国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

高原環(huán)境條件下柴油機(jī)增壓與噴油參數(shù)協(xié)同優(yōu)化

2019-11-11 06:55:48焦宇飛劉瑞林張眾杰周廣猛楊春浩馬家明
關(guān)鍵詞:噴油量增壓器噴油

焦宇飛,劉瑞林,張眾杰,周廣猛,楊春浩,馬家明

高原環(huán)境條件下柴油機(jī)增壓與噴油參數(shù)協(xié)同優(yōu)化

焦宇飛1,劉瑞林2※,張眾杰1,周廣猛2,楊春浩3,馬家明1

(1. 陸軍軍事交通學(xué)院,學(xué)員五大隊(duì),天津 300161;2. 陸軍軍事交通學(xué)院,軍用車(chē)輛工程系,天津 300161;3. 海軍工程大學(xué),動(dòng)力工程學(xué)院,湖北 武漢 430033)

增壓與噴油是影響柴油機(jī)高海拔性能最直接的因素。為了優(yōu)化柴油機(jī)不同海拔條件下增壓與噴油系統(tǒng)協(xié)同控制策略,建立了二級(jí)可變截面增壓柴油機(jī)GT-Power仿真模型,計(jì)算得到了柴油機(jī)運(yùn)行各工況數(shù)據(jù)。將神經(jīng)網(wǎng)絡(luò)與仿真數(shù)據(jù)相結(jié)合,以動(dòng)力性為優(yōu)化目標(biāo),得到不同海拔條件下增壓與噴油系統(tǒng)協(xié)同優(yōu)化規(guī)律。研究結(jié)果表明:相比于原機(jī),噴油參數(shù)經(jīng)過(guò)優(yōu)化后,最佳循環(huán)噴油量增加,增加量呈現(xiàn)出自最大轉(zhuǎn)矩轉(zhuǎn)速點(diǎn)向兩側(cè)逐漸增大的趨勢(shì)。最佳噴油提前角,在2 500 和5 500 m低轉(zhuǎn)速下平均分別增加了1和1.5 ℃A,在中高轉(zhuǎn)速下,平均分別減小了25.2%和17.5%。相比于原機(jī),最佳可變截面的渦輪增壓器(variable geometry turbocharged,VGT)葉片開(kāi)度增大,但增大趨勢(shì)在不同海拔略有不同,0 m海拔時(shí),增加幅度隨轉(zhuǎn)速增加而增大,5500 m低轉(zhuǎn)速時(shí),開(kāi)度不變,中高轉(zhuǎn)速時(shí),VGT開(kāi)度增加幅度隨轉(zhuǎn)速增加呈現(xiàn)先增大后減小。增壓與噴油參數(shù)協(xié)同優(yōu)化后,0 m海拔時(shí),VGT葉片開(kāi)度和噴油量增大,噴油提前角減小,5 500 m海拔時(shí),低轉(zhuǎn)速下VGT葉片開(kāi)度不變,循環(huán)噴油量和噴油提前角增大,中高轉(zhuǎn)速下VGT葉片開(kāi)度和循環(huán)噴油量增大,噴油提前角減小。

柴油機(jī);優(yōu)化;高海拔;二級(jí)可調(diào)增壓系統(tǒng);噴油參數(shù)

0 引 言

高原條件下,受大氣壓力與溫度影響,空氣密度明顯降低,柴油機(jī)在高原運(yùn)行時(shí),油與氣失配使得柴油機(jī)燃燒惡化,導(dǎo)致柴油機(jī)動(dòng)力、經(jīng)濟(jì)性下降、爆壓超限、渦輪增壓器超溫、超速等一系列問(wèn)題[1-5]。

改善增壓與噴油系統(tǒng)是解決上述問(wèn)題的有效途徑[6-7]。對(duì)于可變截面增壓柴油機(jī),進(jìn)氣主要通過(guò)調(diào)節(jié)增壓系統(tǒng)的可變幾何截面增壓(variable geometry turbocharged,VGT)葉片開(kāi)度實(shí)現(xiàn),噴油主要依靠改變噴油參數(shù)來(lái)實(shí)現(xiàn)。王利民等[8]提出了基于進(jìn)氣增壓壓力和位置開(kāi)度的VGT多級(jí)閉環(huán)控制算法,實(shí)現(xiàn)了柴油機(jī)全工況增壓壓力的閉環(huán)控制。唐蛟等[9]提出了廢氣再循環(huán)系統(tǒng)(exhaust gas recirculation,EGR)與VGT解耦控制策略,縮短了增壓壓力和進(jìn)氣質(zhì)量流量的上升時(shí)間。朱振夏[10]根據(jù)供油參數(shù)影響規(guī)律,提出了“邊界適應(yīng)度歸零”的懲罰參數(shù)取值方法,通過(guò)優(yōu)化使得柴油機(jī)4 500 m標(biāo)定點(diǎn)功率相對(duì)原機(jī)提升了14.7%,燃油消耗率降低了9.6%。

變海拔條件下,單級(jí)增壓和調(diào)節(jié)能力比較有限,難以滿(mǎn)足柴油機(jī)不同海拔、變工況需求的狀況[11],近些年來(lái)可調(diào)二級(jí)增壓系統(tǒng)受到越來(lái)越多的關(guān)注[12-14]。吉林大學(xué)的騰鵬坤[15]研究了噴油和供氣策略對(duì)二級(jí)增壓柴油機(jī)瞬變性能的影響,該校的袁興[16]提出了復(fù)合EGR控制策略對(duì)二級(jí)增壓柴油機(jī)瞬變性能的影響,通過(guò)對(duì)控制策略?xún)?yōu)化有效改善了柴油機(jī)排放特性。軍事交通學(xué)院的董素榮等[11]研究了不同海拔條件二級(jí)增壓器與柴油機(jī)的匹配特性,得到了VGT開(kāi)度對(duì)二級(jí)增壓柴油機(jī)高海拔燃燒特性的影響。北京理工大學(xué)李長(zhǎng)江[17]借助于GT-Power建立了可調(diào)二級(jí)增壓系統(tǒng)模型,開(kāi)展了二級(jí)增壓器渦輪旁通流量率隊(duì)增壓系統(tǒng)的影響以及二級(jí)增壓器高原條件下穩(wěn)態(tài)與瞬態(tài)調(diào)節(jié)方法。但以上研究偏向于對(duì)二級(jí)增壓器特性的研究,而柴油機(jī)性能受?chē)娪团c進(jìn)氣共同影響,單獨(dú)只研究二級(jí)增壓器對(duì)柴油機(jī)燃燒效率提升較為有限,對(duì)增壓與噴油參數(shù)協(xié)同控制對(duì)充分發(fā)揮二級(jí)可調(diào)增壓系統(tǒng)潛力,有效提升柴油機(jī)高海拔動(dòng)力性有著重要意義。但針對(duì)不同海拔條件下,二級(jí)可調(diào)增壓與噴油參數(shù)協(xié)同優(yōu)化國(guó)內(nèi)外還鮮有報(bào)道。

據(jù)此,本文開(kāi)展了相關(guān)研究,利用GT-Power建立柴油機(jī)仿真模型并通過(guò)試驗(yàn)方法進(jìn)行驗(yàn)證。借助仿真模型計(jì)算不同海拔工況點(diǎn),篩選出具有代表性的點(diǎn)進(jìn)行神經(jīng)網(wǎng)絡(luò)的訓(xùn)練,得到了增壓與噴油參數(shù)優(yōu)化規(guī)律,提出了增壓與噴油參數(shù)協(xié)同優(yōu)化策略。

本文的研究為優(yōu)化柴油機(jī)高海拔燃燒效率,全面提升柴油機(jī)高海拔性能提供技術(shù)支撐。

1 模型的建立與驗(yàn)證

試驗(yàn)采用一臺(tái)6缸高壓共軌增壓中冷柴油機(jī),主要技術(shù)參數(shù)如表1所示。

表1 柴油機(jī)主要技術(shù)參數(shù)

海拔模擬通過(guò)內(nèi)燃機(jī)高原環(huán)境模擬試驗(yàn)臺(tái)實(shí)現(xiàn),該試驗(yàn)臺(tái)通過(guò)進(jìn)氣節(jié)流和排氣抽真空的方式能夠模擬0~6 000 m海拔的大氣壓力,控制精度在±5%。試驗(yàn)設(shè)備主要包含CW440D電渦流測(cè)功機(jī)、進(jìn)排氣壓力控制系統(tǒng)、AVL670燃燒分析儀、上海同圓CMFD瞬態(tài)油耗儀、上海同圓LQY600冷卻液恒溫系統(tǒng)、數(shù)據(jù)采集系統(tǒng)等,發(fā)動(dòng)機(jī)臺(tái)架詳細(xì)布置如圖1所示。

1.二級(jí)增壓控制系統(tǒng) 2.進(jìn)排氣壓力控制系統(tǒng) 3.發(fā)動(dòng)機(jī)控制系統(tǒng) 4.數(shù)據(jù)采集系統(tǒng) 5.測(cè)功機(jī) 6.發(fā)動(dòng)機(jī) 7.瞬態(tài)油耗儀 8.中冷器 9.高壓級(jí)渦輪 10.高壓級(jí)壓氣機(jī) 11.中冷器 12.低壓級(jí)渦輪 13.低壓級(jí)壓氣機(jī) 14.換熱器 15.排氣穩(wěn)壓箱 16.進(jìn)氣穩(wěn)壓箱 17.真空泵

根據(jù)內(nèi)燃機(jī)實(shí)際結(jié)構(gòu),利用GT-Power建立了如圖2所示的二級(jí)可調(diào)增壓柴油機(jī)工作過(guò)程模型。該二級(jí)可調(diào)增壓系統(tǒng)以普通廢氣渦輪增壓器為低壓級(jí),以VGT為高壓級(jí),兩級(jí)增壓器以串聯(lián)的形式相連。VGT葉片開(kāi)度定義為:當(dāng)前VGT葉片開(kāi)度對(duì)應(yīng)噴嘴環(huán)流通面積與最大VGT葉片開(kāi)度對(duì)應(yīng)的噴嘴環(huán)流通面積之比。燃燒模型采用GT-Power中的油滴蒸發(fā)模型進(jìn)行燃燒過(guò)程模擬[18],傳熱模型直接采用量綱分析得到的半經(jīng)驗(yàn)的Woschni傳熱模型[19],渦輪增壓器模型主要根據(jù)實(shí)際渦輪機(jī)運(yùn)行的速度和效率特性以及壓氣機(jī)運(yùn)行特性進(jìn)行設(shè)置。在噴油過(guò)程中的噴油定時(shí)和循環(huán)噴油量則根據(jù)實(shí)際工況直接進(jìn)行設(shè)置。

1.噴油器 2.氣缸 3.高壓級(jí)壓氣機(jī) 4.低壓級(jí)壓氣機(jī) 5.高壓渦輪機(jī) 6.低壓級(jí)渦輪機(jī) 7.曲軸箱

在仿真模型的驗(yàn)證中,為了充分驗(yàn)證模型的準(zhǔn)確性,選取具有典型的海拔與工況點(diǎn)進(jìn)行驗(yàn)證,本文選取0與3 500 m為驗(yàn)證海拔,選取最大轉(zhuǎn)矩轉(zhuǎn)速點(diǎn)與額定功率點(diǎn)全負(fù)荷和部分負(fù)荷工況點(diǎn)作為驗(yàn)證工況。圖3為各工況點(diǎn)試驗(yàn)與仿真結(jié)果的驗(yàn)證結(jié)果。由圖可知,各海拔轉(zhuǎn)速下,柴油機(jī)缸壓與放熱率的仿真值與試驗(yàn)值能夠較好地吻合,誤差在5%以?xún)?nèi),可以用于高原柴油機(jī)性能仿真計(jì)算。

a. 部分負(fù)荷工況

a. Partial load condition

b. 全負(fù)荷工況

b. Full load condition

注:為海拔高度;為轉(zhuǎn)速。Note:is the altitute;is the engine speed.

圖3 仿真結(jié)果驗(yàn)證

Fig.3 Verification of simulation results

2 增壓與噴油系統(tǒng)協(xié)同優(yōu)化流程

2.1 增壓與噴油系統(tǒng)協(xié)同優(yōu)化方案

全負(fù)荷工況下增壓與噴油系統(tǒng)協(xié)同優(yōu)化涉及到循環(huán)噴油量、噴油提前角及VGT葉片開(kāi)度3個(gè)控制參數(shù)。控制參數(shù)與柴油機(jī)輸出轉(zhuǎn)矩之間沒(méi)有明確的函數(shù)關(guān)系,采用傳統(tǒng)試湊法[20]及正交試驗(yàn)法[21]無(wú)法滿(mǎn)足優(yōu)化要求,神經(jīng)網(wǎng)絡(luò)模型可以建立起輸入與輸出的映射關(guān)系,并且具有較強(qiáng)的預(yù)測(cè)計(jì)算能力,對(duì)于柴油機(jī)多參數(shù)優(yōu)化問(wèn)題具有較強(qiáng)的適用性[22-24]。

基于神經(jīng)網(wǎng)絡(luò)的增壓與噴油系統(tǒng)優(yōu)化主要包含3個(gè)過(guò)程:通過(guò)仿真試驗(yàn)篩選數(shù)據(jù)樣本,神經(jīng)網(wǎng)絡(luò)模型的建立及訓(xùn)練與運(yùn)用尋優(yōu)函數(shù)實(shí)現(xiàn)優(yōu)化[25-26]。具體流程為:在已建立的GT-Power仿真模型的基礎(chǔ)上,設(shè)置柴油機(jī)實(shí)際工作工況點(diǎn),對(duì)各工況點(diǎn)進(jìn)行仿真試驗(yàn),在試驗(yàn)結(jié)果中篩選出轉(zhuǎn)矩較大且最高燃燒壓力和空燃比符合預(yù)定要求的數(shù)據(jù)作為輸入樣本訓(xùn)練神經(jīng)網(wǎng)絡(luò),得到輸入變量與輸出轉(zhuǎn)矩之間的映射關(guān)系,而后擴(kuò)大參數(shù)取值范圍,并縮小調(diào)節(jié)步長(zhǎng)以提高各參數(shù)調(diào)節(jié)精度,設(shè)計(jì)新的輸入組合,并用導(dǎo)入訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)輸出轉(zhuǎn)矩。使用Matlab軟件中max函數(shù)與find函數(shù)分別求得輸出轉(zhuǎn)矩極大值及其對(duì)應(yīng)位置,可得最大轉(zhuǎn)矩對(duì)應(yīng)的輸入組合,將其代入仿真模型進(jìn)行驗(yàn)證,根據(jù)限制條件作適當(dāng)調(diào)整,最終確定該工況下基于動(dòng)力性最優(yōu)的各參數(shù)協(xié)同優(yōu)化組合。

2.2 訓(xùn)練樣本的生成

針對(duì)柴油機(jī)運(yùn)行工況,選取VGT葉片開(kāi)度與噴油參數(shù)進(jìn)行全排列,以=2 500 m,=1 800 r/min為例,根據(jù)柴油機(jī)實(shí)際噴油參數(shù)設(shè)置仿真參數(shù)如表2所示。

表2 仿真試驗(yàn)參數(shù)設(shè)置

注:q為循環(huán)噴油量;為噴油提前角;VGT為VGT開(kāi)度。

Note:qis the circulating fuel injection quantity;is the injection advance angle;VGTis the opening of the VGT.

柴油機(jī)運(yùn)行過(guò)程中,為了防止柴油機(jī)最高燃燒壓力超過(guò)限制而燒壞柴油機(jī),最高燃燒壓力限制在16 MPa。為了降低柴油機(jī)燃燒過(guò)程中熱負(fù)荷過(guò)高造成柴油機(jī)拉缸,提升柴油機(jī)燃燒效率,將空燃比限定在19.5~21范圍內(nèi)。將所有調(diào)節(jié)參數(shù)組合作為有效輸出樣本,若不滿(mǎn)足限定條件則剔除該點(diǎn),共篩選出128個(gè)樣本作為有效樣本,部分篩選過(guò)程如表3所示。

2.3 神經(jīng)網(wǎng)絡(luò)模型的建立及訓(xùn)練

神經(jīng)網(wǎng)絡(luò)模型包含輸入層、隱含層和輸出層。輸入層為柴油機(jī)協(xié)同優(yōu)化控制參數(shù),共包含循環(huán)噴油量、噴油提前角、VGT葉片開(kāi)度3個(gè)參數(shù)。本文優(yōu)化是以動(dòng)力性最大為優(yōu)化目標(biāo),因此輸出層只包含1個(gè)轉(zhuǎn)矩參數(shù)。為提高神經(jīng)網(wǎng)絡(luò)準(zhǔn)確性,設(shè)置2層隱含層,第1層為3層,第2層為6層,如圖4所示。

將仿真試驗(yàn)篩選得到的增壓與噴油系統(tǒng)控制參數(shù)組合及其對(duì)應(yīng)的轉(zhuǎn)矩?cái)?shù)據(jù),建立成訓(xùn)練樣本,設(shè)置學(xué)習(xí)率為1,最大校正次數(shù)為100 000,對(duì)神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練。選取樣本外的25組仿真數(shù)據(jù),運(yùn)用訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)進(jìn)行預(yù)測(cè),得到輸出轉(zhuǎn)矩預(yù)測(cè)值與仿真值誤差如圖5所示,預(yù)測(cè)值與仿真值誤差較小,神經(jīng)網(wǎng)絡(luò)模型預(yù)測(cè)精度符合要求,可用于下步預(yù)測(cè)。

表3 H=2 500 m,n=1 800 r·min-1工況下部分有效數(shù)據(jù)樣本的篩選

注:圖中標(biāo)*為剔除掉的參數(shù)組合。T為柴油機(jī)轉(zhuǎn)矩;為空燃比;max為最高燃燒壓力。

Note: The dots marked with * in the figure are the deleted parameter combinations. Tis the engine torque;is the air-fuel ratio;maxis the maximum cylinder pressure.

圖4 神經(jīng)網(wǎng)絡(luò)模型的建立

圖5 模型預(yù)測(cè)準(zhǔn)確性驗(yàn)證

2.4 協(xié)同優(yōu)化組合的確定

通過(guò)神經(jīng)網(wǎng)絡(luò)建立起增壓和噴油系統(tǒng)控制參數(shù)與轉(zhuǎn)矩之間的映射關(guān)系。基于訓(xùn)練好的神經(jīng)網(wǎng)絡(luò),取表4中3個(gè)參數(shù)取值的全排列,建立新的輸入組合共21×11×13=3 003組,輸入神經(jīng)網(wǎng)絡(luò)中可預(yù)測(cè)出3 003組輸出,在Mtalab中對(duì)輸出轉(zhuǎn)矩?cái)?shù)組調(diào)用max函數(shù),可得到極值點(diǎn)轉(zhuǎn)矩為1 364.2 N·m,再調(diào)用find函數(shù),可得轉(zhuǎn)矩極大值對(duì)應(yīng)位置為第44組序列,即最大轉(zhuǎn)矩對(duì)應(yīng)第44組輸入,神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)的轉(zhuǎn)矩極大值及對(duì)應(yīng)位置如圖6所示。

表4 輸入組合參數(shù)設(shè)置

圖6 預(yù)測(cè)轉(zhuǎn)矩極值點(diǎn)及對(duì)應(yīng)位置

通過(guò)在二級(jí)可調(diào)增壓柴油機(jī)仿真模型中設(shè)置柴油機(jī)不同海拔與工況,用上述協(xié)同優(yōu)化方法可得出0~5 500 m海拔,1 000~2 100 r/min轉(zhuǎn)速全負(fù)荷條件下,噴油量、噴油提前角及VGT葉片開(kāi)度協(xié)同優(yōu)化組合如表5所示。

表5 不同海拔控制參數(shù)優(yōu)化值

3 增壓與噴油系統(tǒng)控制參數(shù)協(xié)同優(yōu)化變化規(guī)律

基于神經(jīng)網(wǎng)絡(luò)得到不同海拔不同轉(zhuǎn)速下增壓與噴油控制參數(shù)的協(xié)同優(yōu)化組合后,分析噴油量、噴油提前角及VGT葉片開(kāi)度隨海拔及轉(zhuǎn)速的變化規(guī)律,為增壓與噴油系統(tǒng)控制參數(shù)協(xié)同控制策略的制定提供參考依據(jù)。

圖7a為優(yōu)化后各轉(zhuǎn)速下最佳循環(huán)噴油量隨海拔變化規(guī)律。由圖可知,同一海拔條件下,柴油機(jī)最佳循環(huán)噴油量隨轉(zhuǎn)速增加先增大后減小,隨海拔升高,柴油機(jī)最佳循環(huán)噴油量逐漸減小,減小趨勢(shì)隨海拔增加逐漸遞增,由0至3 500 m不同轉(zhuǎn)速下循環(huán)噴油量平均降低了10.96%,由3 500至5 500 m平均降低了16.99%。圖7b為2 500和5 500 m條件下優(yōu)化前后最佳循環(huán)噴油量對(duì)比圖。由圖可知,海拔一定時(shí),優(yōu)化后循環(huán)噴油量隨轉(zhuǎn)速的變化規(guī)律與原機(jī)基本一致,但相比原機(jī)優(yōu)化后各轉(zhuǎn)速下的最佳循環(huán)噴油量都有所增加,低轉(zhuǎn)速時(shí)循環(huán)噴油量增加幅度最大,中高轉(zhuǎn)速下循環(huán)噴油量增加幅度減小,在最大轉(zhuǎn)矩轉(zhuǎn)速附近循環(huán)噴油量增加量最小,呈現(xiàn)出增加量自最大轉(zhuǎn)矩轉(zhuǎn)速點(diǎn)向兩側(cè)逐步增大的趨勢(shì)。相比于單級(jí)增壓,二級(jí)增壓增大了柴油機(jī)缸內(nèi)進(jìn)氣量,緩解了高原環(huán)境引起的空氣密度的下降,適當(dāng)增大循環(huán)噴油量,有利于柴油機(jī)高海拔動(dòng)力性能的提升,但為了保證最高燃燒壓力和排溫不超限,循環(huán)噴油量增加量需要得到限制,越靠近最大轉(zhuǎn)矩轉(zhuǎn)速點(diǎn),增加值越小。

圖7 最佳循環(huán)噴油量隨轉(zhuǎn)速的變化規(guī)律

圖8為不同海拔條件下最佳噴油提前角的變化規(guī)律。由圖8a可知,同一海拔條件下,柴油機(jī)最佳噴油提前角隨轉(zhuǎn)速增加呈現(xiàn)先減小后增加的趨勢(shì),最佳噴油提前角平均值隨海拔升高而增大,海拔每升高1 000 m,噴油提前角平均增大1.15 °CA。隨著海拔升高,大氣壓力與溫度降低導(dǎo)致進(jìn)氣終了缸內(nèi)空氣密度降低,反應(yīng)物分子之間的碰撞概率減小,著火之前混合氣的物理和化學(xué)反應(yīng)時(shí)間延長(zhǎng),滯燃期延長(zhǎng),滯燃期累積的混合氣增多,大量準(zhǔn)備好的混合氣,幾乎同時(shí)開(kāi)始燃燒,增大了速燃期內(nèi)放熱速率,缸內(nèi)壓力與溫度急劇上升,增加了柴油機(jī)燃燒粗暴度,因而隨海拔升高要相應(yīng)增加柴油機(jī)噴油提前角[27-28]。相比于原機(jī),優(yōu)化后的噴油提前角在低速時(shí)略有增加,在海拔2 500和5 500 m,轉(zhuǎn)速在1 000~1 500 r/min時(shí)最佳噴油提前角平均分別增加了1和1.5 °CA,隨轉(zhuǎn)速升高,最佳噴油提前角減小,在2 500和5 500 m海拔下1 500~2 100 r/min平均分別減小了25.2%和17.5%,如圖8b所示。低轉(zhuǎn)速時(shí),增壓器效率較低,增大噴油提前角有利于油氣充分混合,提高燃燒效率,進(jìn)而改善柴油機(jī)低速動(dòng)力、經(jīng)濟(jì)性。隨著轉(zhuǎn)速增加,增壓器效率升高,相比于單級(jí)增壓器,二級(jí)增壓器增大了缸內(nèi)進(jìn)氣量,適當(dāng)減小噴油提前角,能夠降低缸內(nèi)最高燃燒壓力和燃燒粗暴度。

圖8 最佳噴油提前角隨轉(zhuǎn)速的變化規(guī)律

圖9a為0 m~5 500 m海拔條件下最佳VGT葉片開(kāi)度隨轉(zhuǎn)速的變化規(guī)律。由圖可知,在同一海拔高度下,柴油機(jī)最佳VGT葉片開(kāi)度,隨轉(zhuǎn)速的增加而逐漸增大,隨海拔升高,最佳VGT葉片開(kāi)度逐漸減小,相比于平原,5 500 m海拔條件不同轉(zhuǎn)速工況下最佳VGT葉片開(kāi)度平均降低了44.44%。海拔升高和轉(zhuǎn)速的降低都會(huì)導(dǎo)致進(jìn)氣壓力降低,通過(guò)減小VGT葉片開(kāi)度減少渦輪流通面積,使得排氣背壓和流速增大,可用排氣能量升高,進(jìn)而提高增壓器轉(zhuǎn)速,增加柴油機(jī)進(jìn)氣流量,隨著海拔降低和轉(zhuǎn)速增加,需要增大VGT開(kāi)度以防止增壓器超速。由圖 9b可知,相比于原機(jī),柴油機(jī)優(yōu)化后最佳VGT開(kāi)度呈現(xiàn)增大趨勢(shì),但增大趨勢(shì)在不同海拔條件下有所差異。在平原條件下,優(yōu)化后的VGT開(kāi)度增大幅度隨轉(zhuǎn)速增加而增大,在海拔5 500 m條件下,低速時(shí)VGT葉片開(kāi)度與原機(jī)相同,隨著轉(zhuǎn)速升高,VGT葉片開(kāi)度增加幅度呈現(xiàn)先增大后減小的趨勢(shì),在2 100 r/min時(shí),優(yōu)化后的VGT開(kāi)度相比于原機(jī)略有下降。相比于單級(jí)增壓器,二級(jí)增壓器增壓比較高且隨著轉(zhuǎn)速增加效率升高,平原條件下,較大的VGT開(kāi)度已經(jīng)能夠滿(mǎn)足柴油機(jī)燃燒需求,因此優(yōu)化后VGT開(kāi)度增加,增大幅度隨轉(zhuǎn)速升高而增大。在海拔5 500 m條件下,低速工況下,VGT葉片開(kāi)度減小,一方面減少了流通面積,提高了增壓器轉(zhuǎn)速,另一方面VGT葉片開(kāi)度減少使得泵氣損失增大,減少了缸內(nèi)進(jìn)氣量,因此在低速下,VGT開(kāi)度變化較小。在中高轉(zhuǎn)速下,增壓器效率較高,適當(dāng)增大VGT開(kāi)度增大渦輪流通面積,來(lái)降低排氣背壓和流速以避免增壓器超速。額定轉(zhuǎn)速工況下,原機(jī)最高燃燒壓力距離限制值仍有一定余量,減小VGT葉片開(kāi)度可進(jìn)一步提升柴油機(jī)額定功率[29]。

圖9 最佳VGT葉片開(kāi)度隨轉(zhuǎn)速的變化規(guī)律

由以上結(jié)論可以得到不同轉(zhuǎn)速下優(yōu)化前后增壓與噴油參數(shù)協(xié)同優(yōu)化控制策略。0 m海拔條件下,相比于原機(jī),優(yōu)化后柴油機(jī)VGT葉片開(kāi)度和噴油量增大,噴油提前角減小。主要由于0 m海拔條件下,進(jìn)氣流量和過(guò)量空氣系數(shù)較大使得缸內(nèi)密度增加,增大噴油量與VGT葉片開(kāi)度減小噴油提前角,能夠在保證最高燃燒壓力不超限的前提下有效提升柴油機(jī)動(dòng)力性。5 500 m海拔條件下,相比于原機(jī),柴油機(jī)優(yōu)化后低轉(zhuǎn)速下VGT葉片開(kāi)度不變,循環(huán)噴油量和噴油提前角增大,中高轉(zhuǎn)速下VGT葉片開(kāi)度和循環(huán)噴油量增大,噴油提前角減小。相比于單級(jí)增壓,柴油機(jī)匹配二級(jí)增壓后在低速條件下能夠改善渦輪增壓器的效率,在VGT葉片開(kāi)度不變條件下,增大循環(huán)噴油量和噴油提前角有利于增加滯燃期內(nèi)混合氣,進(jìn)而提高柴油機(jī)低速時(shí)動(dòng)力性能[30]。隨著轉(zhuǎn)速增加,一方面渦輪增壓器效率升高,進(jìn)氣量增加明顯,柴油機(jī)增加循環(huán)噴油量,增大了混合氣濃度,有利于動(dòng)力性提升,但柴油機(jī)排溫與增壓器轉(zhuǎn)速也會(huì)增加,為了防止這些超限,必須增大VGT開(kāi)度,減小噴油提前角。

4 結(jié) 論

1)將仿真模型與神經(jīng)網(wǎng)絡(luò)相結(jié)合,有效構(gòu)建增壓和噴油參數(shù)與輸出轉(zhuǎn)矩之間聯(lián)系,所構(gòu)建模型的預(yù)測(cè)值和仿真值之間相關(guān)度較高,能夠用于增壓與噴油參數(shù)協(xié)同優(yōu)化研究。

2)相比于原機(jī),優(yōu)化后最佳循環(huán)噴油量增加,增加量呈現(xiàn)出自最大轉(zhuǎn)矩轉(zhuǎn)速點(diǎn)向兩側(cè)逐漸增大的趨勢(shì)。最佳噴油提前角,在海拔2 500和5 500 m低速時(shí)分別增加了1和1.5 °CA,隨轉(zhuǎn)速升高,最佳噴油提前角平均分別減小了25.2%和17.5%。最佳VGT開(kāi)度在海拔0 m時(shí),增大幅度隨轉(zhuǎn)速增加而增大,在海拔5 500 m時(shí),低速時(shí)最佳VGT開(kāi)度不變,中高轉(zhuǎn)速VGT增加幅度隨轉(zhuǎn)速先增大后減小。

3)通過(guò)增壓與噴油參數(shù)協(xié)同優(yōu)化后,在0 m海拔條件下,VGT葉片開(kāi)度和噴油量增大,噴油提前角減小。5 500 m海拔條件下,低速下VGT葉片開(kāi)度不變,循環(huán)噴油量和噴油提前角增大,中高轉(zhuǎn)速下VGT葉片開(kāi)度和循環(huán)噴油量增大,噴油提前角減小。

[1] 倪計(jì)民,劉越,石秀勇,等.可變噴嘴渦輪增壓及廢氣再循環(huán)系統(tǒng)改善柴油機(jī)排放性能[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(16):82-88. Ni Jimin, Liu Yue, Shi Xiuyong, et al. Variable nozzle turbine combined with Venturi exhaust gas recirculation system improving emission performance of diesel engines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16):82-88. (in Chinese with English abstract)

[2] Liu R, Zhang Z, Dong S, et al. High-altitude matching characteristics of regulated two-stage turbocharger with diesel engine[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(9):094501-094509.

[3] Jiao Y, Liu R, Zhang Z, et al. Comparison of combustion and emission characteristics of a diesel engine fueled with diesel and methanol-Fischer-Tropsch diesel-biodiesel-diesel blends at various altitudes[J]. Fuel, 2019, 224(5):52-59.

[4] 畢玉華,唐成章,申立中,等.VNT與EGR耦合對(duì)不同氣壓下燃用含氧燃料柴油機(jī)性能的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2018,34(17):38-45. Bi Yuhua, Tang Chengzhang, Shen Lizhong, et al. Effect of VNT and EGR coupling on performance of diesel engine fueled with oxygenated fuel under different atmospheric pressures[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17):38-45. (in Chinese with English abstract)

[5] 周廣猛,劉瑞林,焦宇飛,等. 柴油機(jī)高原燃燒特性研究進(jìn)展[J]. 車(chē)用發(fā)動(dòng)機(jī),2018(4):17-21. Zhou Guangmeng, Liu Ruilin, Jiao Yufei, et al. Research progress of diesel engine combustion characteristics in plateau environment[J]. Vehicle Engine, 2018 (4):17-21. (in Chinese with English abstract)

[6] 黃粉蓮,紀(jì)威,周煒,等.車(chē)用渦輪增壓柴油機(jī)加速工況瞬態(tài)特性仿真[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(3):63-69. Huang Fenlian, Ji Wei, Zhou Wei, et al. Simulation of transient performance of vehicle turbocharged diesel engine during acceleration process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(3):63-69. (in Chinese with English abstract)

[7] 王俊,申立中,楊永忠,等.基于響應(yīng)曲面法的非道路用高壓共軌柴油機(jī)設(shè)計(jì)點(diǎn)優(yōu)化標(biāo)定[J].農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):31-39. Wang Jun, Shen Lizhong, Yang Yongzhong, et al. Optimizing calibration of design points for non-road high pressure common rail diesel engine base on response surface methodology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3):31-39. (in Chinese with English abstract)

[8] 王利民,韓義勇,裴???基于多級(jí)閉環(huán)的柴油機(jī)VGT控制策略的研究[J].汽車(chē)與配件,2018(20):72-74. Wang Limin, Hang Yiyong, Pei Haijun. Research on control strategy of diesel VGT based on multi-level closed loop[J]. Automobile & Parts, 2018(20): 72-74. (in Chinese with English abstract)

[9] 唐蛟,李國(guó)祥,王志堅(jiān),等.基于歐Ⅵ柴油機(jī)EGR閥與VGT閥解耦控制策略研究[J].內(nèi)燃機(jī)工程,2015,36(3):63-67. Tang Jiao, Li Guoxiang, Wang Zhijian, et al. Study of EGR/VGT decoupling control strategy based on euroⅥ diesel engines[J]. Chinese Internal Combustion Engine Engineering, 2015, 36(3): 63-67. (in Chinese with English abstract)

[10] 朱振夏. 增壓柴油機(jī)高原環(huán)境下的供油與進(jìn)氣調(diào)節(jié)研究[D].北京:北京理工大學(xué),2015. Zhu Zhenxia. Investigation on Parameters Adjustment of Fuel Supplying and Air-Intaking Systems for Diesel Engines Working at Plateau Environment[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese with English abstract)

[11] 董素榮,劉瑞林,周廣猛,等. VGT葉片開(kāi)度對(duì)二級(jí)增壓柴油機(jī)高海拔燃燒特性與性能的影響[J]. 內(nèi)燃機(jī)學(xué)報(bào),2017,35(3): 231-237. Dong Surong, Liu Ruilin, Zhou Guangmeng, et al. Effects of VGT blade opening on combustion and performance on a two-stage turbocharging diesel engine at high altitude[J].Transactions of CSICE, 2017, 35 (3):231-237. (in Chinese with English abstract)

[12] 陳貴升,陳春林,狄磊,等.可變二級(jí)增壓柴油機(jī)變海拔工作特性數(shù)值模擬[J].內(nèi)燃機(jī)學(xué)報(bào),2018,36(4):305-313. Chen Guisheng, Chen Chunlin, Di Lei, et al. Numerical simulation on performance of diesel engine equipped with regulated two stage turbocharging systems at different altitudes[J]. Transactions of CSICE, 2018, 36 (4):305-313. (in Chinese with English abstract)

[13] 徐思友,潘麗麗,楊磊,等.二級(jí)增壓系統(tǒng)不同旁通結(jié)構(gòu)流阻特性仿真分析[J].車(chē)用發(fā)動(dòng)機(jī),2017(4):68-72. Xu Siyou, Pan Lili, Yang Lei, et al. Simulation on flow resistance characteristics of different bypass structures for two-stage turbocharger[J]. Vehicle Engine, 2017(4):68-72. (in Chinese with English abstract)

[14] 董素榮,劉卓學(xué),熊春友,等.二級(jí)可調(diào)增壓共軌柴油機(jī)的高海拔燃燒特性[J].燃燒科學(xué)與技術(shù),2017,23(1):36-40. Dong Surong, Liu Zhuoxue, Xiong Chunyou, et al. High altitude combustion characteristics of common rail diesel engine with two-stage regulated turbocharging system[J]. Journal of Combustion Science and Technology, 2017, 23(1):36-40. (in Chinese with English abstract)

[15] 騰鵬坤. 噴油與供氣策略對(duì)二級(jí)增壓柴油機(jī)瞬變性能的影響[D].長(zhǎng)春:吉林大學(xué),2017. Teng Pengkun. The Influence of Injection and Intake Parameters On the Two-Stage Turbocharges Diesel Engine Under Transient Operations[D]. Changchun: Jilin University, 2017. (in Chinese with English abstract)

[16] 袁興.復(fù)合EGR對(duì)二級(jí)增壓柴油機(jī)瞬變性能的影響[D].長(zhǎng)春:吉林大學(xué),2018. Yuanxing. Effect of Hybrid EGR on Transient Performance of a Two-Stage Turbocharged Diesel Engine[D].Changchun: Jilin University, 2018. (in Chinese with English abstract)

[17] 李長(zhǎng)江. 柴油機(jī)高原可調(diào)二級(jí)增壓系統(tǒng)的匹配與調(diào)節(jié)[D].北京:北京理工大學(xué),2016. Li Changjiang. The Study of Matching and Adjusting of Regulated Two-Stage Turbocharging System for Diesel Working at Plateau[D].Beijing: Beijing Institute of Technology, 2016. (in Chinese with English abstract)

[18] Hiroyasu H, Arai M. Structure of Fuel Sprays in Diesel Engine[C]// Society of Automotive Engineers: International Congress & Exposition. Detroit: SAE International in United States, 1990.

[19] Woschni G.A applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine[C] // Society of Automotive Engineers: National Fuels and Lubricant &Transportation Meetings. Detroit: SAE International in United States, 1967.

[20] 王明露. 國(guó)Ⅴ共軌柴油機(jī)逐點(diǎn)模型標(biāo)定研究[D].秦皇島:燕山大學(xué),2017. Wang Minglu. Study on Point by Point Model Base Calibration for CN V Common Rail Diesel Engine[D]. Qinhuangdao: Yanshan University, 2017. (in Chinese with English abstract)

[21] 周廣猛. 高壓共軌柴油機(jī)高海拔標(biāo)定和燃燒過(guò)程研究[D].武漢:海軍工程大學(xué),2012. Zhou Guangmeng. Research on High Altitude Calibration and Combustion Process of Common Rail Diesel Engine[D]. Wuhan: Naval University of Engineering, 2012. (in Chinese with English abstract)

[22] 牛曉曉,王賀春,李旭,等.基于神經(jīng)網(wǎng)絡(luò)的柴油機(jī)性能預(yù)測(cè)模型優(yōu)化[J].內(nèi)燃機(jī)學(xué)報(bào),2018,36(6):561-568. Niu Xiaoxiao, Wang Hechun, Li Xu, et al. Optimization of diesel engine responses prediction model based on neural network[J].Transactions of CSICE, 2018, 36 (6):561-568. (in Chinese with English abstract)

[23] 王森,趙金星,劉雙寨,等.基于神經(jīng)網(wǎng)絡(luò)和遺傳算法的Atkinson循環(huán)發(fā)動(dòng)機(jī)幾何壓縮比優(yōu)化[J].內(nèi)燃機(jī)學(xué)報(bào),2015,33(4):370-377. Wang Sen, Zhao Jinxing, Liu Shuangzhai, et al. Optimization of geometrical compression ratio for an atkinson cycle engine based on artificial neural network and genetic algorithm[J]. Transactions of CSICE, 2015, 33 (4):370-377. (in Chinese with English abstract)

[24] 朱振夏,張付軍,吳滔滔,等.基于神經(jīng)網(wǎng)絡(luò)的零維預(yù)測(cè)燃燒模型及建模方法[J].內(nèi)燃機(jī)學(xué)報(bào),2015,33(2):163-170. Zhu Zhenxia, Zhang Fujun, Wu Taotao, et al. Zero-D predictable combustion model based on neural network and modeling[J]. Transactions of CSICE, 2015, 33 (2):163-170. (in Chinese with English abstract)

[25] Meng X, Jia M, Wang T. Neural network prediction of biodiesel kinematic viscosity at 313 K[J]. Fuel, 2014, 121:133-140.

[26] Wu B, Filipi Z, Kramer D, et al. Using neural networks to compensate altitude effects on the air flow rate in variable valve timing engines[C]// Society of Automotive Engineers: SAE 2005 World Congress & Exhibition. Detroit: SAE International in United States, 2005.

[27] 王憲成,郭猛超,和穆,等.高原環(huán)境大功率柴油機(jī)性能綜合改進(jìn)技術(shù)研究[J].內(nèi)燃機(jī)工程,2014,35(2):113-118. Wang Xiancheng, Guo Mengchao He Mu, et al. Study on improvement of high power diesel engine performance in plateau environment[J]. Chinese Internal Combustion Engine Engineering, 2014, 35(2): 113-118. (in Chinese with English abstract)

[28] 劉瑞林.柴油機(jī)高原環(huán)境適應(yīng)性研究[M].北京:北京理工大學(xué)出版社,2013:151-159.

[29] 鄒澤宇. 不同增壓系統(tǒng)對(duì)重型柴油機(jī)性能和排放影響的試驗(yàn)研究[D].天津:天津大學(xué),2017. Zhou Zeyu. Effect of Different Turbocharging Systems on Performance and Emissions of a Heavy-duty Diesel Engine[D].Tianjin: Tianjin University, 2017. (in Chinese with English abstract)

[30] 楊春浩,劉瑞林,張眾杰,等.基于VGT控制參數(shù)的柴油機(jī)低速變海拔熱平衡試驗(yàn)[J].熱科學(xué)與技術(shù),2019,18(3):206-213. Yang Chunhao, Liu Ruilin, Zhang Zhongjie, et al. Exper imental study on thermal balance of diesel engine at low speed affected by VGT control parameters at variable altitudes[J]. Journal of Thermal Science and Technology, 2019, 18(3): 206-213. (in Chinese with English abstract)

Optimization of supercharger and injection parameters for diesel engine at plateau environment

Jiao Yufei1, Liu Ruilin2※, Zhang Zhongjie1, Zhou Guangmeng2, Yang Chunhao3, Ma Jiaming1

(1.,,300161,; 2.,,300161,; 3.,,430033,)

Supercharge and fuel injection are direct factors to improve the performance of diesel engines at plateau. When diesel engines are used at higher altitudes, especially in the Qinghai-Tibet plateau region with the altitude ranging from 3000 to 5000 m, the decreasing ambient pressure and temperature reduce the air inflow resulting in deteriorating combustion, reducing power output, increasing fuel consumption, worsening emissions, exceeding cylinder pressure, cylinder pressure, thermal load and turbocharger speed limits. The optimization of injection parameters can improve the plateau combustion process of diesel engine to some extent, however, optimization of injection parameters alone cannot fundamentally solve the problem of insufficient intake and power decline of diesel engines at plateau. Two-stage variable geometry turbocharge (VGT) system is an effective way to increase the intake pressure effectively. However, only optimizing the control parameters of the supercharging system without adjusting the injection parameters will lead to the problem of "improper oil and gas coordination" at high altitude, and the plateau application potential of the two-stage variable geometry turbocharge system cannot be fully play. Recent researches mainly focused on optimizing injection parameters or two-stage variable geometry turbocharge system, there was few about the comprehensive optimization of supercharger and injection parameters, therefore, the paper focused on optimizing the compositive control strategy of supercharge and injection parameters. In the paper, a GT-Power model of a two-stage variable geometry turbocharged (VGT) diesel engine was built and verified by experiment on engine plateau environment simulating testing bed. The simulation performance date of the engine was obtained from the model. What’s more, the neural network was established and then trained with these simulation values to improve the power performance of the engine, and finally the optimization rules and comprehensive control strategy of supercharge and injection parameters were obtained. The results showed that: The optimized circulating fuel injection quantity had similar variation trend with the original parameters. What was different was that the circulating fuel injection quantity increased after optimizing, the increment came to its maximum at lower speed and its minimum at speed of maximum torque, and it showed a trend that the increment quantity gradually increased from the speed point of the maximum torque to both sides. With the increase of altitude, the optimal cycle fuel injection quantity of the engine decreased gradually, and the decreasing trend increased gradually with altitude increasing. The circulating fuel injection quantity decreased by 10.96% on average from 0 to 3500 m, and by 16.99% on average from 3500 to 5500 m. At a certain altitude, the optimal injection advance angle of the engine decreased first and then increased with the increase of speed, and the average value of the optimal injection advance angle increased with altitude increasing. Compared with the original parameters, the optimum injection advance angle increased by 1 and 1.5℃A, respectively, at low speed conditions of 2500 and 5500 m, however, when it came to higher speed, the optimum injection advance angle decreased by 25.2% and 17.5%, respectively. The optimum VGT opening increased large gradually with the increase of the speed at 0 m, while when it came to 5500 m, it kept invariable at lower speed, and increased firstly and then decreased at higher speed. After comprehensive optimizing of supercharge and fuel injection, the VGT opening and circulating fuel injection quantity increased and the injection advance angle decreased at 0 m. When it came to low speed of 5500 m, the VGT opening kept invariable, the circulating fuel injection quantity and injection advance angle increased, however, the VGT opening and circulating fuel injection quantity increased, the injection advance angle decreased at high speed.

diesel engine; optimization; high altitudes; two-stage variable geometry turbocharged system; injection parameters

2019-05-05

2019-08-28

國(guó)防預(yù)研資助項(xiàng)目(30105190501)

焦宇飛,博士生,主要研究方向含氧燃料高原環(huán)境適應(yīng)性。Email:jiaoyufei2016@163.com

劉瑞林,教授,博士生導(dǎo)師,主要從事內(nèi)燃機(jī)高原環(huán)境適應(yīng)性研究。Email:163lrl@163.com

10.11975/j.issn.1002-6819.2019.17.009

TK427

A

1002-6819(2019)-17-0066-08

焦宇飛,劉瑞林,張眾杰,周廣猛,楊春浩,馬家明.高原環(huán)境條件下柴油機(jī)增壓與噴油參數(shù)協(xié)同優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(17):66-73. doi:10.11975/j.issn.1002-6819.2019.17.009 http://www.tcsae.org

Jiao Yufei, Liu Ruilin, Zhang Zhongjie, Zhou Guangmeng, Yang Chunhao, Ma Jiaming. Optimization of supercharger and injection parameters for diesel engine at plateau environment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 66-73. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.17.009 http://www.tcsae.org

猜你喜歡
噴油量增壓器噴油
基于廢氣氧體積分?jǐn)?shù)修正噴油量的試驗(yàn)研究
可變噴油規(guī)律高壓共軌系統(tǒng)噴油特性隨噴油脈寬的影響
多缸柴油機(jī)工作均勻性控制方法研究
基于DOE方法優(yōu)化輕型柴油機(jī)多點(diǎn)噴射策略的燃燒參數(shù)
高壓共軌噴油系統(tǒng)多次噴射噴油量的波動(dòng)
博格華納由可變截面渦輪增壓器向電子渦輪增壓器發(fā)展
小型化發(fā)動(dòng)機(jī)用新型羅茨增壓器
采用新型噴油系統(tǒng)的柴油機(jī)開(kāi)發(fā)及應(yīng)用
Volvo公司新開(kāi)發(fā)的噴油控制系統(tǒng)
采用兩級(jí)渦輪增壓器提高功率密度
澳门| 内乡县| 五河县| 信宜市| 栾川县| 富平县| 平阴县| 专栏| 句容市| 若尔盖县| 中超| 宣化县| 铜鼓县| 恩施市| 洛扎县| 星座| 玉门市| 鄯善县| 师宗县| 紫金县| 黑水县| 西平县| 磴口县| 二手房| 金沙县| 保康县| 廊坊市| 安远县| 盐山县| 会同县| 新竹市| 新建县| 塘沽区| 黄梅县| 营山县| 东乡| 涞水县| 平定县| 武乡县| 美姑县| 鹤山市|