] ?WANG D,YANG J,LIU J,et al. Atomic layer deposited coatings to significantly stabilize anodes for Li ion batteries:effects of coating thickness and the size of anode particles[J]. Journal of Materials Chemistry A,2014,2(7):2306-2312.
[38] ?CHENG N C,SHAO Y Y,LIU J,et al. Electrocatalysts by atomic layer deposition for fuel cell applications[J]. Nano Energy,2016,29:220-242.
[39] ?WEN L Y,MI Y,WANG C L,et al. Cost-effective atomic layer deposition synthesis of Pt nanotube arrays:application for high performance supercapacitor[J]. Small,2014,10(15):3162-3168.
[40] ?LEE Y S,SHIN W K,KANNAN A G,et al. Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al2O3 nanoparticles and conductive polymer[J]. ACS Applied Materials & Interfaces,2015,7(25):13944-13951.
[41] ?JUNG Y S,CAVANAGH A S,RILEY L A,et al. Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries[J]. Advanced Materials,2010,22(19):2172-2176.
[42] ?BAI Y,YAN D,YU C,et al. Core-shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries[J]. Journal Of Power Sources,2016,308:75-82.
[43] ?ZHAO J,WANG Y. Atomic layer deposition of epitaxial ZrO2 coating on LiMn2O4 nanoparticles for high-rate lithium ion batteries at elevated temperature[J]. Nano Energy,2013,2(5):882-889.
[44] ?FAN W,XIA Y Y,TJIU W W,et al. Nitrogen-doped graphene hollow nanospheres as novel electrode materials for supercapacitor applications[J]. Journal of Power Sources,2013,243:973-981.
[45] ?PANG M J,LONG G H,JIANG S,et al. Ethanol-assisted solvothermal synthesis of porous nanostructured cobalt oxides (CoO/Co3O4) for high-performance supercapacitors[J]. Chemical Engineering Journal,2015,280:377-384.
[46] ?KO Y N,PARK S B,JUNG K Y,et al. One-pot facile synthesis of ant-cave-structured metal oxide-carbon microballs by continuous process for use as anode materials in Li-ion batteries[J]. Nano Letters,2013,13(11):5462-5466.
[47] ?YANG M,MA J,NIU Z,et al. Synthesis of spheres with complex structures using hollow latex cages as templates[J]. Advanced Functional Materials,2005,15(9):1523-1528.
[48] ?UMESHBABU E,RAJESHKHANNA G,JUSTIN P,et al. Synthesis of mesoporous NiCo2O4-rGO by a solvothermal method for charge storage applications[J]. RSC Advances,2015,5(82):66657-66666.
[49] ?TIAN L C,F(xiàn)U W Y,LI M H,et al. Electrochemical synthesis of wheat-like CdSe array and their photoelectrochemical properties[J]. CrystEngComm,2012,14(13):4490-4495.
[50] ?PANDEY P,PRAKASH R. Electrochemical synthesis of polyindole and its evaluation for rechargeable battery applications[J]. Journal of the Electrochemical Society,1998,145(3):999-1003.
[51] ?DATTA M K,KUMTA P N. In situ electrochemical synthesis of lithiated silicon-carbon based composites anode materials for lithium ion batteries[J]. Journal of Power Sources,2009,194(2):1043-1052.
[52] ?KUWABATA S,KISHIMOTO A,TANAKA T,et al. Electrochemical synthesis of composite films of manganese dioxide and polypyrrole and their properties as an active material in lithium secondary batteries[J]. Journal of the Electrochemical Society,1994,141(1):10-15.
[53] ?HILL L I,PORTAL R,VERBAERE A,et al. One-Step Electrochemical Synthesis of α MnO2 and α? γ MnO2 Compounds for Lithium Batteries[J]. Electrochemical and Solid-State Letters,2001,4(11):A180-A183.
[54] ?NAM D H,HONG K S,LIM S J,et al. Electrochemical synthesis of a three-dimensional porous Sb/Cu2 Sb anode for Na-ion batteries[J]. Journal of Power Sources,2014,247:423-427.
[55] ?FAN Z J,YAN J,WEI T,et al. Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition:high-performance anode materials for lithium ion batteries[J]. ACS Nano,2011,5(4):2787-2794.
[56] ?WEI D C,LIU Y Q,WANG Y,et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Letters,2009,9(5):1752-1758.
[57] ?IMANISHI N,KANAMURA K,TAKEHARA ZI. Synthesis of MoS2 thin film by chemical vapor deposition method and discharge characteristics as a cathode of the lithium secondary battery[J]. Journal of the Electrochemical Society,1992,139(8):2082-2087.
[58] ?WOLF H,PAJKIC Z,GERDES T,et al. Carbon-fiber-silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition[J]. Journal of Power Sources,2009,190(1):157-161.
[59] ?CHO S I,YOON S G. Characterization of LiCoO2 thin film cathodes deposited by liquid-delivery metallorganic chemical vapor deposition for rechargeable lithium batteries[J]. Journal of the Electrochemical Society,2002,149(12):A1584
[60] ?HONG K J,KIM S O. Atomic layer deposition assisted sacrificial template synthesis of mesoporous TiO2 electrode for high performance lithium ion battery anodes[J]. Energy Storage Materials,2016,2:27-34.
[61] ?BAN C,XIE M,SUN X,et al. Atomic layer deposition of amorphous TiO2 on graphene as an anode for Li-ion batteries[J]. Nanotechnology,2013,24(42):424002.
[62] ?NISULA M,KARPPINEN M. Atomic/molecular layer deposition of lithium terephthalate thin films as high rate capability Li-ion battery anodes[J]. Nano Letters,2016,16(2):1276-1281.
[63] ?NANDI D K,SEN U K,CHOUDHURY D,et al. Atomic layer deposited molybdenum nitride thin film:a promising anode material for Li ion batteries[J]. ACS Applied Materials & Interfaces,2014,6(9):6606-6615.
[64] ?NANDI D K,SEN U K,CHOUDHURY D,et al. Atomic layer deposited MoS2 as a carbon and binder free anode in Li-ion battery[J]. Electrochimica Acta,2014,146:706-713. [LinkOut]
[65] ?AHMED B,ANJUM D H,GOGOTSI Y,et al. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes[J]. Nano Energy,2017,34:249-256.
[66] ?ARAVINDAN V,JINESH K B,PRABHAKAR R R,et al. Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries[J]. Nano Energy,2013,2(5):720-725.
[67] ?LU S T,WANG H H,ZHOU J,et al. Atomic layer deposition of ZnO on carbon black as nanostructured anode materials for high-performance lithium-ion batteries[J]. Nanoscale,2017,9(3):1184-1192.
[68] ?WANG L L,GU X L,ZHAO L Y,et al. ZnO@TiO2 heterostructure arrays/carbon cloth by charge redistribution enhances performance in flexible anode for Li ion batteries[J]. Electrochimica Acta,2019,295:107-112.
[69] ?CAO Y Q,WANG S S,LIU C,et al. Atomic layer deposition of ZnO/TiO2 nanolaminates as ultra-long life anode material for lithium-ion batteries[J]. Scientific Reports,2019,9(1):11526.
[70] ?YU M P,WANG A J,WANG Y S,et al. An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition[J]. Nanoscale,2014,6(19):11419-11424.
[71] ?WAN G P,YANG L,SHI S H,et al. Ti2Nb10O29 microspheres coated with ultrathin N-doped carbon layers by atomic layer deposition for enhanced lithium storage[J]. Chemical Communications,2019,55(4):517-520.
[72] ??STRENG E,GANDRUD K B,HU Y,et al. High power nano-structured V2O5 thin film cathodes by atomic layer deposition[J]. Journal of Materials Chemistry A,2014,2(36):15044-15051.
[73] ?ZHAO H L,GAO H X,LI B Q,et al. Atomic layer deposition of V2O5 on nitrogen-doped graphene as an anode for lithium-ion batteries[J]. Materials Letters,2019,252:215-218.
[74] ?LIU J,BANIS M N,SUN Q,et al. Rational design of atomic layer deposited LiFePO4 as a high performance cathode for lithium-ion batteries[J]. Advanced Materials,2014,26(37):6472-6477.
[75] ?FANG X,GE M,RONG J,et al. Ultrathin surface modification by atomic layer deposition on high voltage cathode LiNi0. 5Mn1. 5O4 for lithium ion batteries[J]. Energy Technology,2014,2(2):159-165.
[76] ?LI X F,LIU J,MENG X B,et al. Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition[J]. Journal of Power Sources,2014,247:57-69.
[77] ?JIN Y,YU H,GAO Y,et al. Li4Ti5O12 coated with ultrathin aluminum-doped zinc oxide films as an anode material for lithium-ion batteries[J]. Journal of Power Sources,2019,436:226859.
[78] ?NEUDECK S,MAZILKIN A,REITZ C,et al. Effect of low-temperature Al2O3 ALD coating on Ni-rich layered oxide composite cathode on the long-term cycling performance of lithium-ion batteries[J]. Scientific Reports,2019,9:5328.
[79] ?HY S,CHEN Y H,CHENG H M,et al. Stabilizing nanosized Si anodes with the synergetic usage of atomic layer deposition and electrolyte additives for Li-ion batteries[J]. ACS Applied Materials & Interfaces,2015,7(25):13801-13807.
[80] ?HU Y S,DEMIR-CAKAN R,TITIRICI M M,et al. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries[J]. Angewandte Chemie International Edition,2008,47(9):1645-1649.
[81] ?HE Y,YU X Q,WANG Y H,et al. Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency[J]. Advanced Materials,2011,23(42):4938-4941.
[82] ?XIE M,XIANG S,LIAN J,et al. Atomic layer deposition of V2O5-carbon nanotube cathode with TiO2 protecting layer for lithium ion batteries[R]. Meeting Abstracts,2013:The Electrochemical Society.
[83] ?KONG J Z,REN C,TAI G A,et al. Ultrathin ZnO coating for improved electrochemical performance of LiNi0. 5Co0. 2Mn0. 3O2 cathode material[J]. Journal of Power Sources,2014,266:433-439.
[84] ?KIM J W,KIM D H,OH D Y,et al. Surface chemistry of LiNi0. 5Mn1. 5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries[J]. Journal of Power Sources,2015,274:1254-1262.
[85] ?KANG E,JUNG Y S,CAVANAGH A S,et al. Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries[J]. Advanced Functional Materials,2011,21(13):2430-2438.
[86] ?BOUKHALFA S,EVANOFF K,YUSHIN G. Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes[J]. Energy Environmental Science,2012,5(5):6872-6879.
[87] ?HAN X G,LIU Y,JIA Z,et al. Atomic-layer-deposition oxide nanoglue for sodium ion batteries[J]. Nano Letters,2013,14(1):139-47.
[88] ?CHEON S E,KO K S,CHO J H,et al. Rechargeable lithium sulfur battery I. Structural change of sulfur cathode during discharge and charge[J]. Journal of the Electrochemical Society,2003,150(6):A796-A9.
[89] ?NAZAR L F,CUISINIER M,PANG Q. Lithium-sulfur batteries[J]. MRS Bulletin,2014,39(5):436-442.
[90] ?ZHENG G Y,ZHANG Q F,CHA J J,et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Letters,2013,13(3):1265-1270.
[91] ?ZHOU G M,YIN L C,WANG D W,et al. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries[J]. ACS Nano,2013,7(6):5367-5375.
[92] ?QIU Y C,LI W F,ZHAO W,et al. High-rate,ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene[J]. Nano Letters,2014,14(8):4821-4827.
[93] ?LI B,LI S M,LIU J H,et al. Vertically aligned sulfur-graphene nanowalls on substrates for ultrafast lithium-sulfur batteries[J]. Nano Letters,2015,15(5):3073-3079.
[94] ?ZHOU W D,YU Y C,CHEN H,et al. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries[J]. Journal of the American Chemical Society,2013,135(44):16736-16743.
[95] ?ZHANG C F,WU H B,YUAN C Z,et al. Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries[J]. Angewandte Chemie,2012,124(38):9730-9733.
[96] ?SUN L,LI M Y,JIANG Y,et al. Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries[J]. Nano Letters,2014,14(7):4044-4049.
[97] ?HE G,EVERS S,LIANG X,et al. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes[J]. ACS Nano,2013,7(12):10920-10930.
[98] ?ZHANG Z W,LI Z Q,HAO F B,et al. 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium-sulfur batteries with high rate capability and cycling stability[J]. Advanced Functional Materials,2014,24(17):2500-2509.
[99] ?JUNG D S,HWANG T H,LEE J H,et al. Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium-sulfur battery[J]. Nano Letters,2014,14(8):4418-4425.
[100] XIAO Z,YANG Z,NIE H,et al. Porous carbon nanotubes etched by water steam for high-rate large-capacity lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2014,2(23):8683-8689.
[101] CHOI Y J,JUNG B S,LEE D J,et al. Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell[J]. Physica Scripta,2007,T129:62-65.
[102] LEE K T,BLACK R,YIM T,et al. Surface-initiated growth of thin oxide coatings for Li-sulfur battery cathodes[J]. Advanced Energy Materials,2012,2(12):1490-1496.
[103] SUN F G,WANG J T,LONG D H,et al. A high-rate lithium-sulfur battery assisted by nitrogen-enriched mesoporous carbons decorated with ultrafine La2O3 nanoparticles[J]. Journal of Materials Chemistry A,2013,1(42):13283.
[104] LIU J,YUAN L X,YUAN K,et al. SnO2 as a high-efficiency polysulfide trap in lithium-sulfur batteries[J]. Nanoscale,2016,8(28):13638-13645.
[105] ZHOU G,PEI S,LI L,et al. A graphene-pure sulfur sandwich structure for ultrafast,long life lithium-sulfur batteries[J]. Advanced Materials,2014,26(4):625-631.
[106] PENG H J,HUANG J Q,ZHAO M Q,et al. Nanoarchitectured graphene/CNT@ porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium sulfur batteries[J]. Advanced Functional Materials,2014,24(19):2772-2781.
[107] LI N,ZHENG M,LU H,et al. High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating[J]. Chemical Communications,2012,48(34):4106-4108.
[108] DING B,YUAN C,SHEN L,et al. Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2013,1(4):1096-1101.
[109] ZHANG Q F,WANG Y P,SEH Z W,et al. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries[J]. Nano Letters,2015,15(6):3780-3786.
[110] YU M,MA J,SONG H,et al. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium-sulfur batteries[J]. Energy Environmental Science,2016,9(4):1495-1503.
[111] YU M P,WANG A J,TIAN F Y,et al. Dual-protection of a graphene-sulfur composite by a compact graphene skin and an atomic layer deposited oxide coating for a lithium-sulfur battery[J]. Nanoscale,2015,7(12):5292-5298.
[112] LI X,LIU J,WANG B Q,et al. Nanoscale stabilization of Li-sulfur batteries by atomic layer deposited Al2O3[J]. RSC Advances,2014,4(52):27126-27129.
[113] CHEN Y,LU S,ZHOU J,et al. 3D graphene framework supported Li2S coated with ultra-thin Al2O3 films:binder-free cathodes for high-performance lithium sulfur batteries[J]. Journal of Materials Chemistry A,2017,5(1):102-112.
[114] LUO C,ZHU H L,LUO W,et al. Atomic-layer-deposition functionalized carbonized mesoporous wood fiber for high sulfur loading lithium sulfur batteries[J]. ACS Applied Materials & Interfaces,2017,9(17):14801-14807.
[115] MOR? J J,PULESTON P F,KUNUSCH C,et al. Development and implementation of a supervisor strategy and sliding mode control setup for fuel-cell-based hybrid generation systems[J]. IEEE Transactions on Energy Conversion,2015,30(1):218-225.
[116] JIANG X R,HUANG H,PRINZ F B,et al. Application of Atomic Layer Deposition of Platinum to Solid Oxide Fuel Cells[J]. Chemistry of Materials,2008,20(12):3897-3905.
[117] XIE S F,CHOI S I,LU N,et al. Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction[J]. Nano Letters,2014,14(6):3570-3576.
[118] CHENG N C,BANIS M N,LIU J,et al. Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction[J]. Advanced Materials,2015,27(2):277-281.
[119] QIAO B T,WANG A Q,YANG X F,et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry,2011,3(8):634-641.
[120] SUN S H,ZHANG G X,GAUQUELIN N,et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Scientific Reports,2013,3:1775.
[121] JEONG H J,KIM J W,BAE K,et al. Platinum-ruthenium heterogeneous catalytic anodes prepared by atomic layer deposition for use in direct methanol solid oxide fuel cells[J]. ACS Catalysis,2015,5(3):1914-1921.
[122] YU W,JI S,CHO G Y,et al. Atomic layer deposition of ultrathin blocking layer for low-temperature solid oxide fuel cell on nanoporous substrate[J]. Journal of Vacuum Science & Technology A,2015,33(1):01A145.
[123] KEUTER T,MAUER G,VONDAHLEN F,et al. Atomic-layer-controlled deposition of TEMAZ/O2-ZrO2 oxidation resistance inner surface coatings for solid oxide fuel cells[J]. Surface and Coatings Technology,2016,288:211-220.
[責(zé)任編輯 ? ?田 ? ?豐]