国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

水稻鋅指蛋白基因CRISPR/Cas9突變體的構(gòu)建及突變分析

2020-02-22 07:37易勇鄭瑞楊波欒維江郭嗣斌沙愛(ài)華
關(guān)鍵詞:突變體靶點(diǎn)引物

易勇 鄭瑞 楊波 欒維江 郭嗣斌 沙愛(ài)華

摘要:【目的】通過(guò)CRISPR/Cas9基因編輯技術(shù)對(duì)水稻鋅指蛋白基因(OsC3H54)進(jìn)行基因編輯,篩選鑒定出其突變體植株,為深入研究OsC3H54的生物學(xué)功能提供良好材料,也為水稻鋅指蛋白研究提供參考依據(jù)。【方法】通過(guò)E-CRISP在OsC3H54基因的外顯子上設(shè)計(jì)靶點(diǎn)序列,將靶點(diǎn)序列連接至OsU6SK載體上,再與Cas9一起連接到pCAMBIA1300雙元載體上,獲得CRISPR/Cas9重組雙元載體,通過(guò)農(nóng)桿菌介導(dǎo)將其轉(zhuǎn)入日本晴水稻愈傷組織,利用潮霉素進(jìn)行抗性篩選,獲得突變體植株,并分析其靶點(diǎn)位置的堿基及編碼氨基酸突變情況?!窘Y(jié)果】在OsC3H54基因第2個(gè)外顯子上找到2個(gè)符合靶點(diǎn)設(shè)計(jì)要求的靶點(diǎn),分別為TG1:5'-CCGCCGCGGCTGCCTTTGGATAC-3'和TG2:5'-CCTTCCC CAATGGCGGGGGTGGC-3'。將OsU6SK載體和靶點(diǎn)序列正確連接的重組載體與Cas9一起連接至pCAMBIA1300雙載體上,成功獲得CRISPR/Cas9重組雙元載體(pCAMBIA1300-Cas9-TG1和pCAMBIA1300-Cas9-TG2)。通過(guò)農(nóng)桿菌介導(dǎo)轉(zhuǎn)入日本晴水稻,經(jīng)潮霉素抗性篩選獲得TG1靶點(diǎn)株系和TG2靶點(diǎn)株系,共16株CRISPR/Cas9突變體植株。CRISPR/Cas9突變體植株在靶點(diǎn)序列的突變位點(diǎn)位置附近出現(xiàn)套峰,表明2個(gè)株系的植株均發(fā)生堿基突變,其中Y1、Y2、Y3和Y4突變體植株均為單堿基插入突變,最終導(dǎo)致編碼的氨基酸發(fā)生移碼突變,蛋白翻譯提前終止?!窘Y(jié)論】水稻OsC3H54基因CRISPR/Cas9突變體植株的獲得為進(jìn)一步研究水稻鋅指蛋白生物學(xué)功能提供了良好材料。

關(guān)鍵詞: 水稻;鋅指蛋白;C3H54;CRISPR/Cas9;基因編輯;突變體植株;突變分析

中圖分類號(hào): S511.035.3 ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2020)11-2607-07

CRISPR/Cas9 mutants construction of rice zinc finger protein gene and mutation analysis

YI Yong1, ZHENG Rui2, YANG Bo2, LUAN Wei-jiang2, GUO Si-bin3, SHA Ai-hua1*

(1College of Agriculture,Yangtze University/Hubei Collaborative Innovation Center for Industrialization of Major Grain Crops, Jingzhou, Hubei ?434025, China; 2College of Life Science,Tianjin Normal University, Tianjin ?300387, China;3Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory

of Rice Genetics and Breeding, Nanning ?530007, China)

Abstract:【Objective】The rice zinc finger protein gene(OsC3H54) was genetically edited based on CRISPR/Cas9 gene editing technology, and the mutant plants were screened and identified, which would provide materials for in-depth study of the biological functions of OsC3H54 as well as reference for the research of rice zinc finger protein. 【Method】The target sequence was designed on the exon of rice OsC3H54 gene through E-CRISP, and the target sequence was liga-ted to the OsU6SK vector to obtain the target link vector. Then the target link vector together with Cas9 were integrated to pCAMBIA1300 to obtain the CRISPR/Cas9 recombination binary vector, which was then transformed into Nipponbare rice callus ?with Agrobacterium-mediated method. The positive transformed plants were screened out ? using hygromycin, and the mutated bases at the target site and encoded amino acids were analyzed. 【Result】Two targets were found on the second exon of OsC3H54, which met the target design requirements, named TG1:5'-CCGCCGCGGCTGCCTTTGG ATAC-3' and TG2: 5'-CCTTCCCCAATGGCGGGGGTGGC-3'. The OsU6SK vector and recombinant vector with correct target sequence and the empty Cas9 vector were ligated to the pCAMBIA1300 binary vector, and the CRISPR/Cas9 recombinant binary vector(pCAMBIA1300-Cas9-TG1 and pCAMBIA1300-Cas9-TG2) was successfully obtained. The CRISPR/Cas9 recombinant vectors were transferred to Nipponbare based on Agrobacterium-mediated method with hygromycin resistance for transforms screening. A total of 16 CRISPR/Cas9 mutant lines of TG1 and TG2 target were obtained. A set of peaks near the mutation site of the target sequence in the CRISPR/Cas9 mutant lines were detected, indicating that base mutations happened in two transformed lines. Among them,the Y1,Y2,Y3 and Y4 mutant lines were all single-base insertions mutations that led to premature termination of amino acid traanslation with frameshift mutations. 【Conclusion】The obtained CRISPR/Cas9 mutant plant of OsC3H54 provides good materials for biological functions studying of rice zinc finger protein.

Key words: rice; zinc finger protein; C3H54; CRISPR/Cas9; gene editing; mutant plants; mutation analysis

Foundation item:National Key Research and Development Program of China (2018YFD0301301-5-2); Guangxi Natural Science Foundation (2017GXNSFDA198039); Guangxi Key Laboratory of Rice Genetics and Breeding Open Pro-ject (No.160-380-16-1)

0 引言

【研究意義】水稻(Oryza sativa)是全球主要的糧食作物之一,世界上近一半人口以稻米為主食,其對(duì)我國(guó)農(nóng)業(yè)的可持續(xù)發(fā)展也發(fā)揮著舉足輕重的作用(劉凱等,2019)。鋅指蛋白是一類通過(guò)與Zn2+結(jié)合形成短且穩(wěn)定、能自我折疊成“手指”形狀結(jié)構(gòu)域的蛋白,其結(jié)構(gòu)域由3個(gè)半胱氨酸和1個(gè)組氨酸組成,在植物體內(nèi)主要作為轉(zhuǎn)錄因子對(duì)基因表達(dá)發(fā)揮重要作用(劉丹等,2019)。該蛋白家族擁有眾多成員,主要調(diào)控植物生長(zhǎng)發(fā)育。C3H54是鋅指蛋白家族的成員之一,克隆其編碼基因并構(gòu)建基因編輯突變植株,對(duì)研究鋅指蛋白在水稻生長(zhǎng)發(fā)育過(guò)程中的調(diào)控作用具有重要意義。【前人研究進(jìn)展】鋅指蛋白最早在非洲爪蟾中發(fā)現(xiàn)(Miller et al.,1985)。根據(jù)鋅指結(jié)構(gòu)功能及序列的不同,可將鋅指蛋白分成9種類型:C2H2、C2HC、C2HC5、C3H、C3HC4、C4、C4HC3、C6和C8(Berg and Shi,1996),其中C3H型鋅指蛋白的研究較少(劉小艷等,2015)。目前已有較多關(guān)于水稻鋅指蛋白的研究報(bào)道:OsDOS是第一個(gè)在水稻中發(fā)現(xiàn)的鋅指蛋白基因,其在水稻植株中過(guò)表達(dá)可延緩葉片衰老(Kong et al.,2006);通過(guò)水稻全基因組分析共發(fā)現(xiàn)67個(gè)C3H基因,通過(guò)構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹(shù)可將其分為8個(gè)亞家族(Wang et al.,2008a);水稻OsLIC基因能負(fù)調(diào)控油菜素內(nèi)酯合成,其過(guò)表達(dá)會(huì)影響植株的形態(tài)建成(Wang et al.,2008b);C3H12基因編碼的鋅指蛋白是一種核酸結(jié)合蛋白,可通過(guò)茉莉酸途徑正向調(diào)節(jié)水稻白葉枯病抗性(Deng et al.,2012);水稻OsTZF1基因過(guò)表達(dá)不僅可延緩水稻葉片衰老,還能阻滯水稻種子的萌發(fā)和生長(zhǎng)(Jan et al.,2013);水稻Ehd4基因編碼一種新型鋅指蛋白,可調(diào)控植株光周期,進(jìn)而影響開(kāi)花,可導(dǎo)致長(zhǎng)日照條件下植株不開(kāi)花,短日照條件下植株可提前開(kāi)花(Gao et al.,2013);水稻鋅指蛋白基因OsZFP1在水稻中過(guò)量表達(dá)可提高植株稻瘟病抗性(李賀等,2015);非典型的串聯(lián)鋅指蛋白IIP4不僅能與促進(jìn)水稻次生壁生成的NAC29/NAC31上游調(diào)節(jié)因子相互作用抑制下游調(diào)節(jié)因子,從而抑制次生壁的形成, 還可調(diào)控植株的機(jī)械強(qiáng)度(Zhang et al.,2018a)。此外,目前已有較多其他植物鋅指蛋白的研究報(bào)道:橡膠樹(shù)HbCZF1是一種非典型且具有C-X7-C-X5-C3-HCCCH基序和RNA識(shí)別基序的鋅指蛋白,高度表達(dá)可激活hmg1基因的轉(zhuǎn)錄,參與天然橡膠的生物合成(Guo et al.,2015);擬南芥AtTZF5通過(guò)TZF基序與調(diào)控脫落酸(ABA)調(diào)節(jié)因子相互作用,在種子中高度表達(dá)并參與ABA信號(hào)轉(zhuǎn)導(dǎo)(Bogamuwa and Jang,2016);辣椒CaC3H14基因上調(diào)表達(dá)可增強(qiáng)植株對(duì)病菌的抗性(Qiu et al.,2018);在甘藍(lán)型油菜中C3H型轉(zhuǎn)錄因子BnZFP1與高油酸性狀相關(guān),其過(guò)表達(dá)可使油酸含量提高18.8%(Zhang et al.,2018b);甘薯IbC3H18是一種非串聯(lián)的鋅指蛋白,可作為核酸轉(zhuǎn)錄激活因子,其過(guò)表達(dá)增強(qiáng)甘薯的耐鹽性和抗旱性(Zhang et al.,2019)?!颈狙芯壳腥朦c(diǎn)】至今未見(jiàn)水稻C3H54鋅指蛋白的相關(guān)研究報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】通過(guò)CRISPR/Cas9基因編輯技術(shù)對(duì)水稻C3H54基因(OsC3H54)進(jìn)行基因編輯,獲得其穩(wěn)定遺傳突變體株系,并分析其靶點(diǎn)位置的堿基及編碼的氨基酸突變情況,為深入研究OsC3H54的生物學(xué)功能提供良好材料,也為水稻鋅指蛋白研究提供參考依據(jù)。

1 材料與方法

1. 1 試驗(yàn)材料

供試水稻品種為日本晴,由天津師范大學(xué)生命科學(xué)院提供。主要試劑:Bsa I酶購(gòu)自紐英倫生物技術(shù)(北京)有限公司;質(zhì)粒提取試劑盒購(gòu)自天根生化科技(北京)有限公司,其他生化試劑購(gòu)自武漢漢宇飛揚(yáng)科技有限公司。主要儀器設(shè)備:SYSTEM GelDoc XR+IMAGELA-凝膠成像系統(tǒng)(Bio-Rad,美國(guó))、T100TM Thermal Cycler PCR儀(Bio-Rad,美國(guó))、Centrifuge 5430R離心機(jī)(Eppendorf,德國(guó))和JY600C電泳儀(北京君意東方電泳設(shè)備有限公司)。

1. 2 靶點(diǎn)選擇

在E-CRISP輸入OsC3H54基因的編碼區(qū)序列(CDS),找到含有20個(gè)堿基的靶點(diǎn)序列GN19NGG,其中NGG是識(shí)別靶點(diǎn)序列的原初間隔序列毗鄰基序(Protospacer adjacent motif,PAM),N代表T、G、C或A,靶點(diǎn)序列位置必須設(shè)計(jì)在同一外顯子上。通過(guò)E-CRISP評(píng)估分析靶點(diǎn)序列的打靶效率,從而選出合適的靶點(diǎn)序列。最后,利用NCBI數(shù)據(jù)庫(kù)的BLAST對(duì)靶點(diǎn)進(jìn)行特異性分析。

1. 3 CRISPR/Cas9重組雙元載體構(gòu)建

具體操作:(1)根據(jù)引物互補(bǔ)性,分別利用靶點(diǎn)引物TG1F/TG1R和TG2F/TG2R(表1)通過(guò)引物低溫退火配對(duì)方式獲得靶點(diǎn)序列TG1和TG2的Oligo二聚體。PCR擴(kuò)增程序:95 ℃ 3 min;0.1 ℃/s速率降至22 ℃。(2)用Bsa I酶切OsU6SK載體過(guò)夜,回收載體片段,將其分別與靶點(diǎn)序列TG1和TG2連接,轉(zhuǎn)化大腸桿菌DH5α感受態(tài)細(xì)胞。挑選單菌落,利用引物Y15(表1)和靶點(diǎn)序列下游引物(TG1R或TG2R)分別進(jìn)行菌落PCR鑒定。PCR反應(yīng)體系20.0 μL:10×Buffer 2.0 μL,Y15引物和靶點(diǎn)序列的下游引物各1.0 μL,5 U/μL Taq DNA聚合酶0.2 μL,2.5 mmol/L dNTP 1.5 μL,單克隆菌液1.0 μL,ddH2O補(bǔ)足至20.0 μL。擴(kuò)增程序:94 ℃預(yù)變性4 min;94 ℃ 30 s;55 ℃ 30 s;72 ℃ 30 s,進(jìn)行35個(gè)循環(huán);72 ℃延伸7 min,12 ℃保存。挑選陽(yáng)性單克隆菌株送至生工生物工程(上海)股份有限公司測(cè)序。將OsU6SK載體和靶點(diǎn)序列正確連接的重組載體與Cas9一起連接至pCAMBIA1300雙元載體上,轉(zhuǎn)化大腸桿菌DH5α感受態(tài)細(xì)胞,挑取單菌落,提取其質(zhì)粒進(jìn)行酶切鑒定,確保獲得正確的CRISPR/Cas9重組雙元載體(孔曉聰?shù)龋?019)。

1. 4 突變體植株的構(gòu)建及分子鑒定

將構(gòu)建的重組雙元載體轉(zhuǎn)化農(nóng)桿菌后,通過(guò)農(nóng)桿菌介導(dǎo)法侵染日本晴水稻愈傷組織,置于含潮霉素的培養(yǎng)基上培養(yǎng),篩選出陽(yáng)性愈傷組織,轉(zhuǎn)至分化培養(yǎng)基上培養(yǎng),再轉(zhuǎn)至生根培養(yǎng)基上培養(yǎng),最終獲得突變體植株。將突變體植株種植于試驗(yàn)大田中,正常田間管理,待植株長(zhǎng)大后收集幼嫩葉片,采用CTAB法提取其DNA,用潮霉素標(biāo)記的特異引物Hyg-R和Hyg-F(表1)進(jìn)行PCR鑒定,反應(yīng)體系和擴(kuò)增程序同1.3中的菌落PCR鑒定。

1. 5 突變體植株突變類型分析

根據(jù)OsC3H54基因序列設(shè)計(jì)能特異性檢測(cè)CRISPR/Cas9的引物(AT-F/AT-R),其中上游引物AT-F在靶點(diǎn)序列上游約250 bp處,下游引物AT-R在靶點(diǎn)序列下游約250 bp處(表1)。利用AT-F/AT-R進(jìn)行PCR擴(kuò)增,模板為1.4中提取的突變體植株葉片DNA,反應(yīng)體系同1.3中的菌落PCR鑒定;擴(kuò)增程序略有修改,即退火溫度和時(shí)間改為52 ℃和30 s,其余條件不變。PCR擴(kuò)增產(chǎn)物經(jīng)1%瓊脂糖凝膠電泳驗(yàn)證后送至生工生物工程(上海)股份有限公司進(jìn)行測(cè)序。測(cè)序結(jié)果用DNAMAN 6.0進(jìn)行分析。

2 結(jié)果與分析

2. 1 靶點(diǎn)選擇結(jié)果

由圖1可知,OsC3H54基因含有7個(gè)內(nèi)含子、8個(gè)外顯子。依據(jù)靶點(diǎn)設(shè)計(jì)原則,結(jié)合OsC3H54基因的結(jié)構(gòu)特點(diǎn),在該基因的第2個(gè)外顯子上找到符合要求的2個(gè)靶點(diǎn)。利用E-CRISP評(píng)估這2個(gè)靶點(diǎn)的打靶效率,再利用NCBI數(shù)據(jù)庫(kù)中的BLAST對(duì)靶點(diǎn)特異性進(jìn)行分析,結(jié)果顯示這2個(gè)靶點(diǎn)的打靶效率和特異性均較好,可作為OsC3H54基因的編輯靶點(diǎn),分別為TG1:5'-CCGCCGCGGCTGCCTTTGGATAC-3'和TG2:5'-CCTTCCCCAATGGCGGGGGTGGC-3'。

2. 2 CRISPR/Cas9重組雙元載體構(gòu)建結(jié)果

將靶點(diǎn)序列片段TG1和TG2分別與OsU6SK載體連接,然后轉(zhuǎn)化大腸桿菌DH5α感受態(tài)細(xì)胞,挑取單菌落利用引物Y15(表1)和靶點(diǎn)序列下游引物(TG1R和TG2R)進(jìn)行PCR鑒定,PCR擴(kuò)增產(chǎn)物用1%瓊脂糖凝膠電泳進(jìn)行檢測(cè),成功獲得2個(gè)含有靶點(diǎn)序列的重組載體(OsU6SK-TG1和OsU6SK-TG2),長(zhǎng)度均450 bp(圖2-A)。將測(cè)序正確的重組載體與Cas9一起連接至pCAMBIA1300雙元載體上,并轉(zhuǎn)大腸桿菌DH5α感受態(tài)細(xì)胞,提取其質(zhì)粒進(jìn)行酶切鑒定,酶切產(chǎn)物用1%瓊脂糖凝膠電泳進(jìn)行檢測(cè),結(jié)果(圖2-B)顯示,酶切產(chǎn)物大小分別為8994和5529 bp,與預(yù)期結(jié)果相符,表明pCAMBIA1300雙元載體中已插入含靶點(diǎn)序列的重組載體和Cas9,成功獲得含TG1和TG2靶點(diǎn)序列的CRISPR/Cas9重組雙元載體(pCAMBIA1300-Cas9-TG1和pCAMBIA1300-Cas9-TG2)(圖3)。

2. 3 CRISPR/Cas9突變體植株分子鑒定結(jié)果

將CRISPR/Cas9重組雙元載體轉(zhuǎn)化農(nóng)桿菌,挑取陽(yáng)性菌侵染日本晴水稻愈傷組織,將侵染成功的愈傷組織置于含有潮霉素的培養(yǎng)基上進(jìn)行抗性篩選,經(jīng)分化培養(yǎng)和生根培養(yǎng),最終獲得TG1靶點(diǎn)株系和TG2靶點(diǎn)株系,共16株CRISPR/Cas9突變體植株。利用潮霉素標(biāo)記的特異引物Hyg-R和Hyg-F對(duì)其進(jìn)行PCR鑒定,結(jié)果顯示,這些植株均為陽(yáng)性突變體植株(圖4)。

2. 4 CRISPR/Cas9突變體植株OsC3H54基因堿基突變分析結(jié)果

采用CTAB法提取CRISPR/Cas9突變體植株DNA,以CRISPR/Cas9的引物(AT-F/AT-R)進(jìn)行PCR擴(kuò)增,PCR擴(kuò)增產(chǎn)物測(cè)序結(jié)果顯示,CRISPR/Cas9突變體植株在靶點(diǎn)序列的突變位點(diǎn)位置附近出現(xiàn)套峰(圖5),表明2個(gè)株系的植株均發(fā)生突變。每個(gè)株系各挑2株突變體植株(Y1和Y2,Y3和Y4)用于分析OsC3H54基因堿基序突變情況,結(jié)果表明,Y1、Y2、Y3和Y4均為單堿基插入突變。

2. 5 CRISPR/Cas9突變體植株OsC3H54蛋白氨基酸突變分析結(jié)果

將4個(gè)突變體植株與野生型植株的OsC3H54蛋白氨基酸序列進(jìn)行比對(duì),結(jié)果發(fā)現(xiàn)4個(gè)突變體植株均出現(xiàn)移碼突變,最終導(dǎo)致氨基酸翻譯提前終止(圖6)。以Y2為例,由于PAM附近插入單堿基,導(dǎo)致序列在441 bp處提前產(chǎn)生終止密碼子,致使蛋白翻譯提前終止于第147位氨基酸。

3 討論

鋅指蛋白是一個(gè)龐大的蛋白家族,不同鋅指蛋白行使不同的功能,在植物抗病和非生物脅迫等方面具有重要作用。研究表明,鋅指蛋白不僅可與RNA結(jié)合發(fā)揮作用,還能與其他蛋白質(zhì)結(jié)合發(fā)揮功能。擬南芥中鋅指蛋白可識(shí)別植株體內(nèi)的RNA并與其結(jié)合調(diào)控植物的生長(zhǎng)發(fā)育,其中HUA1是細(xì)胞核中的C3H型鋅指RNA結(jié)合蛋白,在植株生長(zhǎng)發(fā)育過(guò)程中參與調(diào)控花的發(fā)育(Cheng et al.,2003)。鋅指蛋白也可與其他蛋白互作提高植株不同抗性,如棉花鋅指蛋白GhZFP1可與GZIRD21A和GZIPR5結(jié)合,提高轉(zhuǎn)基因煙草的耐鹽性和抗真菌性(Guo et al.,2009)。鋅指蛋白自身結(jié)構(gòu)也能影響植物的生長(zhǎng)發(fā)育,如鋅指蛋白Ⅶ亞家族中的KH結(jié)構(gòu)蛋白KHZ1和KHZ2能延緩擬南芥葉片衰老,調(diào)控植株延遲開(kāi)花(Yan et al.,2017)。

目前,有關(guān)C3H基因的研究發(fā)現(xiàn),水稻OsC3H54基因和OsC3H51基因可能是緊密同源的重復(fù)基因(Wang et al.,2008b);擬南芥C3H基因可對(duì)多種環(huán)境刺激響應(yīng),其中AtC3H54基因在冷脅迫時(shí)下調(diào)表達(dá)(Wang et al.,2008a);擬南芥中過(guò)表達(dá)AtC3H49/AtTZF3和AtC3H20/AtTZF2基因可提高植株對(duì)ABA的敏感性,減少葉片蒸騰,進(jìn)而增強(qiáng)耐旱性,同時(shí)延緩茉莉酸途徑介導(dǎo)的植株衰老過(guò)程(Lee et al.,2012)。C3H54作為鋅指蛋白家族中的重要成員,但有關(guān)其功能研究鮮見(jiàn)報(bào)道。本研究通過(guò)CRISPR/Cas9基因編輯技術(shù)對(duì)OsC3H54基因進(jìn)行基因編輯,獲得其突變體植株,測(cè)序結(jié)果顯示其主要為單堿基插入突變,其中A或T是主要的插入堿基類型,與Zhang等(2014)研究結(jié)果相似。水稻OsC3H54基因CRISPR/Cas9突變體植株的獲得為進(jìn)一步研究OsC3H54基因功能提供了良好材料。

4 結(jié)論

水稻OsC3H54基因CRISPR/Cas9突變體植株的獲得為進(jìn)一步研究水稻鋅指蛋白的生物學(xué)功能提供了良好材料。

參考文獻(xiàn):

孔曉聰,邳瑞雪,石雨鷺,王荃,靳亞軍,梁閃閃,張泗舉,欒維江. 2019. 基于CRISPR/Cas9技術(shù)的水稻OsDUF1475突變體的創(chuàng)建與分析[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào),27(3):17-25. [Kong X C,Pi R X,Shi Y L,Wang Q,Jin Y J,Liang S S,Zhang S J,Luan W J. 2019. Obtainment and characteri-zation of rice(Oryza sativa) OsDUF1475 mutants based on CRISPR/Cas9 technique[J]. Journal of Agricultural Biotechnology,27(3):17-25.]

李賀,韓藝娟,林藝娟,劉麗華,張承康,張連虎,王宗華,魯國(guó)東. 2015. 水稻鋅指蛋白基因OsZFP1的功能分析[J]. 中國(guó)水稻科學(xué),29(2):135-140. [Li H,Han Y J,Lin Y J,Liu L H,Zhang C K,Zhang L H,Wang Z H,Lu G D. 2015. Functional analysis of zinc finger protein gene OsZFP1 in rice[J]. China Rice Science,29(2):135-140.]

劉丹,李然紅,陳鑫,王立鳳. 2019. 狗棗獼猴桃AkSAP蛋白的生物信息學(xué)分析[J]. 河南農(nóng)業(yè)科學(xué),48(12):103-108. [Liu D,Li R H,Chen X,Wang L F. 2019. Bioinformatics analysis of AkSAP protein from Actinidia kolomikta[J]. Journal of Henan Agricultural Sciences,48(12):103-108.]

劉凱,嚴(yán)國(guó)紅,張桂云,孫明法. 2019. 水稻滯綠突變分子遺傳研究進(jìn)展[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),35(2):484-488. [Liu K,Yan G H,Zhang G Y,Sun M F. 2019. Advances in molecular genetics of rice stay green mutation[J]. Jiangsu Journal of Agricultural Sciences,35(2):484-488.]

劉小艷,孫艷俠,王亞男,劉曉楠,劉坤,郗冬梅. 2015. 水稻CCCH型鋅指蛋白亞家族Ⅰ基因的表達(dá)分析[J]. 山東農(nóng)業(yè)科學(xué),(2):7-11. [Liu X Y,Sun Y X,Wang Y N,Liu X N,Liu K,Xi D M. 2015. Expression analysis of CCCH-zinc finger protein subfamily Ⅰ genes in rice[J]. Shandong Agricultural Sciences,(2):7-11.]

Berg J M,Shi Y G. 1996. The galvanization of biology:A growing appreciation for the roles of zinc[J]. Science,271(5252):1081-1085.

Bogamuwa S,Jang J C. 2016. Plant tandem CCCH zinc finger proteins interact with ABA,drought,and stress response regulators in processing-bodies and stress granules[J]. PLoS One,11(3):e0151574.

Cheng Y L,Kato N,Wang W M,Li J J,Chen X M. 2003. Two RNA binding proteins,HEN4 and HUA1,act in the processing of AGAMOUS pre-mRNA in Arabidopsis tha-liana[J]. Developmental Cell,4(1):53-66.

Deng H Q,Liu H B,Li X H,Xiao J H,Wang S P. 2012. A CCCH-type zinc finger nucleic acid-binding protein quantitatively confers resistance against rice bacterial blight disease[J]. Plant Physiology,158(2):876-889.

Gao H,Zheng X M,F(xiàn)ei G L,Chen J,Jin M N,Ren Y L,Wu W X,Zhou K N,Sheng P K,Zhou F,Jiang L,Wang J,Zhang X,Guo X P,Wang J L,Cheng Z J,Wu C Y,Wang H Y,Wan J M. 2013. Ehd4 encodes a novel and oryza-genus-specific regulator of photoperiodic flowering in rice[J]. PLoS Genetics,9(2):e1003281.

Guo D,Yi H Y,Li H L,Liu C,Yang Z P,Peng S Q. 2015. Molecular characterization of HbCZF1,a Hevea brasiliensis CCCH-type zinc finger protein that regulates hmg1[J]. Plant Cell Reports,34(9):1569-1578.

Guo Y H,Yu Y P,Wang D,Wu C A,Yang G D,Huang J G,Zheng C C. 2009. GhZFP1,a novel CCCH-type zinc finger protein from cotton,enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5[J]. New Phytologist,183(1):62-75.

Jan A,Maruyama K,Todaka D,Kidokoro S,Abo M,Yoshimura E,Shinozaki K,Nakashima K,Yamaguchi-Shinozaki K. 2013. OsTZF1,a CCCH-tandem zinc finger protein,confers delayed senescence and stress tolerance in rice by regulating stress-related genes[J]. Plant Physiology,161(3):1202-1216.

Kong Z S,Li M N,Yang W Q,Xu W Y,Xue Y B. 2006. A novel nuclear-localized CCCH-type zinc finger protein,OsDOS,is involved in delaying leaf senescence in rice[J]. Plant Physiology,141(4):1376-1388.

Lee S J,Jung H J,Kang H,Kim S Y. 2012. Arabidopsis zinc finger proteins AtC3H49/AtTZF3 and AtC3H20/AtTZF2 are involved in ABA and JA responses[J]. Plant and Cell Physiology,53(4):673-686.

Miller J,Mclachlan A D,Klug A. 1985. Repetitive zinc-bin-ding domains in the protein transcription factor IIIA from Xenopus oocytes[J]. The EMBO Journal,4(6):1609-1614.

Qiu A L,Lei Y F,Yang S,Wu J,Li J Z,Bao B J,Cai Y T,Wang S,Lin J H,Wang Y Z,Shen L,Cai J S,Guan D Y,He S L. 2018. CaC3H14 encoding a tandem CCCH zinc finger protein is directly targeted by CaWRKY40 and positively regulates the response of pepper to inoculation by Ralstonia solanacearum[J]. Molecular Plant Pathology,19(10):2221-2235.

Wang D,Guo Y H,Wu C A ,Yang G D,Li Y Y,Zheng C C. 2008a. Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice[J]. BMC Genomics,9(1):44.

Wang L,Xu Y Y,Zhang C,Ma Q B,Joo S H,Seong-Ki K,Xu Z H,Chong K. 2008b. OsLIC,a novel CCCH-type zinc finger protein with transcription activation,mediates rice architecture via brassinosteroids signaling[J]. PLoS One,3(10):e3521.

Yan Z Y,Jia J H,Yan X Y,Shi H Y,Han Y Z. 2017. Arabidopsis KHZ1 and KHZ2,two novel non-tandem CCCH zinc-finger and K-homolog domain proteins,have redundant roles in the regulation of flowering and senescence[J]. Plant Molecular Biology,95(6):1-17.

Zhang D M,Xu Z P,Cao S X,Chen K L,Li S C,Liu X L,Gao C X,Zhang B C,Zhou Y H. 2018a. An uncanonical CCCH-tandem zinc-finger protein represses secondary wall synthesis and controls mechanical strength in rice[J]. Molecular Plant,11(1):163-174.

Zhang H Q,Zhang Z Q,Xiong T,Xiong X H,Wu X M,Guan C Y,Xiao G. 2018b. The CCCH-type transcription factor BnZFP1 is a positive regulator to control oleic acid levels through the expression of diacylglycerol O-acyltransferase 1 gene in Brassica napus[J]. Plant Physiology and Biochemistry,132:633-640.

Zhang H,Gao X R,Zhi Y H,Li X,Zhang Q,Niu J B,Wang J,Zhai H,Zhao N,Li J G,Liu Q C,He S Z. 2019. A non-tandem CCCH-type zinc-finger protein,IbC3H18,functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato[J]. New Phytologist,223(4):1918-1936.

Zhang H,Zhang J S,Wei P L,Zhang B T,Gou F,F(xiàn)eng Z Y,Mao Y F,Yang L,Zhang H,Xu N F,Zhu J K. 2014. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J]. Plant Biotechnology Journal,12(6):797-807.

(責(zé)任編輯 陳 燕)

收稿日期:2020-01-20

基金項(xiàng)目:國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0301301-5-2);廣西自然科學(xué)基金項(xiàng)目(2017GXNSFDA198039);廣西水稻遺傳育種重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金項(xiàng)目(160-380-16-1)

作者簡(jiǎn)介:*為通訊作者,沙愛(ài)華(1973-),博士,教授,主要從事植物分子生物學(xué)及作物育種研究工作,E-mail:aihuasha@163.com。易勇(1995-),研究方向?yàn)橹参锓肿佑N,E-mail:yy1111666 @163.com

猜你喜歡
突變體靶點(diǎn)引物
基于網(wǎng)絡(luò)藥理學(xué)探究棘豆止咳散防治慢性阻塞性肺疾病的機(jī)制研究
基于網(wǎng)絡(luò)藥理學(xué)探討清熱活血方抗類風(fēng)濕性關(guān)節(jié)炎的作用機(jī)制
水稻黃葉不育系突變體H08S的表型特征與遺傳分析
有關(guān)PCR擴(kuò)增過(guò)程中的疑慮與剖析
花生半矮化突變體sdm1的表型分析與赤霉素響應(yīng)研究
“PCR技術(shù)原理和應(yīng)用”考點(diǎn)的復(fù)習(xí)建議
基于RPA技術(shù)檢測(cè)向日葵莖潰瘍病菌的方法、RPA引物及試劑盒
西藏砂生槐EST—SSR引物開(kāi)發(fā)及多態(tài)性檢測(cè)
農(nóng)桿菌介導(dǎo)的芒果膠孢炭疽菌遺傳轉(zhuǎn)化及致病性缺陷突變體的篩選
惠安县| 宾川县| 屯留县| 锡林郭勒盟| 辽阳县| 新巴尔虎左旗| 丁青县| 汝阳县| 陇南市| 南和县| 浮山县| 义乌市| 德庆县| 宜州市| 吉隆县| 冀州市| 阿合奇县| 弋阳县| 荆门市| 封丘县| 新郑市| 徐汇区| 伊吾县| 邓州市| 抚宁县| 雷州市| 乌拉特后旗| 棋牌| 浦县| 宽城| 阿荣旗| 连平县| 皮山县| 榆社县| 威海市| 塔城市| 赤峰市| 肥乡县| 大方县| 昭觉县| 全椒县|