李世鵬 李會(huì)云 郭明欣 趙旭升
摘要:水稻是中國(guó)重要的糧食作物之一,在人口飛速增長(zhǎng)和耕地面積急劇下降的今天,通過(guò)遺傳改良提升其產(chǎn)量和品質(zhì)顯得尤其重要。隨著分子生物學(xué)和基因組學(xué)的發(fā)展,大量產(chǎn)量性狀基因通過(guò)圖位克隆和突變體篩選等方法得到克隆,產(chǎn)量形成分子調(diào)控逐步被解析,部分功能基因在育種中得到運(yùn)用。對(duì)上述內(nèi)容進(jìn)行了綜述,并對(duì)該領(lǐng)域的研究方向進(jìn)行了展望。
關(guān)鍵詞:水稻;產(chǎn)量;功能基因;分子育種
中圖分類號(hào):S511? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):0439-8114(2019)16-0005-05
DOI:10.14088/j.cnki.issn0439-8114.2019.16.001? ? ? ? ? ?開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
水稻是世界上最重要的糧食作物之一。從2004年以來(lái)中國(guó)水稻的種植面積逐年增加,2017年中國(guó)水稻的種植面積達(dá)到了0.30億hm2,在中國(guó)糧食生產(chǎn)中占有舉足輕重的地位。水稻產(chǎn)量是由多因素決定的復(fù)雜形狀,主要由三大主要因素構(gòu)成,包括單株的穗數(shù)、每穗粒數(shù)和千粒重。穗數(shù)主要由植株的分蘗能力決定,穗數(shù)的多少主要由一級(jí)和二級(jí)分蘗數(shù)決定。每穗粒數(shù)則是由每穗穎花數(shù)和結(jié)實(shí)率決定的,其中每穗穎花數(shù)主要取決于一次枝梗和二次枝梗數(shù)。而分蘗和枝梗的發(fā)育形成均由頂端分生組織的活性決定。千粒重由粒型和灌漿率兩個(gè)因素決定,其中粒型又由粒長(zhǎng)、粒寬和粒厚三個(gè)因素決定。而這三個(gè)因素是通過(guò)細(xì)胞分裂、細(xì)胞擴(kuò)增和極性分化來(lái)決定種子的最終性狀[1-3]。
1? 水稻穗數(shù)、每穗粒數(shù)相關(guān)基因克隆及調(diào)控機(jī)理
近些年來(lái),通過(guò)圖位克隆、突變體篩選和同源基因克隆的方法,多個(gè)控制水稻分蘗發(fā)育和枝梗發(fā)育的基因被克隆。隨著越來(lái)越多控制水稻穗粒數(shù)的基因被克隆,水稻分蘗發(fā)育和分枝發(fā)育的調(diào)控路徑逐漸清晰[4,5]。
1.1? 水稻分蘗發(fā)育調(diào)控機(jī)理
目前已克隆的水稻分蘗發(fā)育相關(guān)基因主要包括調(diào)控分蘗的發(fā)生、形成以及葉原基形成間隔期三類基因。
MOC1、LAX1和LAX2基因調(diào)控水稻分蘗的發(fā)生。通過(guò)對(duì)水稻分蘗突變體的研究,克隆了一系列控制水稻分蘗的基因,如MOC1、D3、DWARF10、D17/HTD1等。MOC1是第一個(gè)在水稻中被克隆的控制水稻分蘗的基因。moc1突變體表現(xiàn)為沒(méi)有任何分蘗,只有一個(gè)主莖且花序軸和小穗也明顯減少。MOC1編碼一個(gè)GRAS家族的轉(zhuǎn)錄因子正向調(diào)控葉腋分生組織分化和腋芽的形成,并且還促進(jìn)腋芽的向外生長(zhǎng)[6]。Tillering and Dwarf 1基因編碼的蛋白質(zhì)(TAD1)與APC/C、OsAPC10形成APC/CTAD1復(fù)合體,該復(fù)合體與靶基因MOC1結(jié)合從而降低MOC1蛋白質(zhì)的活性。而Tiller enhancer基因編碼的蛋白質(zhì)(TE)與APC/C、OsCDC27形成APC/CTE,該復(fù)合體與靶基因MOC1結(jié)合通過(guò)泛素-26S蛋白酶體途徑降解MOC1蛋白質(zhì),同時(shí)該復(fù)合體還抑制組織特征基因OSH1的表達(dá)[7,8]。lax1和lax2突變體具有相似的表型,即分蘗數(shù)明顯減少,而二者均在葉腋分生組織中高表達(dá)。lax1、lax2雙突變體比其單突變體分蘗數(shù)減少更為明顯。spa單突變體分蘗數(shù)比其野生型沒(méi)有明顯下降,但lax1、spa雙突變體幾乎沒(méi)有任何分蘗。上述研究表明,LAX1、LAX2和SPA正向調(diào)控水稻分蘗的發(fā)生,而三者屬于同一調(diào)控路徑[9,10]。
獨(dú)腳金內(nèi)酯(SLs)是植物生產(chǎn)的關(guān)鍵因子,控制次生莖的形成和調(diào)控根的分岔。擬南芥中MAX1、MAX3和MAX4是獨(dú)腳金內(nèi)酯合成過(guò)程中的重要參與酶,而MAX2參與感應(yīng)獨(dú)腳金內(nèi)酯調(diào)控通路信號(hào)。水稻中的MAX2、MAX3和MAX4同源基因均已被分離,分別命名為D3、D17/HTD1和D10。D3編碼產(chǎn)物與擬南芥MAX2/ORE9同源,含有F-box和富含亮氨酸重復(fù)等結(jié)構(gòu)域[11]參與獨(dú)腳金內(nèi)酯通路信號(hào)的接收。D3蛋白質(zhì)抑制水稻分蘗芽的活性,維持它們的休眠性。通過(guò)對(duì)葉綠素降解、細(xì)胞膜離子滲漏和衰老相關(guān)基因的表達(dá)量檢測(cè)表明,D3蛋白質(zhì)也參與黑暗誘導(dǎo)的植物葉片衰老過(guò)程和過(guò)氧化氫誘導(dǎo)的植物葉片細(xì)胞死亡過(guò)程[12]。D14編碼一個(gè)酯酶,抑制水稻分枝的發(fā)生,其作為獨(dú)腳金內(nèi)酯的受體參與感應(yīng)獨(dú)腳金內(nèi)酯通路信號(hào)[13]。而D27、D17/HTD1和D10參與獨(dú)腳金內(nèi)酯前體的合成過(guò)程調(diào)控分枝的發(fā)生[14,15]。D53負(fù)調(diào)控獨(dú)腳金內(nèi)酯合成信號(hào)通路。潛在的獨(dú)腳金內(nèi)酯受體D14和D3形成D14-D3復(fù)合體參與獨(dú)腳金內(nèi)酯通路信號(hào),而D14-D3復(fù)合體通過(guò)調(diào)節(jié)D53的活性來(lái)調(diào)控獨(dú)腳金內(nèi)酯通路信號(hào)[16,17]。
PLA1編碼一個(gè)細(xì)胞色素P450 CYP78A11,調(diào)節(jié)營(yíng)養(yǎng)生長(zhǎng)期葉片起始發(fā)育的速率。PLA1在發(fā)育中的葉原基中行使功能,影響葉片起始發(fā)育時(shí)間以及營(yíng)養(yǎng)生長(zhǎng)的終止,葉原基形成間隔期影響葉片的數(shù)目和分蘗數(shù),從而影響穗數(shù)[18]。PLA2調(diào)節(jié)水稻葉片起始發(fā)育和葉片成熟[19]。PLA1和PLA2均作為GA信號(hào)轉(zhuǎn)導(dǎo)的下游基因正向調(diào)控葉片的成熟[20]。IPA1編碼一個(gè)含SBP-box的轉(zhuǎn)錄因子,由miRNA156調(diào)節(jié)參與調(diào)控多個(gè)生長(zhǎng)發(fā)育過(guò)程[21,22]。全基因組染色質(zhì)免疫共沉淀-測(cè)序分析表明,水稻莖尖和幼穗含有一系列IPA1互作蛋白質(zhì)。IPA1蛋白質(zhì)可以通過(guò)SBP-box結(jié)構(gòu)域直接與受調(diào)控基因的核心基序GTAC相結(jié)合調(diào)控株型發(fā)育相關(guān)基因。IPA1與控制水稻分蘗側(cè)芽生長(zhǎng)的負(fù)調(diào)控因子OsTB1的啟動(dòng)子直接結(jié)合,抑制水稻分蘗發(fā)生,還通過(guò)直接正調(diào)控水稻株型重要基因DEP1調(diào)控水稻的株高和穗長(zhǎng)。IPA1蛋白質(zhì)也可以通過(guò)與TCP家族的轉(zhuǎn)錄因子PCF1和PCF2相互作用與TGGGCC/T基序間接相結(jié)合,調(diào)控一系列發(fā)育相關(guān)基因[23]。IPA1還受上游基因qWS8/ipa1-2D調(diào)控,該基因與IPA1啟動(dòng)子區(qū)的DNA甲基化程度減低和染色質(zhì)開(kāi)放程度相關(guān),通過(guò)上調(diào)表達(dá)IPA1改變水稻株型[24]。
1.2? 水稻枝梗發(fā)育調(diào)控機(jī)理
目前已發(fā)現(xiàn)的調(diào)控水稻分枝發(fā)育的基因主要分為調(diào)控枝梗原基的形成和穗大小兩類基因。許多調(diào)控分蘗發(fā)育的基因同樣調(diào)控分枝的發(fā)育。例如,調(diào)控分蘗發(fā)生的主要基因MOC1、LAX1和LAX2同樣調(diào)控枝梗原基的形成。
Gn1a是水稻第一個(gè)被克隆的控制穗粒數(shù)的QTL,也是水稻第一個(gè)通過(guò)圖位克隆的方法成功克隆的數(shù)量性狀基因。Gn1a編碼一個(gè)細(xì)胞分裂素氧化酶/脫氫(OsCXK2),下調(diào)調(diào)控細(xì)胞分裂素的磷酸化程度[25]。OsCXK2的下調(diào)表達(dá)導(dǎo)致細(xì)胞分裂素在花序分生組織中的積累。而細(xì)胞分裂素的積累增加導(dǎo)致繁殖器官數(shù)目的增加,最終導(dǎo)致穗粒數(shù)的增加。而DEP1通過(guò)調(diào)控OsCXK2的表達(dá)來(lái)調(diào)控水稻的穗粒數(shù)[26]。SP1編碼一個(gè)可能的多肽轉(zhuǎn)運(yùn)蛋白質(zhì)(Peptide transporter,PTR),影響水稻穗長(zhǎng)[27]。
1.3? 水稻開(kāi)花期基因?qū)λ肓?shù)的影響
開(kāi)花期基因在改變抽穗期的同時(shí)也影響了水稻株型的相關(guān)性狀。Ghd7同時(shí)調(diào)控水稻每穗粒數(shù)、株高和抽穗期3個(gè)性狀[28]。在長(zhǎng)日照條件下,單獨(dú)的phyA或者phyB、phyC共同作用可以誘導(dǎo)Ghd7 mRNA的積累,Ghd7的增強(qiáng)表達(dá)抑制下游基因Ehd1的表達(dá),從而推遲抽穗、增加株高和每穗粒數(shù)。而單獨(dú)的phyB降低Ghd7 mRNA的水平,或者在短日照條件下Ehd1通過(guò)誘導(dǎo)FT-like基因的表達(dá)來(lái)促進(jìn)短日照下提早抽穗。此外,Hd2與Ghd7在長(zhǎng)日照條件下也存在遺傳互作[29]。Ghd8是另一個(gè)同時(shí)影響穗粒數(shù)、株高和抽穗期的重要基因。長(zhǎng)日照條件下,Ghd8下調(diào)表達(dá)Ehd1、RFT1和Hd3a,延遲水稻開(kāi)花,但在短日照條件下并不抑制這些基因的表達(dá)。Ghd8通過(guò)上調(diào)調(diào)控MOC1基因的表達(dá),從而增加水稻的分蘗數(shù)、一次枝梗和二次枝梗數(shù)[30]。
2? 水稻千粒重相關(guān)基因的克隆及調(diào)控機(jī)理
水稻粒重屬于復(fù)合性狀,一般將其分解成粒長(zhǎng)、粒寬、粒厚和填充度四個(gè)要素進(jìn)行研究。Xing等[31]將目前已克隆的粒重相關(guān)基因分為3類:第一類是通過(guò)影響種子縱軸生長(zhǎng)的細(xì)胞數(shù)量和細(xì)胞大小來(lái)調(diào)控粒長(zhǎng);第二類是通過(guò)影響種子橫軸生長(zhǎng)的細(xì)胞數(shù)量和細(xì)胞大小來(lái)調(diào)控粒寬;第三類是調(diào)控填充度相關(guān)基因。
2.1? 水稻粒長(zhǎng)相關(guān)基因的克隆
目前已克隆的粒長(zhǎng)相關(guān)基因可分為兩類。第一類基因主要是從水稻突變體庫(kù)中篩選獲得。D1、D2、D11和D61均篩選自油菜素內(nèi)酯信號(hào)(Brassinosteroid,BR)相關(guān)突變體。這些基因的突變均導(dǎo)致植株變矮,子粒變短。D1基因參與調(diào)控GA和BR兩條傳導(dǎo)途徑[32,33]。D2和D11參與BR的合成[34,35]。D61則編碼BR受體蛋白[36]。SMG1基因調(diào)控細(xì)胞的增殖,參與BR信號(hào)傳導(dǎo)途徑[37]。油菜素內(nèi)酯在生理濃度下誘導(dǎo)激活赤霉素合成基因的表達(dá)并抑制激活赤霉素失活基因的表達(dá),導(dǎo)致赤霉素的積累,從而促進(jìn)植物生長(zhǎng)[38]。SRS1、SRS3、SRS5和DSG1是從突變體庫(kù)中篩選到的另一類基因。這些基因的突變導(dǎo)致子粒變小、變短。SRS1的突變?cè)斐煽v向生長(zhǎng)的細(xì)胞變短、變小[39],SRS3和SRS5的突變僅造成縱向生長(zhǎng)的細(xì)胞變短[40,41]。已有研究表明,SRS1、SRS3和SRS5與BR信號(hào)傳導(dǎo)途徑無(wú)關(guān)。而DSG1編碼1個(gè)有絲分裂原活化蛋白激酶,參與調(diào)控BR信號(hào)傳導(dǎo)途徑[42]。第二類主要通過(guò)QTL定位的方法克隆到粒長(zhǎng)相關(guān)基因。GS3是第一個(gè)克隆的粒型基因。GS3編碼一個(gè)含有3個(gè)結(jié)構(gòu)域的跨膜蛋白質(zhì),負(fù)調(diào)控粒長(zhǎng)和粒重[43,44]。GL3.1通過(guò)調(diào)控細(xì)胞周期蛋白T1;3負(fù)調(diào)控子粒大小[45]。TGW6編碼IAA-葡萄糖水解酶,TGW6能將IAA-葡萄糖水解成游離的IAA和葡萄糖。而當(dāng)TGW6功能缺失時(shí),會(huì)增加抽穗前子粒中碳水化合物的積累,從而增加產(chǎn)量[46]。qTGW3/TGW3編碼1個(gè)糖原合成酶激酶(OsGSK5)負(fù)調(diào)控粒長(zhǎng)和粒重[47,48]。
2.2? 水稻粒寬相關(guān)基因的克隆
目前已克隆的粒寬基因包括GW2、GW5/qSW5、GW7、GW8、GS5、GS6、GS9等。GW2和GW5/qSW5功能相似,均是通過(guò)泛素-蛋白酶體負(fù)調(diào)控粒寬和粒重。GW2或GW5/qSW5功能缺失將導(dǎo)致泛素不能被轉(zhuǎn)移到靶蛋白質(zhì),使得本應(yīng)降解的底物不能被識(shí)別降解,進(jìn)而激活穎花外殼細(xì)胞的分裂,從而增加穎花外殼的寬度,最終粒重得到增加[49,50]。GS6和GW7也是通過(guò)負(fù)調(diào)控穎殼細(xì)胞數(shù)影響水稻粒寬和粒重[51,52]。而GS5、GW8和GS9則是正向調(diào)控子粒的大小。GS5能夠上調(diào)5個(gè)G1/S期基因(CDKA1、CAK1、CAK1A、CYCT1和H1)的表達(dá)量,從而促進(jìn)細(xì)胞分裂并且增加細(xì)胞的橫向生長(zhǎng)[53]。GW8則是上調(diào)多個(gè)G1/S期基因的表達(dá)量,從而促進(jìn)細(xì)胞的增殖并且提高灌漿速率[54]。后續(xù)研究表明,GW8抑制GW7的表達(dá)[55]。GS9編碼一個(gè)未知蛋白質(zhì),正向調(diào)控細(xì)胞分裂[56]。
2.3? 水稻填充度相關(guān)基因的克隆
G1F1是第一個(gè)被發(fā)現(xiàn)的調(diào)控水稻灌漿的基因。G1F1負(fù)調(diào)控蔗糖酶的活性,在水稻子粒發(fā)育時(shí),調(diào)控蔗糖的運(yùn)輸卸載和灌漿[52]。RISBZ1和RPBF協(xié)同調(diào)控種子儲(chǔ)藏蛋白質(zhì)基因的表達(dá),調(diào)節(jié)種子蛋白質(zhì)、淀粉和脂類的含量[57]。此外,OsAGSW1和WTG1綜合調(diào)控水稻粒長(zhǎng)、粒寬和填充度[58,59]。
3? 產(chǎn)量性狀基因在水稻育種中的應(yīng)用
早期人們利用野生稻高產(chǎn)QTL位點(diǎn)yld1.1和yld2.1育成了遠(yuǎn)恢611和Y兩優(yōu)7號(hào)水稻[60,61]。隨著大量水稻產(chǎn)量相關(guān)性狀基因的克隆為水稻分子育種提供了豐富的基因資源。Li等[62]通過(guò)分子標(biāo)記輔助育種將粒重增效基因GW6轉(zhuǎn)育到秈稻品種“9311”和粳稻品種中花11。從以“9311”為輪回親本構(gòu)建的近等基因系中篩選出1個(gè)優(yōu)良品系SSL-1。該品系比“9311”粒長(zhǎng)增加了11%、粒重增加了19%,最終單株產(chǎn)量增加了6.7%。從以中花11為輪回親本構(gòu)建的近等基因系中篩選出3個(gè)優(yōu)良品系R1、R2和R3,三者千粒重增加均超過(guò)30%,產(chǎn)量增加均超過(guò)7%?;蚓庉嫾夹g(shù)的發(fā)展為水稻改良提供了新的途徑。Li等[63]以中花11為試驗(yàn)材料,利用CRISPR/Cas9技術(shù)對(duì)Gn1a、DEP1、GS3和IPA1 4個(gè)產(chǎn)量性狀相關(guān)基因進(jìn)行基因編輯。gn1a、dep1和gs3 3種突變體均表現(xiàn)出穗數(shù)、每穗粒數(shù)和粒重增加,而ipa1突變體由于編輯位點(diǎn)不同表現(xiàn)出分蘗增多和減少2種截然不同的類型。
4? 問(wèn)題及展望
根據(jù)統(tǒng)計(jì),水稻中已克隆產(chǎn)量相關(guān)的基因占總數(shù)的29%[64]。然而,水稻分子育種上取得的成效卻主要集中在質(zhì)量性狀基因的轉(zhuǎn)育和基因聚合上,特別是抗稻瘟病基因和白葉枯病基因的轉(zhuǎn)育??傮w來(lái)看,水稻產(chǎn)量相關(guān)基因在育種上的運(yùn)用較少,主要原因在于:①產(chǎn)量調(diào)控機(jī)制認(rèn)識(shí)有限。產(chǎn)量是由復(fù)雜的多性狀、多基因控制,單一的改良某一個(gè)或幾個(gè)基因不一定能達(dá)到預(yù)期的育種目標(biāo)。②對(duì)育種有利用價(jià)值的基因或等位基因尚少。多數(shù)已克隆基因已在長(zhǎng)期的馴化或育種實(shí)踐中得到應(yīng)用,如gs3、gw5和gw8等。③在育種過(guò)程中,對(duì)有利基因轉(zhuǎn)移中可能遇到與不利性狀存在連鎖累贅的問(wèn)題[65]。
要解決上述問(wèn)題,就需要深入挖掘和利用更多的產(chǎn)量相關(guān)基因的遺傳變異。Huang等[66]基于全基因組關(guān)聯(lián)分析和全基因組預(yù)測(cè)在作物中的研究進(jìn)展提出了新的分子設(shè)計(jì)育種策略。隨著越來(lái)越多的水稻功能基因被克隆,利用不同性狀的優(yōu)異等位基因,綜合改良水稻產(chǎn)量和品質(zhì)性狀已成為水稻功能基因組學(xué)的重要研究?jī)?nèi)容之一。
參考文獻(xiàn):
[1] 酈? 娟.水稻突變體庫(kù)的篩選及控制水稻開(kāi)花和粒重基因HGW的功能研究[D].武漢:華中農(nóng)業(yè)大學(xué),2012.
[2] WANG D Y,XU C M,YUAN J,et al. Changes in agronomic traits of indica hybrid rice during genetic improvement[J].Chinese journal of rice science,2010,24(2):157-161.
[3] JIANG Y H,CAI Z X,XIE W B,et al. Rice functional genomics research:Progress and implications for crop genetic improvement[J].Biotechnology advances,2012,30(5):1059-1070.
[4] LIANG W H,SHANG F,LIN Q T,et al. Tillering and panicle branching genes in rice[J]. Gene,2014,537(1):1-5.
[5] WANG Y H,LI J. Branching in rice[J].Current opinion in plant biology,2011,14(1):94-99.
[6] LI X,QIAN Q,F(xiàn)U Z,et al. Control of tillering in rice[J].Nature,2003,422:618-621.
[7] LIN Q B,WANG D,DONG H,et al. Rice APC/CTE controls tillering by mediating the degradation of MONOCULM 1[J].Nature communications,2012,3:752.
[8] XU C,WANG Y H,YU Y C,et al. Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering[J].Nature communications,2012,3:750.
[9] KOMATSU K,MAEKAWA M,UJIIE S,et al. LAX and SPA:Major regulators of shoot branching in rice[J].Proceedings of the national academy of sciences,2003,100(20):11765-11770.
[10] TABUCHI H,ZHANG Y,HATTORI S,et al. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems[J].The plant cell,2011,23(9):3276-3287.
[11] ISHIKAWA S,MAEKAWA M,ARITE T,et al. Suppression of tiller bud activity in tillering dwarf mutants of rice[J].Plant and cell physiology,2005,46(1):79-86.
[12] YAN H F,SAIKA H,MAEKAWA M,et al. Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death[J].Genes & genetic systems,2007,82(4):361-366.
[13] ARITE T,UMEHARA M,ISHIKAWA S,et al. d14,a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers[J].Plant and cell physiology,2009,50(8):1416-1424.
[14] ARITE T,IWATA H,OHSHIMA K,et al. DWARF10,an RMS1/MAX4/DAD1 ortholog,controls lateral bud outgrowth in rice[J].The plant journal,2007,51(6):1019-1029.
[15] ZOU J,ZHANG S,ZHANG W,et al. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds[J].The plant journal,2006,48(5):687-698.
[16] JIANG L,LIU X,XIONG G S,et al. DWARF53 acts as a repressor of strigolactone signalling in rice[J].Nature,2013,504:401-405.
[17] ZHOU F,LIN Q B,ZHU L H,et al. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling[J].Nature,2013,504:406-410.
[18] ITOH J I,HASEGAWA A,KITANO H,et al. A recessive heterochronic mutation, plastochron1,shortens the plastochron and elongates the vegetative phase in rice[J].The plant cell,1998, 10(9):1511-1521.
[19] KAWAKATSU T,ITOH J I,MIYOSHI K,et al. PLASTOCHRON2 regulates leaf initiation and maturation in rice[J].The plant cell,2006,18(3):612-625.
[20] MIMURA M,NAGATO Y,ITOH J I. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway[J].Planta,2012,235(5):1081-1089.
[21] JIAO Y,WANG Y,XUE D,et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J].Nature genetics,2010,42(6):541-544.
[22] MIURA K,IKEDA M,MATSUBARA A,et al. OsSPL14 promotes panicle branching and higher grain productivity in rice[J].Nature genetics,2010,42(6):545-549.
[23] LU Z,YU H,XIONG G,et al. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture[J].The plant cell,2013,25(10):3743-3759.
[24] ZHANG L,YU H,MA B,et al. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice[J].Nature communications,2017,8:14789.
[25] ASHIKARI M,SAKAKIBARA H,LIN S,et al. Cytokinin oxidase regulates rice grain production[J].Science,2005,309(5735):741-745.
[26] HUANG X,QIAN Q,LIU Z,et al. Natural variation at the DEP1 locus enhances grain yield in rice[J].Nature genetics,2009,41(4):494-497.
[27] LI S B,QIAN Q,F(xiàn)U Z M,et al. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size[J].The plant journal,2009,58(4):592-605.
[28] XUE W Y,XING Y Z,WENG X Y,et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J].Nature genetics,2008,40(6):761-767.
[29] OSUGI A,ITOH H,IKEDA-KAWAKATSU K,et al. Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice[J].Plant physiology,2011,157(3):1128-1137.
[30] YAN W H,WANG P,CHEN H X,et al. A major QTL,Ghd8,plays pleiotropic roles in regulating grain productivity,plant height,and heading date in rice[J].Molecular plant,2011,4(2):319-330.
[31] XING Y Z,ZHANG Q F. Genetic and molecular bases of rice yield[J].Annual review of plant biology,2010,61:421-442.
[32] ASHIKARI M,WU J Z,YANO M,et al. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein[J].Proceedings of the national academy of sciences,1999,96(18):10284-10289.
[33] FUJISAWA Y,KATO T,OHKI S,et al. Suppression of the heterotrimeric G protein causes abnormal morphology,including dwarfism,in rice[J].Proceedings of the national academy of sciences,1999,96(13):7575-7580.
[34] HONG Z,UEGUCHI-TANAKA M,UMEMURA K,et al. A rice brassinosteroid-deficient mutant,ebisu dwarf (d2),is caused by a loss of function of a new member of cytochrome P450[J].The plant cell online,2003,15(12):2900-2910.
[35] TANABE S,ASHIKARI M,F(xiàn)UJIOKA S,et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant,dwarf11,with reduced seed length[J].The plant cell,2005,17(3):776-790.
[36] YAMAMURO C,IHARA Y,WU X,et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J].The plant cell,2000,12(9):1591-1605.
[37] DUAN P,RAO Y,ZENG D,et al. SMALL GRAIN 1,which encodes a mitogen-activated protein kinase kinase 4,influences grain size in rice[J].The plant journal,2014,77(4):547-557.
[38] TONG H N,XIAO Y H,LIU D P,et al. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice[J].The plant cell,2014,114:132092.
[39] ABE Y,MIEDA K,ANDO T,et al. The SMALL AND ROUND SEED1(SRS1/DEP2) gene is involved in the regulation of seed size in rice[J].Genes & genetic systems,2010,85(5):327-339.
[40] KITAGAWA K,KURINAMI S,OKI K,et al. A novel kinesin 13 protein regulating rice seed length[J].Plant and cell physiology,2010,51(8):1315-1329.
[41] SEGAMI S,KONO I,ANDO T,et al. Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice[J].Rice,2012,5(1):1-10.
[42] LIU S,HUA L,DONG S,et al. OsMAPK 6,a mitogen-activated protein kinase,influences rice grain size and biomass production[J].The plant journal,2015,84(4):672-681.
[43] FAN C,XING Y,MAO H,et al. GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,encodes a putative transmembrane protein[J].Theoretical and applied genetics,2006,112(6):1164-1171.
[44] MAO H,SUN S,YAO J,et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J].Proceedings of the national academy of sciences, 2010,107(45):19579-19584.
[45] QI P,LIN Y S,SONG X J,et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J].Cell research,2012,22(12):1666-1680.
[46] ISHIMARU K,HIROTSU N,MADOKA Y,et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J].Nature genetics,2013,45(6):707-711.
[47] HU Z J,LU S J,WANG M J,et al. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J].Molecular plant,2018,11(5):736-749.
[48] YING J Z,MA M,BAI C,et al. TGW3,a major QTL that negatively modulates grain length and weight in rice[J].Molecular plant,2018,11(5):750-753.
[49] SONG X J,HUANG W,SHI M,et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J].Nature genetics,2007,39(5):623-630.
[50] WENG J,GU S,WAN X,et al. Isolation and initial characterization of GW5,a major QTL associated with rice grain width and weight[J].Cell research,2008,18(12):1199-1209.
[51] SUN L,LI XJ,F(xiàn)U YC,et al. GS6,A member of the GRAS gene family,negatively regulates grain size in rice[J].Journal of integrative plant biology,2013,55(10):938-949.
[52] WANG E,WANG J,ZHU X,et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J].Nature genetics,2008,40(11):1370-1374.
[53] LI Y,F(xiàn)AN C,XING Y,et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J].Nature genetics,2011,43(12):1266-1269.
[54] WANG S,WU K,YUAN Q,et al. Control of grain size,shape and quality by OsSPL16 in rice[J].Nature genetics,2012,44(8):950-954.
[55] WANG S,LI S,LIU Q,et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J].Nature genetics,2015,47(8):949.
[56] ZHAO D S,LI Q F,ZHANG C Q,et al. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J].Nature communications,2018,9(1):1240.
[57] KAWAKATSU T,YAMAMOTO M P,TOUNO S M,et al. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice[J].The plant journal,2009,59(6):908-920.
[58] LI T,JIANG J,ZHANG S,et al. OsAGSW1,an ABC1-like kinase gene,is involved in the regulation of grain size and weight in rice[J].Journal of experimental botany,2015,66(19):5691-5701.
[59] HUANG K,WANG D K,DUAN P G,et al. WIDE AND THICK GRAIN 1,which encodes an otubain-like protease with deubiquitination activity,influences grain size and shape in rice[J].The plant journal,2017,91(5):849-860.
[60] 吳? 俊,莊? 文,熊躍東,等.導(dǎo)入野生稻增產(chǎn)QTL育成優(yōu)質(zhì)高產(chǎn)雜交稻新組合Y兩優(yōu)7號(hào)[J].雜交水稻,2010(4):20-22.
[61] 楊益善,鄧啟云,陳立云,等.野生稻高產(chǎn)QTL導(dǎo)入晚稻恢復(fù)系的增產(chǎn)效果[J].分子植物育種,2006,4(1):59-64.
[62] LI Y,TAO H,ZHAO X,et al. Molecular improvement of grain weight and yield in rice by using GW6 Gene[J].Rice science,2014,21(3):127-132.
[63] LI M R,LI X X,ZHOU Z J,et al. Reassessment of the four yield-related genes Gn1a,DEP1,GS3,and IPA1 in rice using a CRISPR/Cas9 system[J].Frontiers in plant science,2016,7:377.
[64] CHEN H,HE H,ZHOU F,et al. Development of genomics-based genotyping platforms and their applications in rice breeding[J].Current opinion in plant biology,2013,16(2):247-254.
[65] ZHOU P,TAN Y,HE Y,et al. Simultaneous improvement for four quality traits of Zhenshan 97,an elite parent of hybrid rice, by molecular marker-assisted selection[J].Theoretical and applied genetics,2003,106(2):326-331.
[66] HUANG X,HAN B. Natural variations and genome-wide association studies in crop plants[J].Annual review of plant biology,2014,65:531-551.