劉婷婷 于靚 孟冬青 吳立蓓 劉璐 鄭亦舟 矯強(qiáng) 張建 趙渝
摘? 要: 流式細(xì)胞術(shù)(FCM)是一種新興的快速檢測技術(shù),具有檢測快速、簡便、靈敏的優(yōu)勢,現(xiàn)已廣泛用于食品檢測中。因流式檢測原理要求,流式細(xì)胞術(shù)多用于液體食品檢測中。該文綜述了流式細(xì)胞術(shù)在液體基質(zhì)食品如乳制品、酒類、飲料類中的應(yīng)用。
關(guān)鍵詞: 流式細(xì)胞術(shù)(FCM); 液體食品; 檢測
中圖分類號: Q 93.338? ? 文獻(xiàn)標(biāo)志碼: A? ? 文章編號: 1000-5137(2020)06-0630-07
Abstract: Flow cytometry (FCM) is a new rapid detection technology,which has the advantages of fast,simple and sensitive in detection,therefore has been widely used in food detection.Due to the testing principle of flow detection,F(xiàn)CM is mainly used in detecting for liquid food.This paper reviewed the applications on flow cytometry in liquid matrix foods,such as dairy products,alcohol and beverages.
Key words: flow cytometry(FCM); liquid food; detection
0? 引? 言
流式細(xì)胞術(shù)(FCM)[1]是20世紀(jì)60年代發(fā)展起來的一種細(xì)胞分析技術(shù),具有高通量、高靈敏度、高精確度定量和多參數(shù)檢測的功能特征,能夠快速地定量分析和分選液流系統(tǒng)中單個細(xì)胞或生物微粒[2]。FCM的工作原理是待測液顆粒依次通過流式細(xì)胞儀檢測區(qū),被熒光染色標(biāo)記的細(xì)胞在激光照射下激發(fā)光信號,光信號經(jīng)光電倍增管(PMT)轉(zhuǎn)變?yōu)殡娮有盘枙r,以電子波的形式被計算機(jī)系統(tǒng)接收和分析[3]。FCM最初主要應(yīng)用在醫(yī)學(xué)臨床檢驗上[4],隨著科學(xué)技術(shù)的發(fā)展和流式細(xì)胞儀的完善,F(xiàn)CM開始應(yīng)用于食品檢測[5]。
食品安全問題越來越受到人們的關(guān)注,食品中的微生物含量是評價食品衛(wèi)生的一個重要指標(biāo)[6],目前,對食品中微生物的快速檢測方法有:分子生物學(xué)法[7]、熒光PCR(polymerase vhain teaction)法[8]、免疫磁分離法[9]、酶聯(lián)免疫法[10]、ATP(adenosine triphosphate)生物發(fā)光法[11]、LAMP(loop-mediated isothermal amplification)法[12]等。流式細(xì)胞術(shù)具有檢測快速、簡便、靈敏的優(yōu)勢,在食品檢測領(lǐng)域的應(yīng)用越來越廣泛。流式細(xì)胞術(shù)檢測的樣品需為液態(tài),故在液體基質(zhì)的食品檢測中,應(yīng)用較為廣泛,本文作者就流式細(xì)胞術(shù)在液體基質(zhì)的食品如乳制品、酒類和飲料產(chǎn)品中應(yīng)用作了綜述。
1? 流式細(xì)胞術(shù)在液體基質(zhì)食品中的應(yīng)用
1.1 流式細(xì)胞術(shù)在乳制品中的應(yīng)用
近幾十年來,中國乳制品行業(yè)發(fā)展迅速,隨著市場規(guī)模的擴(kuò)大和消費需求的提升,相對應(yīng)的乳制品檢測手段也持續(xù)發(fā)展以滿足市場需求。對乳制品中的微生物進(jìn)行檢測是為了保證生產(chǎn)企業(yè)產(chǎn)品的質(zhì)量與安全。目前可用FCM檢測的為液體乳類產(chǎn)品。
1.1.1 生乳中菌落總數(shù)的檢測
根據(jù)國家標(biāo)準(zhǔn)GB 19301—2010[13]中規(guī)定:原料乳在進(jìn)行驗收時須遵循感官要求、理化指標(biāo)、微生物限量等指標(biāo),其中微生物限量標(biāo)準(zhǔn)為菌落濃度不超過2×106 CFU?g-1(或CFU?mL-1)。目前我國常用的檢測方法主要是國標(biāo)法(GB 4789.2—2016)[14],平板瓊脂計數(shù)法步驟多、過程較復(fù)雜、周期長。1986年,已有國外研究者應(yīng)用快速檢測技術(shù)——FCM檢測生乳中的單核細(xì)胞增生李斯特菌[5]。近年來,國內(nèi)外研究者開始利用FCM快速檢測生乳中的細(xì)菌。孫芝楊等[15]、楊莉婷等[16]、王寧等[17]分別以牛乳為原料,加入蛋白酶進(jìn)行消化處理,通過離心脫脂和尼龍膜過濾去除牛乳中的大顆粒物質(zhì),再加入熒光染料孵育,最后通過FCM進(jìn)行計數(shù)分析。結(jié)果表明,當(dāng)細(xì)菌濃度分別在1×104~1×107? CFU?mL-1,1×102~1×107 CFU?mL-1,1×104~1×108 CFU?mL-1范圍內(nèi)時,F(xiàn)CM法與國標(biāo)法檢測結(jié)果相關(guān)性良好,且整個檢測過程不超過1 h。HOLM等[18]以農(nóng)場采集的75份牛乳為原料,加入蛋白酶在40 ℃下反應(yīng)后再進(jìn)行離心處理,采用FCM結(jié)合熒光染料對牛乳中的細(xì)菌進(jìn)行計數(shù),結(jié)果表明:當(dāng)細(xì)菌濃度在1×104~1×106 CFU?mL-1范圍內(nèi)時,F(xiàn)CM計數(shù)結(jié)果和標(biāo)準(zhǔn)平板法計數(shù)結(jié)果具有良好的相關(guān)性,檢測時間約為30 min。CASSOLI等[19]以100份生乳為原料,加入蛋白水解酶和熒光染料一起孵育,再進(jìn)行超聲處理以解離團(tuán)塊細(xì)菌,采用流式細(xì)胞術(shù)和標(biāo)準(zhǔn)平板計數(shù)法分別對生乳進(jìn)行細(xì)菌計數(shù),結(jié)果表明:牛乳在冷藏條件下,細(xì)菌濃度在1×104~1×107 CFU?mL-1范圍內(nèi),F(xiàn)CM和標(biāo)準(zhǔn)平板計數(shù)法的計數(shù)結(jié)果可進(jìn)行轉(zhuǎn)換。由于平板計數(shù)法的計數(shù)結(jié)果中不包括受損細(xì)胞或不可培養(yǎng)的細(xì)胞[20],計數(shù)結(jié)果有偏差,存在食品安全隱患,采用FCM法檢測的結(jié)果更加準(zhǔn)確。
1.1.2 發(fā)酵乳中乳酸菌的檢測
傳統(tǒng)發(fā)酵乳飲品是以生牛(羊)乳或乳粉為原料,經(jīng)殺菌和發(fā)酵劑發(fā)酵制成的[21]。發(fā)酵乳具有易消化的蛋白質(zhì)、脂肪、維生素和礦物質(zhì)元素,另有研究發(fā)現(xiàn)發(fā)酵乳具有改善腸道菌群、預(yù)防腸道疾病等保健作用[22],因而越來越受到人們的喜愛。由于發(fā)酵乳產(chǎn)業(yè)發(fā)展迅速,為保證其產(chǎn)品質(zhì)量與食品安全,國家制定了《GB 19302—2010食品安全國家標(biāo)準(zhǔn) 發(fā)酵乳》[23],對發(fā)酵乳中的乳酸菌含量作了規(guī)定,即乳酸菌濃度要大于等于1×106 CFU?mL-1(或CFU?g-1)。國標(biāo)中所采用的檢測方法為MRS(de man,rogosa and sharpe) 瓊脂平板計數(shù)法,其檢測周期較長,因發(fā)酵乳產(chǎn)品保質(zhì)期較短,但市場需求量大,新型興起的快速檢測方法——FCM法非常契合產(chǎn)業(yè)需求。國際標(biāo)準(zhǔn)ISO19344:2015提供了流式細(xì)胞術(shù)用于檢測乳制品的發(fā)酵產(chǎn)品、發(fā)酵菌種和乳酸菌的定量方法。國內(nèi)外對采用FCM檢測發(fā)酵乳中的乳酸菌數(shù)量與活性的研究越來越多,如表1所示。
1.2 FCM在酒類產(chǎn)品中的應(yīng)用
FCM在酒類產(chǎn)品的應(yīng)用主要體現(xiàn)在啤酒和葡萄酒的發(fā)酵生產(chǎn)中。在啤酒發(fā)酵生產(chǎn)中,利用流式細(xì)胞術(shù)監(jiān)測酵母活性情況以及酵母年齡,以便進(jìn)行回收;在葡萄酒發(fā)酵生產(chǎn)中,利用FCM監(jiān)測發(fā)酵微生物活性情況以及監(jiān)測是否產(chǎn)生腐敗酵母,來控制產(chǎn)品質(zhì)量。
1.2.1 啤酒中酵母的檢測
啤酒以麥芽、水為主要原料,加啤酒花,經(jīng)酵母發(fā)酵釀制而成,是含有二氧化碳的、起泡的低酒精度發(fā)酵酒[33],其中酵母對啤酒的發(fā)酵性能和風(fēng)味指標(biāo)具有決定性影響。在啤酒發(fā)酵過程中,酵母的生理特征會發(fā)生變化,因此全面、高效地評價酵母性能,實時監(jiān)測酵母的最佳發(fā)酵能力,對控制啤酒的質(zhì)量十分重要[34]。目前,多數(shù)啤酒產(chǎn)業(yè)采用亞甲基蘭染色法[35]和平板培養(yǎng)法檢測啤酒發(fā)酵中酵母的活性。隨著快速檢測技術(shù)的發(fā)展,國內(nèi)外研究者開始利用FCM來監(jiān)測酵母活性。M?LLER等[36]利用FCM結(jié)合熒光染料FITC/DAPI對啤酒發(fā)酵中酵母的生長情況與生理狀態(tài)進(jìn)行檢測。張巖等[37]利用FCM結(jié)合熒光染料DHR和反1,3-二丁基巴比妥酸次甲基著色劑(OXN),對連續(xù)斜面接種中酵母的單細(xì)胞生理狀況進(jìn)行檢測,檢測到的熒光強(qiáng)度與酵母細(xì)胞的增殖有很密切關(guān)系,可以用來監(jiān)測啤酒發(fā)酵后期的酵母狀態(tài)。羅娜[35]研究了利用FCM與Guava ViaCount Reagent試劑盒中染色劑檢測酵母活性的方法,同時將這一方法應(yīng)用于實際生產(chǎn)中,利用FCM跟蹤了發(fā)酵過程中,不同代數(shù)酵母的發(fā)酵液中酵母的細(xì)胞數(shù)和活性情況。KU?EC等[38]基于選擇性芽疤痕染色和FCM檢測熒光強(qiáng)度,開發(fā)了一種快速評估酵母年齡的方法,可應(yīng)用于啤酒分批發(fā)酵和連續(xù)發(fā)酵過程中酵母的年齡控制。綜上,采用FCM實時監(jiān)測啤酒發(fā)酵過程中酵母的活性和生長情況,對于啤酒發(fā)酵具有實際意義。
1.2.2 葡萄酒中的檢測
葡萄酒是以葡萄或葡萄汁為原料,經(jīng)全部或部分發(fā)酵釀制而成的含有一定酒精度的發(fā)酵酒[39]。對葡萄酒發(fā)酵中不斷變化的酵母和細(xì)菌混合種群進(jìn)行實時監(jiān)測,分析發(fā)酵菌的活性狀態(tài)以及是否產(chǎn)生變質(zhì)酵母,對于葡萄酒品質(zhì)和安全的控制有一定作用。利用FCM與特定染料對葡萄酒酒精發(fā)酵和乳酸發(fā)酵過程中細(xì)胞的生理狀態(tài)進(jìn)行檢測在國外已有研究。SALMA等[40]利用FCM結(jié)合熒光染料BOX/PI,在同時進(jìn)行的酒精-乳酸的葡萄酒發(fā)酵中快速區(qū)分和定量檢測活酵母和乳酸菌種群。SERPAGGI等[41]提出了利用流式細(xì)胞術(shù)結(jié)合熒光原位雜交法定量檢測葡萄酒發(fā)酵中產(chǎn)生的腐敗酵母,有利于防止葡萄酒發(fā)生變質(zhì)。
1.3 流式細(xì)胞術(shù)在飲料產(chǎn)品中的應(yīng)用
1.3.1 飲用水中微生物的檢測
飲用水安全一直是社會熱點話題,對飲用水中的細(xì)菌檢測是非常必要的。在國外,已有使用流式細(xì)胞術(shù)檢測冷卻塔水域中的軍團(tuán)菌的相關(guān)研究[42]。在計數(shù)方面,VAN NEVEL等[43]利用FCM代替異養(yǎng)平板計數(shù)法檢測飲用水中的細(xì)菌總數(shù),可以定量整個細(xì)菌群落,結(jié)果更加準(zhǔn)確。嚴(yán)心濤等[44]建立了基于FCM的高通量定量檢系統(tǒng),實現(xiàn)了對飲用水中細(xì)菌的快速定量檢測。VAN NEVEL等[45]利用FCM對當(dāng)?shù)氐娘嬘盟倬W(wǎng)中細(xì)菌的數(shù)量和生長情況進(jìn)行了檢測,進(jìn)一步分析了飲用水安全,表明FCM適用于對微生物點污染的檢測。綜上,流式細(xì)胞術(shù)可用于對飲用水中微生物計數(shù)和評價飲用水的處理效能,并使得檢測更便捷、省時。
在飲用水處理方面,過濾和消毒是飲用水常規(guī)處理的關(guān)鍵環(huán)節(jié),需要對每個環(huán)節(jié)進(jìn)行細(xì)菌濃度檢測,進(jìn)而實時評估處理效果。HELMI等[46]對3個水廠的飲用水處理進(jìn)行為期4個月的監(jiān)測,分別對砂濾、臭氧處理和活性炭過濾處理后的飲用水進(jìn)行監(jiān)測,利用FCM結(jié)合熒光染料SYBR Green II/PI對不同飲用水處理后的細(xì)胞濃度和細(xì)胞活性進(jìn)行檢測,從而評估處理效果。CHESWICK等[47]研究了FCM在飲用水氯消毒過程中的評估效果,通過采用不同自由氯濃度對飲用水進(jìn)行不同時長的處理,利用FCM SYBR Green I/PI檢測處理后的飲用水中細(xì)菌細(xì)胞膜的完整性來評估氯消毒效果。綜上,利用FCM對飲用水中微生物進(jìn)行計數(shù)以及對飲用水處理環(huán)節(jié)進(jìn)行監(jiān)控,有利于飲用水的安全控制。
1.3.2 果汁中微生物的檢測
果汁在生產(chǎn)過程中被微生物污染之后,會產(chǎn)生混濁、氣泡和不正常的氣味,其通常是由霉菌和酵母菌及極少數(shù)細(xì)菌引起的,因此可通過檢測果汁中的微生物數(shù)量來測定其被污染程度。目前主要的檢測方法是平板計數(shù)法,檢測的周期長達(dá)5 d[48]。在20世紀(jì)90年代已有關(guān)于流式細(xì)胞術(shù)應(yīng)用于飲料中微生物檢測的報告[49]。利用FCM不僅可以檢測果汁中微生物的數(shù)量,還可對其活性進(jìn)行檢測以評價其產(chǎn)品質(zhì)量。劉道亮等[50]研究了利用FCM快速檢測果汁中的霉菌和酵母菌,檢測時間從5 d縮短到 100 min。HE等[51]建立了一種納米FCM與樣品預(yù)處理方案相結(jié)合的無標(biāo)記方法來檢測果汁中的細(xì)菌數(shù)量。ALMEIDA等[52]研究發(fā)現(xiàn):在番石榴、芒果和菠蘿汁中加入薄荷精油,能影響果汁中存在的變質(zhì)酵母的生理活性,可通過FCM結(jié)合熒光染料檢測果汁中的酵母活性情況,判斷薄荷精油的作用。綜上,利用FCM對果汁中的微生物數(shù)量和活性進(jìn)行檢測,有利于果汁的質(zhì)量控制與評價。
2? 結(jié)? 語
FCM的使用與發(fā)展不僅克服了平板計數(shù)法操作復(fù)雜、檢測周期長、無法同時檢測多個樣品的缺點,還可以實時檢測細(xì)胞活性,對于實際生產(chǎn)具有重要意義。當(dāng)然,F(xiàn)CM也存在一定局限性,目前FCM多用于檢測液體基質(zhì)食品,并且在檢測不同微生物時所用到的熒光染料具有特異性,同種染料不能應(yīng)用于所有微生物中。隨著FCM的發(fā)展與完善,熒光染料進(jìn)一步得到開發(fā),F(xiàn)CM有望在其他食品,如生肉中致病菌、調(diào)味品醬油和醋中細(xì)菌的等檢測中得到應(yīng)用。
參考文獻(xiàn):
[1] KAMENTSKY L A,MELAMED M R,DERMAN H.Spectrophotometer:new instrument for ultrarapid cell analysis [J].Science,1965,150(3696):630-631.
[2] 夏天爽.流式細(xì)胞術(shù)在食品微生物檢測領(lǐng)域的研究進(jìn)展 [J].食品安全導(dǎo)刊,2019(34):62-64.
XIA T S.Progress of flow cytometry in the field of food microbiological detection [J].China Food Safety Magazine,2019(34):62-64.
[3] 陳朱波,曹雪濤.流式細(xì)胞術(shù):原理,操作及應(yīng)用 [M].北京:科學(xué)出版社,2014:15-28.
CHEN Z B,CAO X T.Flow Cytometry:Principle,Operation and Application [M].Beijing:Science Press,2014:15-28.
[4] NICOLETTI I,MIGLIORATI G,PAGLIACCI M C,et al.A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry [J].Journal of Immunological Methods,1991,139(2):271-279.
[5] DONNELLY C W,BAIGENT G J.Method for flow cytometric detection of Listeria monocytogenes in milk [J].Applied and Environmental Microbiology,1986,52(4):689-695.
[6] 何方洋,萬宇平,賈芳芳,等.流式細(xì)胞儀在檢測食品中微生物的應(yīng)用研究 [J].山東畜牧獸醫(yī),2016,37(8):82-84.
HE F Y,WANG Y P,JIA F F,et al.Application of flow cytometry in the detection of microorganisms in food [J].Shangdong Journal of Animal Science and Veterinary Medicine,2016,37(8):82-84.
[7] LAIZ?NE L,EGL?TE L,CIBROVSKA A,et al.Detection of Salmonella spp.presence in food and samples from primary steps of food production chain using microbiological and molecular biology methods [J].Environmental and Experimental Biology,2019(1):45-46.
[8] LINACERO R,SANCHIZ A,BALLESTEROS I,et al.Application of real-time PCR for tree nut allergen detection in processed foods [J].Critical Reviews in Food Science and Nutrition,2019,60(7):1-17.
[9] ZHU P,SHELTON D R,LI S,et al.Detection of E.coli O157:H7 by immunomagnetic separation coupled with fluorescence immunoassay [J].Biosensors and Bioelectronics,2011,30(1):337-341.
[10] 肖鋼軍,林兆盛.酶聯(lián)免疫吸附(ELISA)法在食品微生物檢測中的應(yīng)用 [J].食品安全導(dǎo)刊,2016(18):106-107.
XIAO G J,LIN Z S.Application of enzyme-linked immunosorbent assay(ELISA) in the detection of food microorganisms [J].China Food Safety,2016(18):106-107.
[11] LEE J,PARK C,KIM Y,et al.Signal enhancement in ATP bioluminescence to detect bacterial pathogens via heat treatment [J].BioChip Journal,2017,11(4):287-293.
[12] 王歡.可視化LAMP法等溫快速檢測病原菌與恒溫紙質(zhì)微流體芯片構(gòu)建的研究 [D].重慶:第三軍醫(yī)大學(xué),2017.
WANG H.Isothermal and rapid detection of pathogenic bacteria using a visual LAMP technology and the construction of Isothermal paper microfluidic chip [D].Chongqing:Third Military Medical University,2017.
[13] 中華人民共和國衛(wèi)生部.食品安全國家標(biāo)準(zhǔn) 生乳:GB 19301—2010 [S].北京:中國標(biāo)準(zhǔn)出版社,2010.
[14] 國家食品藥品監(jiān)督管理總局,國家衛(wèi)生和計劃生育委員會.食品安全國家標(biāo)準(zhǔn) 食品微生物學(xué)檢驗 菌落總數(shù)測定:GB 4789.2—2016 [S].北京:中國標(biāo)準(zhǔn)出版社,2016.
[15] 孫芝楊,黃闖,李新建,等.流式細(xì)胞法對乳制品中細(xì)菌總數(shù)的快速檢測研究 [J].食品工業(yè).2016,37(11):180-182.
SUN Z Y,HUANG C,LI X J,et al.Rapid determination of total number of bacterial in dairy products by flow cytometry [J].The Food Industry,2016,37(11):180-182.
[16] 楊莉婷,何麗,何海寧,等.流式細(xì)胞術(shù)對生乳中微生物檢測的應(yīng)用研究 [J].廣西師范大學(xué)學(xué)報(自然科學(xué)版),2017,35(2):112-116.
YANG L T,HE L,HE H N,et al.Application of flow cytometry in detection of microorganism in raw milk [J].Journal of Guangxi Normal University(Natural Science),2017,35(2):112-116.
[17] 王寧,劉寧.流式細(xì)胞術(shù)快速檢測生乳中細(xì)菌總數(shù) [J].食品工業(yè)科技,2007,28(9):197-200.
WANG N,LIU N.A flow cytometry method for rapid detection of total bacteria in raw milk [J].Science and Technology of Food Industry,2007,28(9):197-200.
[18] HOLM C,MATHIASEN T,JESPERSEN L.A flow cytometric technique for quantification and differentiation of bacteria in bulk tank milk [J].Journal of Applied Microbiology,2004,97(5):935-941.
[19] CASSOLI L D,LIMA W J,ESGUERRA J C,et al.Do different standard plate counting (IDF/ISSO or AOAC) methods interfere in the conversion of individual bacteria counts to colony forming units in raw milk? [J].Journal of Applied Microbiology,2016,121(4):1052-1058.
[20] 劉新星,霍轉(zhuǎn)轉(zhuǎn),云慧,等.流式細(xì)胞術(shù)在細(xì)菌快速檢測中的應(yīng)用 [J].微生物學(xué)通報,2014(1):161-168.
LIU X X,HUO Z Z,YUN H,et al.Application of flow cytometry in rapid detection of bacteria [J].Microbiology China,2014(1):161-168.
[21] 胡姝敏,趙臻,鞏燕妮.發(fā)酵乳的發(fā)展及創(chuàng)新趨勢 [J].當(dāng)代旅游(下旬刊),2019(6):183-184.
HU S M,ZHAO Z,GONG Y N.Development and innovation trend of fermented milk [J].Contemporary Tourism,2019(6):183-184.
[22] 刁治民,于學(xué)軍.發(fā)酵乳的營養(yǎng)價值及保健作用 [J].中國乳品工業(yè),1998(5):3-5.
DIAO Z M,YU X J.Nutritional value and health care effect of fermented milk [J].China Dairy Industry,1998(5):3-5.
[23] 中華人民共和國衛(wèi)生部.食品安全國家標(biāo)準(zhǔn) 發(fā)酵乳:GB 19302—2010 [S].北京:中國標(biāo)準(zhǔn)出版社,2010.
[24] 熊濤,廖良坤,黃濤,等.植物乳桿菌NCU116菌劑的噴霧干燥制備 [J].食品與發(fā)酵工業(yè),2015,41(8):23-29.
XIONG T,LIAO L K,HUANG T,et al.Application of spray drying on Lactobacillus plantarum NCU116 starter culture [J].Food and Fermentation Industries,2015,41(8):23-29.
[25] 王杰,鄭亦舟,姜凱,等.乳酸菌計數(shù)結(jié)果的比較研究 [J].上海師范大學(xué)學(xué)報(自然科學(xué)版),2018,47(6):713-718.
WANG J,ZHENG Y Z,JIANG K,et al.Comparative study on Lactobacillus count results [J].Journal of Shanghai Normal University(Natural Sciences),2018,47(6):713-718.
[26] 鄭亦舟,王杰,劉洋,等.基于流式細(xì)胞術(shù)的保加利亞乳桿菌活性檢測方法的應(yīng)用研究 [J].食品安全質(zhì)量檢測學(xué)報,2019,10(3):589-592.
ZHENG Y Z,WANG J,LIU Y,et al.Application research of Lactobacillus activity detection method based on flow cytometry [J].Journal of Food Safety and Quality,2019,10(3):589-592.
[27] BUNTHOF C J,BLOEMEN K,BREEUWER P.Flow Cytometric assessment of viability of lactic acid bacteria [J].Applied and Environmental Microbiology,2001,67(5):2326-2335.
[28] 葉雷,陳慶森,閻亞麗,等.流式細(xì)胞術(shù)快速檢測直投式發(fā)酵劑菌體活力 [J].食品科學(xué),2014,35(10):139-144.
YE L,CHEN Q S,YAN Y L,et al.Rapid assessment of bacterial viability by flow cytometry in direct vat set yogurt starter [J].Food Science,2014,35(10):139-144.
[29] BUNTHOF C J,ABEE T.Development of a flow cytometric method to analyze subpopulations of bacteria in probiotic products and dairy starters [J].Applied and Environmental Microbiology,2002,68(6):2934-2942.
[30] HE S,HONG X,HUANG T,et al.Rapid quantification of live/dead lactic acid bacteria in probiotic products using high-sensitivity flow cytometry [J].Methods and Applications in Fluorescence,2017,5(2):24002.
[31] GANDHI A,SHAH N P.Effect of salt on cell viability and membrane integrity of Lactobacillus acidophilus,Lactobacillus casei and Bifidobacterium longum as observed by flow cytometry [J].Food Microbiology,2015,49:197-202.
[32] BENSCH G,R?GER M,WASSERMANN M,et al.Flow cytometric viability assessment of lactic acid bacteria starter cultures produced by fluidized bed drying [J].Applied Microbiology and Biotechnology,2014,98(11):4897-4909.
[33] 國家質(zhì)量監(jiān)督檢驗檢疫總局.啤酒:GB/T 4927—2008 [S].北京:中國標(biāo)準(zhǔn)出版社,2008.
[34] 韓龍.酵母活性之分析與改進(jìn) [J].中外酒業(yè)·啤酒科技,2018(3):54-57.
HAN L.Analysis and improvement of yeast activity [J].Global Alcinfo BeefTech,2018(3):54-57.
[35] 羅娜.流式細(xì)胞儀檢測啤酒酵母活性方法的建立及應(yīng)用研究 [J].中外酒業(yè)·啤酒科技,2019(15):17-23.
LUO N.The estabilishement and appication of Saccharomyces cerevisiae valibility detected by flow cytomerte [J].Global Alcinfo BeerTech,2019(15):17-23.
[36] M?LLER S,HUTTER K J,BLEY T,et al.Dynamics of yeast cell states during proliferation and non proliferation periods in a brewing reactor monitored by multidimensional flow cytometry [J].Bioprocess Engineering,1997,17(5):287-293.
[37] 張巖,孫功偉.檢測高輔料比啤酒連續(xù)轉(zhuǎn)接的酵母細(xì)胞生理研究學(xué) [J].啤酒科技,2008(1):55-58.
ZHANG Y,SUN G W.Studies on the physiology of yeast cells after continuous transfer with high excipient ratio beer [J].Beer Science and Technology,2008(1):55-58.
[38] KU?EC M,BASZCZY?SKI M,LEHNERT R,et al.Flow cytometry for age assessment of a yeast population and its application in beer fermentations [J].Journal of the Institute of Brewing,2009,115(3):253-258.
[39] 國家質(zhì)量監(jiān)督檢驗檢疫總局.葡萄酒:GB/T 15037—2006 [S].北京:中國標(biāo)準(zhǔn)出版社,2006.
[40] SALMA M,ROUSSEAUX S,SEQUEIRA-LE GRAND A,et al.Cytofluorometric detection of wine lactic acid bacteria:application of malolactic fermentation to the monitoring [J].Journal of Industrial Microbiology and Biotechnology,2013,40(1):63-73.
[41] SERPAGGI V,REMIZE F,GRAND A S L,et al.Specific identification and quantification of the spoilage microorganism Brettanomyces in wine by flow cytometry:a useful tool for winemakers [J].Cytometry Part A,2010,77A(6):497-499.
[42] TYNDALL R L,R E H J,MANN R C,et al.Application of flow cytometry to detection and characterization of Legionella spp.[J].Applied and Environmental Microbiology,1985,49(4):852-857.
[43] VAN NEVEL S,KOETZSCH S,PROCTOR C R,et al.Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring [J].Water Research,2017,113:191-206.
[44] 嚴(yán)心濤,王策,裴智果,等.快速定量檢測細(xì)菌的FCM系統(tǒng)研制及性能評估 [J].光學(xué)精密工程,2019,27(6):1245-1254.
YAN X T,WANG C,PEI Z G,et al.Development and performance evaluation of flow cytometry for rapid quantitative detection of bacteria [J].Optics and Precision Engineering,2019,27(6):1245-1254.
[45] VAN NEVEL S,BUYSSCHAERT B,DE GUSSEME B,et al.Flow cytometric examination of bacterial growth in a local drinking water network [J].Water and Environment Journal,2016,30(1/2):167-176.
[46] HELMI K,WATT A,JACOB P,et al.Monitoring of three drinking water treatment plants using flow cytometry [J].Water Supply,2014,14(5):850-856.
[47] CHESWICK R,MOORE G,NOCKER A,et al.Chlorine disinfection of drinking water assessed by flow cytometry:new insights [J].Environmental Technology & Innovation,2020,19:101032.
[48] 國家衛(wèi)生和計劃生育委員會.食品安全國家標(biāo)準(zhǔn) 食品微生物學(xué)檢驗 霉菌和酵母計數(shù):GB 4789.15—2016 [S].北京:中國標(biāo)準(zhǔn)出版社,2016.
[49] LAPLACE-BUILH? C,HAHNE K,HUNGER W,et al.Application of flow cytometry to rapid microbial analysis in food and drinks industries [J].Biology of the Cell,1993,78(1):123-128.
[50] 劉道亮,胡連霞,趙占民,等.流式細(xì)胞技術(shù)快速檢測果汁中的霉菌、酵母菌 [J].食品工業(yè)科技,2011,32(8):387-391.
LIU D L,HU L X,ZHAO Z M,et al.Study on a flow cytometry method in rapid detection of mold and yeast in fruit juice [J].Science and Technology of Food Industry,2011,32(8):387-391.
[51] HE S,HONG X,ZHANG M,et al.Label-free detection of bacteria in fruit juice by nano-flow cytometry [J].Analytical Chemistry,2020,92(3):2393-2400.
[52] ALMEIDA E T D C,DE SOUZA G T,DE SOUSA GUEDES J P,et al.Mentha piperita L.essential oil inactivates spoilage yeasts in fruit juices through the perturbation of different physiological functions in yeast cells [J].Food Microbiology,2019,82:20-29.
(責(zé)任編輯:顧浩然,包震宇)