国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

植物糖基化磷脂酰肌醇錨定蛋白LORELEI家族研究進展

2020-01-16 07:39賈明生張詠雪張恒韓霞侯笑顏戴紹軍
關(guān)鍵詞:花粉管細(xì)胞壁突變體

賈明生 張詠雪 張恒 韓霞 侯笑顏 戴紹軍

摘? 要: 植物L(fēng)ORELEI(LRE)蛋白家族是植物糖基化磷脂酰肌醇錨定蛋白(GPI-AP)亞家族的一種,在擬南芥中有4個成員,分別為LRE,LRE-like GPI-AP 1(LLG1),LLG2和LLG3。這些成員在植物體內(nèi)的表達位置和功能不同。LRE主要在雌配子體的助細(xì)胞、卵細(xì)胞和中央細(xì)胞表達,在助細(xì)胞中表達量最高,另外在受精卵與胚乳中也有部分表達。LRE主要參與高等植物的雙受精作用,介導(dǎo)花粉管接受并調(diào)控胚胎的早期發(fā)育。LLG1在植物各組織器官中都有表達,在營養(yǎng)器官(根和葉)中表達水平最高,主要調(diào)控植物生長發(fā)育(如根與根毛生長)、鹽逆境應(yīng)答,以及免疫應(yīng)答過程。LLG2和LLG3主要在成熟花粉粒和花粉管中表達,調(diào)控花粉管生長與爆裂,釋放精子完成雙受精作用。該文綜述了植物L(fēng)RE家族成員組成、蛋白質(zhì)特征,及其在植物生長發(fā)育與逆境應(yīng)答過程中的作用。

關(guān)鍵詞: 糖基化磷脂酰肌醇(GPI); LORELEI(LRE); LRE-like GPI-AP(LLG); 花粉管; 根; 免疫和鹽應(yīng)答

中圖分類號: Q 946.1? ? 文獻標(biāo)志碼: A? ? 文章編號: 1000-5137(2020)06-0603-11

Abstract: LORELEI(LRE) protein family belongs to a subfamily of glycosylphosphatidylinositol-anchored proteins(GPI-AP) in plants.In Arabidopsis thaliana,four members of LRE family proteins with various expression patterns and functions are found,which are LRE,LRE-like GPI-AP 1(LLG1),LLG2,and LLG3.LRE is mainly expressed in the synergid cell,egg cell,and central cell of the female gametophyte.The highest expression level is detected in the synergid cell.In addition,LRE is also observed in the zygote and endosperm.LRE participates in the process of double fertilization in higher plants by mediating the reception of pollen tube and regulating the early development of embryos.Expression of LLG1 is detected in all of the tissues / organs in plants,and has the highest expression level in vegetative organs,such as roots and leaves.LLG1 plays important role in regulating the plant growth and development(e.g.,root and root hair growth),salinity response,and immune response.LLG2 and LLG3 are expressed in mature pollen grains and pollen tubes.They are involved in regulation of pollen tube growth and burst,and sperm release for double fertilization.In this review,we summarize the components and protein characteristics of LRE family,and highlight the advances on their functions in the processes of plant growth,development,and stress response.

Key words: glycosylphosphatidylinositol(GPI); LORELEI (LRE); LRE-like GPI-AP (LLG); pollen tube; root; immune and salinity response

1? 糖基化磷脂酰肌醇錨定蛋白的發(fā)生及結(jié)構(gòu)

糖基化磷脂酰肌醇錨定蛋白(GPI-APs)是一類非常重要的膜蛋白,廣泛存在于真核生物中,具有高度保守的核心結(jié)構(gòu)域,一般由糖基磷脂酰肌醇(GPI)部分和蛋白部分組成。GPI由脂質(zhì)和多糖組成,脂質(zhì)可以是磷脂酰肌醇或肌醇磷酸神經(jīng)酰胺,多糖部分由保守的核心多糖骨架和可變支鏈構(gòu)成,核心多糖骨架包含1個磷酸乙醇胺、3個甘露糖和1個葡萄糖胺[1]。雖然GPI部分的組分是保守的,但當(dāng)GPI錨定在前體蛋白上后,支鏈的不同修飾導(dǎo)致GPI結(jié)構(gòu)多變[1]。GPI錨定修飾作為一種常見的蛋白質(zhì)翻譯后修飾,將前體蛋白C末端以共價鍵形式與GPI相連[1-2]。被GPI錨定修飾的前體蛋白具有特殊結(jié)構(gòu),包括N端信號肽(SP)和C端保守的GPI錨定位點ω。GPI錨定的生物合成途徑從內(nèi)質(zhì)網(wǎng)胞質(zhì)表面合成氨基葡萄糖磷酸肌醇開始,隨后翻轉(zhuǎn)到內(nèi)質(zhì)網(wǎng)腔側(cè),添加甘露糖,最后末端加入乙醇胺磷酸(圖1(a))。在GPI錨定修飾過程中,GPI轉(zhuǎn)酰胺酶在指定ω位點切割前體蛋白,并識別GPI錨,轉(zhuǎn)移到前體蛋白上(圖1(b))。然后,經(jīng)GPI修飾的蛋白質(zhì)通過膜泡運輸轉(zhuǎn)至高爾基體(圖1(c)),在高爾基體中經(jīng)過進一步修飾后,由獨特的囊泡運輸途徑分泌至細(xì)胞膜外小葉,并定位于富含鞘磷脂和膽固醇的膜微區(qū),調(diào)控細(xì)胞表面活動(圖1(d),1(e))[1,3]。

GPI-APs在調(diào)節(jié)真核生物生長發(fā)育、形態(tài)發(fā)生和疾病免疫等過程中起重要作用。GPI-APs合成、分泌、膜定位,以及信號轉(zhuǎn)導(dǎo)過程中出現(xiàn)缺陷,將導(dǎo)致植物死亡或生長發(fā)育異常[4-7]。在植物GPI-APs合成過程中,磷脂酰肌醇聚糖合酶家族蛋白SETH1和SETH2作為兩個關(guān)鍵作用酶參與GPI合成的第一步,這兩種蛋白的缺失導(dǎo)致花粉管細(xì)胞壁中胼胝質(zhì)異常積累,花粉萌發(fā)率降低,花粉管生長異常[4]。在GPI合成過程中的關(guān)鍵酶是甘露糖基轉(zhuǎn)移酶家族蛋白PEANUT(PNT),擬南芥pnt功能缺失突變體中,細(xì)胞壁纖維素含量減少,果膠、木葡聚糖和胼胝質(zhì)等異常積累,嚴(yán)重影響細(xì)胞壁形成[5]。此外,轉(zhuǎn)酰胺基酶GPI8負(fù)責(zé)將前體蛋白ω位點后的C末端切除,并識別GPI錨,連接到此位點。GPI8基因不同程度的缺失會對植物生長有不同影響,該基因點突變后會影響植物葉片氣孔形成,而T-DNA插入突變體則會影響蛋白的正確定位,引起植物生殖發(fā)育缺陷[6-7]。在植物體內(nèi),GPI-APs在細(xì)胞壁合成、器官形成,以及生殖發(fā)育等過程中都發(fā)揮作用,但其作用的分子機理仍有待研究。

2? LORELEI(LRE)家族蛋白序列特征及進化關(guān)系

擬南芥有248個GPI-APs[8]。根據(jù)其保守結(jié)構(gòu)域,分為COBRA,ENODL和LORELEI共3個亞家族,分別調(diào)節(jié)細(xì)胞壁纖維素生物合成、花粉管接受和雙受精作用[9-11]。擬南芥LORELEI家族有LORELEI,LRE-like GPI-AP 1(LLG1),LLG2和LLG3共4個成員,定位于細(xì)胞質(zhì)膜外表面,作為長春花類受體激酶(Catharanthus roseus receptor kinase 1-like,CrRLK1L)家族的分子伴侶,參與CrRLK1L的轉(zhuǎn)運和胞外信號轉(zhuǎn)導(dǎo)[12]。

擬南芥LRE的氨基酸序列包括N端SP、中央?yún)^(qū)域、構(gòu)象可變區(qū),以及C端GPI錨定結(jié)構(gòu)域,保守的GPI錨定位點ω緊鄰C端GPI錨定區(qū)(圖2)。中央?yún)^(qū)域內(nèi)有8個高度保守的半胱氨酸(Cys),可以形成4對二硫鍵,參與維持蛋白3D結(jié)構(gòu)(圖2)[7,13-14]。在以擬南芥等十字花科(Brassicaceae)植物為代表的雙子葉植物,如水稻(Oryza sativa)、玉米(Zea mays)、小花堿茅(Puccinellia tenuiflora)等單子葉植物,以及石松和苔蘚植物中,LRE成員都高度保守。LRE第5個和第6個Cys之間的12個氨基酸中存在一個高度保守的天冬酰胺-天冬氨酸(Asn-Asp)二肽(圖2),這12個氨基酸形成的結(jié)構(gòu)域?qū)τ贚RE在花粉管接受過程中發(fā)揮作用十分重要[7]。

對擬南芥LRE家族成員的開放閱讀框進行聚類分析表明:LLG1與LLG2/3屬一個分支,但LLG2和LLG3同源性最高,而LLG1與LRE同源關(guān)系較為密切。其蛋白同源性基本反映了成員的生物學(xué)功能(圖3)。LRE和LLG1/2/3密切相關(guān),通過在不同組織器官的差異表達調(diào)控不同的生物學(xué)過程[12,15-17]。

3? LRE介導(dǎo)高等植物花粉管接受

在被子植物中,花粉管中的兩個精細(xì)胞在助細(xì)胞作用下被轉(zhuǎn)運到胚珠中,分別與卵細(xì)胞和中央細(xì)胞融合,完成雙受精作用。在受精之前LRE主要介導(dǎo)花粉管接受過程。LRE在雌配子體的助細(xì)胞、卵細(xì)胞和中央細(xì)胞中高豐度表達,在受精卵和胚乳中也有表達,但不在花粉或花粉管中表達[18]。因此,lre突變體僅在雌配子體中表現(xiàn)出功能缺陷[15,18]。預(yù)測的SP是LRE在助細(xì)胞中表達所必需的,當(dāng)SP被破壞時,錯誤定位的LRE前體蛋白會被降解,直接導(dǎo)致LRE在助細(xì)胞中不能正確定位[7]。保守的GPI錨定位點ω是影響LRE功能的關(guān)鍵位點,最初認(rèn)為Ser-139為LRE中的ω位點[19],但是Ser-139缺失時并不影響其定位;后來發(fā)現(xiàn)Ala-141是LRE隱藏的ω位點,同時缺失Ser-139和Ala-141兩個ω位點,會使蛋白不能進行正確的GPI修飾,導(dǎo)致LRE不能被有效地分泌到細(xì)胞質(zhì)膜中,中斷了LRE向助細(xì)胞運輸?shù)目赡苄訹7,20]。缺失GPI錨定結(jié)構(gòu)域中靠近ω位點的部分序列也會導(dǎo)致相似的結(jié)果[7]。雖然ω位點和蛋白C端部分序列影響其定位,但LRE仍可以誘導(dǎo)花粉管接受,這表明LRE GPI錨定的前端區(qū)域可能并不影響LRE的功能。LRE中第5和第6個Cys之間的12個氨基酸,尤其是高度保守的Asn-Asp二肽結(jié)構(gòu)域,對其功能至關(guān)重要(圖2)。將這12個氨基酸突變成1個亮氨酸(Leu),回補至lre突變體中,發(fā)現(xiàn)其花粉管接受仍有缺陷,說明12個氨基酸的缺失影響LRE功能。同時,將高度保守的Asn-Asp二肽突變成2個丙氨酸(Ala)時,LRE的定位不會改變,但其花粉管接受的功能喪失[7]。這表明LRE功能發(fā)生異常影響花粉管正常接受,雌配子體中花粉管過度生長,直至盤曲,導(dǎo)致雙受精作用失?。▓D4)。在擬南芥雌配子體中,也有其他基因調(diào)控花粉管接受,其突變體與ler表型類似,如Feronia(FER),Nortia(Nta),Scylla(Syl),evan和turan等[15,18,21-23]。LRE可在內(nèi)質(zhì)網(wǎng)中與FER類受體激酶胞外區(qū)的exJM區(qū)直接相互作用,作為伴侶蛋白協(xié)助FER從內(nèi)質(zhì)網(wǎng)合成后經(jīng)高爾基體加工轉(zhuǎn)運至細(xì)胞質(zhì)膜,共同作用于助細(xì)胞和花粉管交界處,并作為FER的共受體感知胞外信號,引起Ca2+變化,激活下游活性氧(ROS)信號通路,調(diào)控花粉管極性生長[7,24-27]。由此可見,F(xiàn)ER發(fā)揮其功能需要依賴于LORELEI家族成員的參與。

4? LRE介導(dǎo)種子早期發(fā)育

被子植物雌配子體不僅調(diào)節(jié)雙受精,還調(diào)控種子發(fā)育。TSUKAMOTO等[18]在篩選育性降低的擬南芥突變體時鑒定到一種突變體,表型為大量胚珠不發(fā)育,僅有很少種子可以萌發(fā)。他們通過TAIL-PCR發(fā)現(xiàn)了LRE的新等位基因,并命名為lre-5。少數(shù)lre-5雌配子體可以成功接受花粉管,但種子萌發(fā)后發(fā)育延遲,這表明LRE參與調(diào)控種子發(fā)育[18]。在lre-5/lre-5突變體的雌蕊中出現(xiàn)兩種類型的雌配子體,一種含有2個或不含有助細(xì)胞,另一種可能是由于花粉管過度生長導(dǎo)致助細(xì)胞不規(guī)則。與野生型相比,lre-5雌配子體中的助細(xì)胞不退化[18]。lre-5/lre-5突變體雌配子體缺陷,僅完成中央細(xì)胞受精,未受精的卵細(xì)胞在授粉后退化,導(dǎo)致種子敗育。在野生型擬南芥雌蕊中,幾乎每個發(fā)育中的種子都有胚和胚乳,而突變體敗育主要是由于胚和/或胚乳發(fā)育異常導(dǎo)致[28-29]。研究發(fā)現(xiàn):自花授粉的lre-5/lre-5雌蕊有兩種發(fā)育中的種子,一種(約90%)含有胚和胚乳,另一種只含有增殖的極核但沒有胚[18]。lre-5/lre-5突變體雌蕊中沒有胚,但當(dāng)中央細(xì)胞受精后,胚乳開始發(fā)育,種子早期發(fā)育被延遲,最終敗育[18]。

5? LLG調(diào)控植物發(fā)育與逆境應(yīng)答

5.1 LLG1調(diào)控根與根毛生長

LLG1在植物各器官中均有表達,在根和葉中表達量最高。LLG1同LRE一樣,也與FER跨膜結(jié)構(gòu)域N末端的胞外近膜區(qū)exJM結(jié)合,將FER從內(nèi)質(zhì)網(wǎng)轉(zhuǎn)移到細(xì)胞質(zhì)膜[27]。雖然LLG1與LRE同源性較高,但是兩者在功能上沒有冗余[18]。LLG1可以幫助FER定位到根部細(xì)胞質(zhì)膜,作為共受體感知細(xì)胞外部信號或配體,調(diào)節(jié)下游信號控制根與根毛生長[27,30]。

llg1突變體早期生長發(fā)育缺陷表型與fer的表型相似,表現(xiàn)為對快速堿化因子1(RALF1)的敏感性降低、表皮細(xì)胞形狀改變,以及根毛生長缺陷等[27]。fer突變體的營養(yǎng)生長[31]、根毛生長[30,32],以及下胚軸伸長都受到抑制[33-34],根毛出現(xiàn)卷曲或異常分枝[27,30]。分別將LLG1和FER回補到llg1突變體和fer突變體中,可以恢復(fù)其野生型表型[27,30]。在llg1突變體中,F(xiàn)ER-GFP會滯留在內(nèi)質(zhì)網(wǎng)和細(xì)胞質(zhì)中,而在llg1突變體中回補LLG1可以減少FER-GFP在細(xì)胞質(zhì)的滯留,恢復(fù)FER的質(zhì)膜定位[27,30]。

llg1與fer-4突變體根中的ROS水平顯著降低[35],導(dǎo)致細(xì)胞壁完整性喪失、細(xì)胞質(zhì)外滲、細(xì)胞塌陷,影響細(xì)胞極性生長[27]。同時,fer突變體與幾種rac/rop突變體表型相似,這表明FER和RAC/ROP具有調(diào)控關(guān)系。LLG1和FER相互作用共同感受RALF1,形成的LLG1-RALF1-FER復(fù)合物可以激活FER,激活后的FER可以與RopGEFs相互作用,促進RAC/ROP轉(zhuǎn)換為與GTP結(jié)合的活化狀態(tài),調(diào)節(jié)NADPH氧化酶(RBOH)產(chǎn)生ROS,調(diào)控根生長(圖5)[27,30]。激活的FER激酶結(jié)構(gòu)域(FERKD)調(diào)控質(zhì)子ATP酶2(AHA2)磷酸化并失活,導(dǎo)致質(zhì)外體中pH值升高,引起細(xì)胞壁硬化,抑制根部細(xì)胞伸長和根毛生長[26,36-37];與之相反,低pH值會導(dǎo)致細(xì)胞因膨脹紊亂而爆裂[38]。RALF-LLG1-FER復(fù)合物“精細(xì)調(diào)控”根部下游ROPGEF-ROP-RBOH通路,誘導(dǎo)ROS的產(chǎn)生,但其分子機制仍有待研究。

5.2 LLG1調(diào)控植物鹽逆境應(yīng)答

高濃度鹽離子會對植物造成滲透脅迫和離子脅迫,導(dǎo)致細(xì)胞壁軟化,細(xì)胞膜穩(wěn)定性降低,嚴(yán)重時引起細(xì)胞死亡[39]。FER的胞外區(qū)含有串聯(lián)的malectin-like domain A(MLDA)和MLDB,兩者可以與細(xì)胞壁多糖相互作用,感知因高鹽引起的細(xì)胞壁軟化。在fer突變體中,由于FER功能缺失,根細(xì)胞在生長恢復(fù)期間會急劇爆裂,導(dǎo)致根部細(xì)胞呈放射狀擴張[40]。LLG1與FER直接相互作用,是FER定位于質(zhì)膜和信號傳導(dǎo)所必需的(圖5)[27]。llg1突變體與fer突變體都具有對離子敏感、對滲透脅迫不敏感,以及細(xì)胞壁完整性喪失的表型。與fer和llg1突變體類似,salinity overly sensitives(sos)突變體對鹽逆境高度敏感,而對滲透脅迫不敏感,但fer和sos突變體在不同離子脅迫下的表型不同。fer突變體對K+敏感,鹽誘導(dǎo)下fer突變體僅在根部延伸區(qū)的細(xì)胞活力喪失;而sos1和sos2突變體根對Na+和Li+表現(xiàn)出超敏感,但對K+不敏感。同時,sos1和sos2突變體在50 mmol?L-1 NaCl脅迫下根生長嚴(yán)重受阻,物質(zhì)的量濃度超過100 mmol?L-1的NaCl才能誘發(fā)類似于fer突變體的缺陷表型,并且sos突變體從根部延伸區(qū)到根尖(除根冠外)出現(xiàn)大范圍細(xì)胞死亡[40]。這表明LLG和FER調(diào)控的鹽應(yīng)答途徑可能與SOS調(diào)控途徑不同。

細(xì)胞壁信號的感知和傳遞對于植物調(diào)節(jié)生長和逆境應(yīng)答至關(guān)重要。細(xì)胞壁富含亮氨酸的重復(fù)延伸蛋白(LRX)具有N端富含亮氨酸的重復(fù)序列(LRR)結(jié)構(gòu)域和C端延伸蛋白結(jié)構(gòu)域[41-42]。LRR結(jié)構(gòu)域識別并結(jié)合RALF22/23配體,而C端高度糖基化的延伸蛋白結(jié)構(gòu)域可能參與細(xì)胞壁成分(果膠質(zhì))的交聯(lián)[43]。擬南芥鹽脅迫條件下,細(xì)胞壁交聯(lián)變化被LRX3/4/5感知,促進RALF22/23的釋放。同時,鹽脅迫誘導(dǎo)SITE-1肽酶(S1P)積累成熟的RALF22。鹽誘導(dǎo)條件下RALF22/23的增加,促進了其與FER的互作,導(dǎo)致FER內(nèi)化[42]。擬南芥llg1突變體、lrx3/4/5三突變體、fer-4突變體,以及RALF22/23的過表達體表現(xiàn)出相似的表型,如生長遲緩和對鹽逆境敏感性增加等[42]。此外,擬南芥FER與G蛋白β亞基(AGB1)相互作用,形成G蛋白偶聯(lián)受體(GPCR),調(diào)節(jié)胞內(nèi)ROS水平,或者通過與ROP11互作調(diào)控胞內(nèi)ABA信號通路,從而調(diào)控根部細(xì)胞鹽逆境應(yīng)答(圖5)[40,42,44]。LLG1通過與FER互作參與對細(xì)胞壁信號的感知及其下游信號轉(zhuǎn)導(dǎo)過程。

5.3 LLG1調(diào)控植物免疫應(yīng)答

植物中的類受體激酶作為質(zhì)膜模式識別受體(PRRs),識別與病原體相關(guān)的分子模式(PAMPs),激活下游免疫應(yīng)答。PRRs一般包含用于配體識別的胞外結(jié)構(gòu)域、跨膜結(jié)構(gòu)域和胞質(zhì)激酶結(jié)構(gòu)域。LLG1作為PRRs的分子伴侶,幫助調(diào)節(jié)其質(zhì)膜定位。

當(dāng)植物受到病原體侵害時,富含亮氨酸重復(fù)序列受體激酶flagellin sensing 2(FLS2)和EF-TU receptor(EFR),迅速與brassinosteroid insensitive1-associated receptor kinase 1(BAK1)形成復(fù)合物,激活下游免疫反應(yīng),調(diào)控防御基因表達,促進水楊酸(SA)等防御激素的積累,提高植株抗病性(圖5)[45]。植物MAPK級聯(lián)信號通路中的enhanced disease resistance 1(EDR1)可以通過調(diào)節(jié)MKK4/5-MAPK3/6通路負(fù)調(diào)控植物免疫(圖5)[46]。llg1-2和llg1-3突變體都對多種病原體表現(xiàn)出敏感性,并抑制edr1抗病性,但llg1-2突變體有明顯的生長缺陷表型,而llg1-3突變體生長發(fā)育正常[14,27]。雙突變體edr1/llg1-2和edr1/llg1-3都顯示出對Golovinomyces chichoracearum的敏感性,llg1-3通過抑制edr1突變體中免疫標(biāo)記基因PR1表達和SA積累,削弱edr1對G.chichoracearum的抗性。在llg1-2和llg1-3突變體中轉(zhuǎn)入LLG1可以恢復(fù)其野生型表型,這表明LLG1在植物免疫中具有重要作用[14]。llg1-2具有與fer相同的生長缺陷表型[27],而llg1-3(LLG1G114R)與野生型表型相似,LLG1仍作為FER的共受體參與其轉(zhuǎn)運及定位,這表明llg1-3僅在免疫功能方面受到影響[14]。

酵母雙雜交和Co-IP實驗證明LLG1與EDR1不互作,這表明LLG1對免疫的調(diào)節(jié)可能與EDR1信號通路無關(guān)。LLG1與FLS2和EFR的互作不受flg22處理和LLG1中G114R點突變的影響,這暗示著LLG1的分子伴侶功能與信號轉(zhuǎn)導(dǎo)功能可能是分開的[14]。此外,LLG1與FLS2和EFR形成的復(fù)合體調(diào)控胞內(nèi)botrytis-induced kinase 1(BIK1)磷酸化,使RbohD直接被磷酸化,促進PAMP誘導(dǎo)的ROS產(chǎn)生,介導(dǎo)下游免疫反應(yīng)。在flg22處理后,llg1-2和llg1-3突變體中BIK1的磷酸化水平降低,ROS積累受到破壞,這表明LLG1在植物先天免疫中發(fā)揮重要作用[47]。

5.4 LLG2/3調(diào)控花粉管頂端生長與爆裂

花粉管的快速生長是被子植物成功受精的關(guān)鍵步驟,該過程受到精細(xì)調(diào)控?;ǚ酃茉诨ㄖ乐猩L需要RLKs,胞質(zhì)Ca2+和ROS等多種信號因子的協(xié)同調(diào)控[48-49]。ANXUR 1/2(ANX1/2)和Buddhas paper seal 1/2(BUPS1/2)是定位于花粉管頂端的RLKs,兩者可以形成受體激酶復(fù)合物,響應(yīng)花粉管分泌的RALF4/19,調(diào)節(jié)花粉管的生長和花粉管細(xì)胞壁的完整性。當(dāng)花粉管頂端到達胚囊附近時,胚珠分泌的RALF34會同RALF4/19競爭性結(jié)合ANX/BUPS受體激酶復(fù)合體,控制花粉管破裂并釋放精細(xì)胞(圖5)[49-52]。LLG2/3參與調(diào)控花粉管的極性生長。在擬南芥llg2/3敲低突變體中,花粉管生長受到阻礙,并在體外生長過程中發(fā)生破裂。這種萌發(fā)后立即破裂的表型與anx1anx2,bups1bups2和ralf4ralf9突變體極其相似[11,30,50,53]。這表明LLG2/3與ANX/BUPS-RALF調(diào)控花粉管生長的信號通路相關(guān)。LLG2/3作為分子伴侶,與ANX1/2和BUPS1/2的exJM區(qū)互作,協(xié)助ANX1/2-BUPS1/2受體激酶的內(nèi)質(zhì)網(wǎng)合成、高爾基體加工、膜泡運輸,以及花粉管頂端質(zhì)膜定位,兩者形成受體-共受體復(fù)合物,共同感受胞外RALF信號[48-49]。LLG2/3-ANX1/2-BUPS1/2復(fù)合體在感受到胞外的RALF4/19后,會與下游GDP-ROP1相互作用,將其激活為GTP-ROP1,進而激活下游花粉特異表達的NADPH氧化酶RbohH/J產(chǎn)生ROS。ROS在花粉管頂端的積累,可以調(diào)節(jié)花粉管生長,防止花粉管提前爆裂[11,54-55]。LLG2/3的表達水平受到抑制會導(dǎo)致花粉管中ROS含量降低(圖5)[52]。

LLG2/3-RNAi干擾株系的花粉管細(xì)胞壁組分改變,甲酯化果膠質(zhì)在花粉管頂端區(qū)域積累,去甲酯化果膠質(zhì)在花粉管亞頂端等積累,花粉管中的胼胝質(zhì)含量降低,這表明LLG2/3參與花粉管生長過程中細(xì)胞壁的形成[11]。此外,RALF4/19可以與LRX互作調(diào)控花粉管生長[56]。RALF4/19-RNAi植株與LLG2/3-RNAi干擾植株的花粉管細(xì)胞壁缺陷型表型相似[56],RALF4的C端區(qū)域與LLG2/3結(jié)合,其N端(包括YISY motif)與LLG2/3微弱互作[49]。這表明LLG2/3通過協(xié)同RALF4/19與LRX相互作用,參與調(diào)控花粉管細(xì)胞壁組分,影響花粉管生長。

6? 結(jié)論與展望

LRE家族是GPI-APs的重要亞家族,作為CrRLK1L(如FER和FLS2)的分子伴侶協(xié)助其轉(zhuǎn)運并正確定位,響應(yīng)胞外信號轉(zhuǎn)導(dǎo),從而參與調(diào)控植物的生長、發(fā)育、繁殖、逆境應(yīng)答,以及免疫等多種生物學(xué)過程[14,27,53,57-58]。人們已對RALF-GPI-AP-CrRLK1L復(fù)合物在植物生長發(fā)育中的功能有了初步認(rèn)識,但對其精細(xì)的分子調(diào)控機制還缺乏深入研究。LLG如何精確感知胞外信號(如ROS水平、不同鹽離子濃度、病原信號分子等),LRE如何根據(jù)外界條件調(diào)整自身構(gòu)象,如何調(diào)節(jié)其與不同配體(如RALFs)結(jié)合,如何招募不同的CrRLKs并激活其下游級聯(lián)信號通路[59],LRE家族成員含有的保守Cys位點如何精細(xì)調(diào)節(jié)其蛋白質(zhì)構(gòu)象[60-61],這些科學(xué)問題尚待研究。進一步利用分子遺傳學(xué)策略并結(jié)合多組學(xué)技術(shù)整合分析LRE的分子調(diào)控機理具有重要意義。

參考文獻:

[1] FUJITA M,KINOSHITA T.Structural remodeling of GPI anchors during biosynthesis and after attachment to proteins [J].Biochimica et Biophysica Acta-Molecular,2010,584(9):1670-1677.

[2] MU?IZ M,RIEZMAN H.Trafficking of glycosylphosphatidylinositol anchored proteins from the endoplasmic reticulum to the cell surface [J].Journal of Lipid Research,2016,57(3):352-360.

[3] ZURZOLO C,SIMONS K.Glycosylphosphatidylinositol-anchored proteins:membrane organization and transport [J].Biochim et Biophys Acta,2016,1858:632-639.

[4] LALANNE E,HONYS D,JOHNSON A,et al.SETH1 and SETH2,two components of the glycosylphosphatidylinositol anchor biosynthetic pathway,are required for pollen germination and tube growth in Arabidopsis [J].Plant Cell,2004,16(1):229-240.

[5] GILLMOR C S,LUKOWITZ W,BRININSTOOL G,et al.Glycosylphosphatidylinositol-anchored proteins are required for cell wall synthesis and morphogenesis in Arabidopsis [J].Plant Cell,2005,17(4):1128-1140.

[6] BUNDY M G,KOSENTKA P Z,WILLET A H,et al.A mutation in the catalytic subunit of the glycosylphosphatidylinositol transamidase disrupts growth,fertility,and stomata formation [J].Plant Physiology,2016,171(2):974-985.

[7] LIU X L,CASTRO C,WANG Y B,et al.The role of LORELEI in pollen tube reception at the interface of the synergid cell and pollen tube requires the modified eight-cysteine motif and the receptor-like kinase FERONIA [J].Plant Cell,2016,28:1035-1052.

[8] BORNER G H,LILLEY K S,STEVENS T J,et al.Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis:a proteomic and genomic analysis [J].Plant Physiology,2003,132(2):568-577.

[9] LIU L F,SHANGGUAN K K,ZHANG B C,et al.Brittle Culm1,a COBRA-like protein,functions in cellulose assembly through binding cellulose microfibrils [J].PLoS Genetics,2013,9:e1003704.

[10] HOU Y N,GUO X Y,CYPRYS P,et al.Maternal ENODLs are required for pollen tube reception in Arabidopsis [J].Current Biology,2016,26:2343-2350.

[11] FENG H Q,LIU C,F(xiàn)U R,et al.LORELEI-LIKE GPI-ANCHORED PROTEINS 2/3 regulate pollen tube growth as chaperones and coreceptors for ANXUR/BUPS receptor kinases in Arabidopsis [J].Molecular Plant,2019,12:1612-1623.

[12] YU S C,GUO Z W,JOHNSON C,et al.Recent progress in synthetic and biological studies of GPI anchors and GPI-anchored proteins [J].Current Opinion in Chemical Biology,2013,17:1006-1013.

[13] JOS?-ESTANYOL M,GOMIS-RUTH F X,PUIGDOMENECH P.The eight-cysteine motif,a versatile structure in plant proteins [J].Plant Physiology and Biochemistry,2004,42:355-365.

[14] SHEN Q J,BOURDAIS G,PAN H R.Arabidopsis Glycosylphosphatidylinositol-anchored protein LLG1 associates with and modulates FLS2 to regulate innate immunity [J].Proceedings of the National Academy of Sciences of the United States of America,2017,114:5749-5754.

[15] CAPRON A,GOURGUES M,NEIVA L S,et al.Maternal control of male-gamete delivery in Arabidopsis involves a putative GPI-anchored protein encoded by the LORELEI gene [J].Plant Cell,2008,20(11):3038-3049.

[16] CHEUNG A Y,LI C,ZOU Y J,et al.Glycosylphosphatidylinositol anchoring:control through modification [J].Plant Physiology,2014,166:748-750.

[17] ZHANG W T,LIU J,ZHANG Y X,et al.A high-quality genome sequence of alkaligrass provides insights into halophyte stress tolerance [J].Science China:Life Sciences,2020,9:1269-1282.

[18] TSUKAMOTO T,QIN Y,HUANG Y,et al.A role for LORELEI,a putative glycosylphosphatidylinositol-anchored protein,in Arabidopsis thaliana double fertilization and early seed development [J].The Plant Journal,2010,62:571-588.

[19] EISENHABER B,WILDANER M,SCHULTZ C J,et al.Glycosylphosphatidylinositol lipid anchoring of plant proteins.Sensitive prediction from sequence-and genome-wide studies for Arabidopsis and rice [J].Plant Physiology,2003,133:1691-1701.

[20] MAO Y,ZHANG Z,WONG B.Use of green fluorescent protein fusions to analyse the N-and C-terminal signal peptides of GPI-anchored cell wall proteins in Candida albicans [J].Molecular Microbiology,2003,50:1617-1628.

[21] ROTMAN N,GOURGUES M,GUITTON A E,et al.A dialogue between the SIRENE pathway in synergids and the fertilization independent seed pathway in the central cell controls male gamete release during double fertilization in Arabidopsis [J].Molecular Plant,2008,1:659-666.

[22] KESSLER S A,SHIMOSATO-ASANO H,KEINATH N F,et al.Conserved molecular components for pollen tube reception and fungal invasion [J].Science,2010,330:968-971.

[23] LINDNER H,KESSLER S A,MULLER L M,et al.TURAN and EVAN mediate pollen tube reception in Arabidopsis synergids through protein glycosylation [J].PLoS Biology,2015,13:e1002139.

[24] DENNINGER P,BLECKMANN A,LAUSSER A,et al.Male-female communication triggers calcium signatures during fertilization in Arabidopsis [J].Nature Communication,2014,5:4645.

[25] DUAN Q H,KITA D,JOHNSON E A,et al.Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis [J].Nature Communication,2014,5:3129.

[26] NGO Q A,VOGLER H,LITUIEV D S,et al.A calcium dialog mediated by the FERONIA signal transduction pathway controls plant sperm delivery [J].Developmental Cell,2014,29:491-500.

[27] LI C,YEH F L,CHEUNG A Y,et al.Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis [J].Elife,2015,4:e06587.

[28] YADEGARI R,DREWS G N.Female gametophyte development [J].Plant Cell,2004,16:S133-S141.

[29] BERGER F,GRINI P E,SCHNITTGER A.Endosperm:an integrator of seed growth and development [J].Current Opinion in Plant Biology,2006,9:664-670.

[30] DUAN Q H,KITA D,LI C,et al.FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development [J].Proceedings of the National Academy of Sciences of the United States of America,2010,107:17821-17826.

[31] KEINATH N F,KIERSZNIOWSKA S,LOREK J,et al.PAMP(pathogen-associated molecular pattern)-induced changes in plasma membrane compartmentalization reveal novel components of plant immunity [J].Journal of Biological Chemistry,2010,285:39140-39149.

[32] HUANG G Q,LI E,GE F R,et al.Arabidopsis RopGEF4 and RopGEF10 are important for FERONIA-mediated developmental but not environmental regulation of root hair growth [J].New Phytologist,2013,200:1089-1101.

[33] GUO H Q,LI L,YE H X,et al.Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana [J].Proceedings of the National Academy of Sciences of the United States of America,2009,106:7648-7653.

[34] DESLAURIERS S D,LARSEN P B.FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in Arabidopsis hypocotyls [J].Molecular Plant,2010,3:626-640.

[35] SWANSON S,GILROY S.ROS in plant development [J].Physiologia Plantarum,2010,138:384-392.

[36] HARUTA M,SABAT G,STECKER K,et al.A peptide hormone and its receptor protein kinase regulate plant cell expansion [J].Science,2014,343:408-411.

[37] XIAO Y,STEGMANN M,HAN Z F,et al.Mechanisms of RALF peptide perception by a heterotypic receptor complex [J].Nature,2019,572:270-274.

[38] MONSHAUSEN G B,BIBIKOVA T N,MESSERI M A,et al.Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs [J].Proceedings of the National Academy of Sciences of the United States of America,2007,104:20996-21001.

[39] ZHU J K.Salt and drought stress signal transduction in plants [J].Annual Review of Plant Biology,2002,53:247-273.

[40] FENG W,KITA D,PEAYCELLE A,et al.The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling [J].Current Biology,2018,28:666-675.

[41] BORASSI C,SEDE A R,MECCHIA M A,et al.An update on cell surface proteins containing extensin-motifs [J].Journal of Experimental Botany,2016,67:477-487.

[42] ZHAO C Z,ZAYED O,YU Z P,et al.Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis [J].Proceedings of the National Academy of Sciences of the United States of America,2018,115:13123-13128.

[43] CANNON M C,TERNEUS K,HALL Q,et al.Self-assembly of the plant cell wall requires an extensin scaffold [J].Proceedings of the National Academy of Sciences of the United States of America,2008,105:2226-2231.

[44] CHEN J,YU F,LIU Y,et al.FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis [J].Proceedings of the National Academy of Sciences of the United States of America,2016,113:5519-5527.

[45] SUN Y D,LI L,MACHO A P,et al.Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex [J].Science,2013,342:624-628.

[46] FRYE C A,TANG D,INNES R W.et al.Negative regulation of defense responses in plants by a conserved MAPKK kinase [J].Proceedings of the National Academy of Sciences of the United States of America,2001,98:373-378.

[47] SHI H,SHEN Q J,QI Y P,et al.BR-SIGNALING KINASE1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in Arabidopsis [J].Plant Cell,2013,25:1143-1157.

[48] ZOU Y,AGGARWAL M,ZHENG W G,et al.Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil [J].AoB Plants,2011,201(8):plr017.

[49] GE Z X,CHEUNG A Y,QU L J.Pollen tube integrity regulation in flowering plants:insights from molecular assemblies on the pollen tube surface [J].New Phytologist,2019,222:687-693.

[50] GE Z X,BERGONCI T,ZHAO Y L,et al.Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling [J].Science,2017,358:1596-1600.

[51] FRANCK C M,WESTERMANN J,BOISSON-DERNIER A.Plant malectin-like receptor kinases:from cell wall integrity to immunity and beyond [J].Annual Review of Plant Biology,2018,69:301-328.

[52] LI H J,YANG W C.Ligands switch model for pollen-tube integrity and burst [J].Trends in Plant Science,2018,23:369-372.

[53] ZHU L,CHU L C,LIANG Y,et al.The Arabidopsis CrRLK1L protein kinases BUPS1 and BUPS2 are required for normal growth of pollen tubes in the pistil [J].The Plant Journal,2018,95(3):474-486.

[54] KAYA H,NAKAJIMA R,IWANO M,et al.Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth [J].Plant Cell,2014,26:1069-1080.

[55] MANGANO S,JUAREZ S P D,ESTEVEZ J M.Ros regulation of polar-growth in plant cells [J].Plant Physiology,2016,171:1593-1605.

[56] MECCHIA M A,SANTOS-FERNANDEZ G,DUSS N N,et al.RALF4/19 peptides interact with LRX protein to control pollen tube growth in Arabidopsis [J].Science,2017,358:1600-1603.

[57] MIYAZAKI S,MURATA T,SAKURAI-OZATO N,et al.ANXUR1 and ANXUR2,sister genes to FERONIA/SIRENE,are male factors for coordinated fertilization [J].Current Biology,2009,19(15):1327-1331.

[58] STEGMANN M,MONAGHAN J,SMAKOWSKA-LUZAN E,et al.The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling [J].Science,2017,355:287-289.

[59] XU G Y,CHEN W J,SONG L M,et al.FERONIA phosphorylates E3 ubiquitin ligase ATL6 to modulate the stability of 14-3-3 proteins in response to the carbon/nitrogen ratio [J].Journal of Experimental Botany,2019,70:6375-6388.

[60] DUAN Q H,LIU M C J,KITA D,et al.FERONIA controls pectin-and nitric oxide-mediated male-female interaction [J].Nature,2020,579(7800):561-566.

[61] YU J J,LI Y,QIN Z,et al.Plant chloroplast stress response:insights from thiol redox proteomics [J].Antioxidants and Redox Signaling,2020,33(1):35-57.

(責(zé)任編輯:顧浩然,郁慧)

猜你喜歡
花粉管細(xì)胞壁突變體
Nadorcott 柑桔無核化處理對組培花粉管生長的影響
細(xì)胞質(zhì)膜AHAs維持花粉管的生長和受精(2020.5.20 Plant Biotechnology Journal)
藍豬耳花粉管在雌蕊生長途徑中鈣的分布特征
紅花醇提物特異性抑制釀酒酵母細(xì)胞壁合成研究
茄科尖孢鐮刀菌3 個?;图?xì)胞壁降解酶的比較
CLIC1及其點突變體與Sedlin蛋白的共定位研究
重金屬對梨花粉萌發(fā)及生長有影響
擬南芥干旱敏感突變體篩選及其干旱脅迫響應(yīng)機制探究
SHP2不同突變體對乳腺癌細(xì)胞遷移和侵襲能力的影響
Survivin D53A突變體對宮頸癌細(xì)胞增殖和凋亡的影響
安义县| 秦安县| 保定市| 阳原县| 东乡族自治县| 抚宁县| 资阳市| 宣武区| 灵璧县| 阿坝县| 巴彦淖尔市| 长治市| 珲春市| 新密市| 会理县| 彩票| 林甸县| 成都市| 武威市| 桑日县| 彭阳县| 汕头市| 安福县| 舟山市| 贵溪市| 汤原县| 丰城市| 连云港市| 霍林郭勒市| 娄烦县| 扶绥县| 汽车| 巢湖市| 思南县| 黄浦区| 邓州市| 简阳市| 双柏县| 罗甸县| 陇南市| 临泽县|