黃慶享 賀雁鵬 李鋒
摘 要:為了揭示淺埋薄基巖大采高工作面頂板破斷運(yùn)動結(jié)構(gòu)特征,在張家峁煤礦22201工作面輔運(yùn)順槽內(nèi)施工3組鉆孔,現(xiàn)場觀測不同層位的頂板位移量,鉆孔窺視頂板破斷位置,實測統(tǒng)計對應(yīng)的工作面支架工作阻力和超前支架工作阻力。結(jié)果表明:工作面上方頂板分層垮落,具有顯著的時間和空間效應(yīng);頂板破斷超前于工作面來壓,超前破斷距離約15~20 m;頂板冒落帶高度15~18 m,平均頂板破斷角65°;初次來壓形成非對稱三鉸拱結(jié)構(gòu),周期來壓形成臺階巖梁結(jié)構(gòu);端頭區(qū)域內(nèi)傾向不同層位的頂板呈弧形拱狀冒落。工作面初次來壓步距為32 m,來壓時支架的平均工作阻力11 448 kN/架,周期來壓步距為10~15.8 m,平均13 m,來壓時支架的平均工作阻力10 343 kN/架,支架選型合理且利用率高;回風(fēng)順槽側(cè)超前支承壓力顯現(xiàn)較明顯,超前支承壓力峰值位于工作面前方5 m內(nèi),顯著影響范圍約為10 m,一般影響區(qū)為15 m.
關(guān)鍵詞:淺埋煤層;薄基巖;大采高;覆巖運(yùn)動;礦壓顯現(xiàn);超前支承壓力
中圖分類號:TD 32 ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:A
文章編號:1672-9315(2019)05-0737-08
Abstract:In order to reveal the roof fracture feature in the large mining height face in shallowlyburied thin bedrock coal,three groups of holes are carried out in the auxiliary headgate in the 22201 working face of Zhangjiamao Coal Mine.The displacement of the roof in different levels has been monitored,the borescope inspection made to obtain the broken position of the roof,and the working resistance of the support measured as well as the front support during the working face.The research shows that:The roof is broken in a layered phenomenon,with significant time and space effects.The overlying strata break up ahead of the face weighting,with the distance of the advanced breaking being about 15~20 m;the roof caved height is 15~18 m,and the average breaking angle is 65.Asymmetric threehinged arch structure is formed in the first weighting,and step rock beam structure in the periodic weighting.In addition,the roof in different layers is found to be caved in arcshaped in Tjunction.The first weighting interval is 32 m,and the average working resistance is 11 448 kN per support during the weighting;the periodic weighting interval is 10~15.8 m,averaging 13 m,and the average working resistance is 10 343 kN per support during the weighting,indicating a more reasonable selection of the support and a higher utilization rate.The front abutment pressure in tailgate side is more obvious,and the peak front abutment pressure is located within 5 m in front of the working face;the affected area is about 10 m,and the general one about 15 m.
Key words:shallow coal seam;thin bedrock;large mining height;overlying strata movement;ground pressure behavior;front abutment pressure
0 引 言
在中國現(xiàn)有煤炭資源儲量和產(chǎn)量中,厚煤層(≥3.5 m)的產(chǎn)量和儲量均占45%左右,是實現(xiàn)高產(chǎn)高效開采的主要煤層[1-3]。陜北侏羅紀(jì)煤田主要賦存淺埋煤層,主采煤層為1~2層厚度在4~8 m的厚煤層,大部分采用大采高一次采全高的開采方法。因此,對淺埋大采高工作面開的頂板破斷特征和礦壓顯現(xiàn)規(guī)律的研究,是礦井實現(xiàn)安全高效回采的前提。
中國學(xué)者在淺埋煤層大采高頂板結(jié)構(gòu)與工作面的礦壓顯現(xiàn)特征規(guī)律研究領(lǐng)域中取得了豐碩成果。黃慶享建立了淺埋煤層采場頂板初次破斷的“非對稱三鉸拱結(jié)構(gòu)模型”、周期破斷的“臺階巖梁”結(jié)構(gòu)模型[4];給出了大采高工作面“等效直接頂”的概念[5-8],發(fā)現(xiàn)等效直接頂靜載隨采高的增大而增加,來壓時動載系數(shù)不大[9-13]。弓培林等將大采高直接頂劃分為3類,給出采場的頂板控制力學(xué)模型[14];許家林等對基于補(bǔ)連塔22303大采高工作面的礦壓顯現(xiàn)特征,提出了7.0 m特大采高工作面老頂懸臂梁結(jié)構(gòu)模型[15-16];閆少宏基于大采高綜采頂板短懸臂梁-鉸接巖梁結(jié)構(gòu),提出了支架工作阻力的確定方法[17];王國法等針對金雞灘煤礦8.0 m大采高開采實踐,實測發(fā)現(xiàn)不同層位頂板巖層的峰值應(yīng)力、差應(yīng)力及強(qiáng)度與應(yīng)力比存在較大差異,直接影響頂板巖層的斷裂狀態(tài)及破斷結(jié)構(gòu)形式[18];屠世浩和李化敏等也對大采高采場頂板結(jié)構(gòu)進(jìn)行了研究[19-21]。
上述研究主要針對埋深在150~300 m的煤層,基巖厚度較大,能夠形成單層或多層關(guān)鍵層。目前,對于埋深<100 m,基載比≤1,采高在5~7 m的典型淺埋大采高工作面覆巖運(yùn)動規(guī)律實測研究較少。文中以神南礦區(qū)張家峁煤礦22201典型淺埋大采高工作面為背景,對工作面的頂板運(yùn)動特征進(jìn)行鉆孔實測,結(jié)合礦壓顯現(xiàn)規(guī)律,掌握此類工作面的頂板垮落特征,為建立頂板結(jié)構(gòu)和揭示來壓機(jī)理提供依據(jù)。
1 工作面條件和實測方法
1.1 工作面地質(zhì)及開采條件
張家峁煤礦二盤區(qū)2-2煤層22201工作面是2-2煤層的首采工作面,平均埋深約95 m,煤層厚度7.3~9.6 m,采高6.0 m,長度252 m,推進(jìn)距離1 739 m,工作面中部選用的液壓支架型號為ZYG12000/28/63D.工作面上覆頂板中完整基巖厚度約16~20 m,風(fēng)化基巖厚度約16~20 m,松散層厚度約40~50 m,22201工作面屬于典型的淺埋薄基巖大采高工作面,煤層及頂板力學(xué)參數(shù)見表1.
1.2 鉆孔觀測方法
為了掌握22201工作面的頂板運(yùn)動規(guī)律,揭示覆巖內(nèi)部不同層位的頂板在采動影響下的動態(tài)發(fā)育過程。在工作面輔助運(yùn)輸順槽靠近煤柱側(cè)的巷幫,超前于工作面現(xiàn)場設(shè)計與施工鉆孔,鉆孔分為位移孔和窺視孔,在位移孔內(nèi)布置多點位移計(圖1),監(jiān)測不同層位巖層的離層和位移,窺視孔進(jìn)行鉆孔內(nèi)部觀測。共計布置12個鉆孔,各鉆孔布置如圖2所示,參數(shù)見表2.
采用鉆孔窺視儀采集鉆孔內(nèi)部破壞情況,利用后處理軟件,得出鉆孔任意一點的實時深度,計算出各鉆孔任意一點距頂板的垂直層位高度和側(cè)向懸伸距離(距煤柱側(cè)的水平距離)。
2 頂板破斷運(yùn)動特征
限于文章篇幅,重點對工作面的第I和第II測站的實測數(shù)據(jù)分析。以D1(10 m/25 m)為例說明數(shù)據(jù)代表的意義,D1代表第Ⅰ測站D鉆孔,10 m代表基點距頂板的垂直層位高度,25 m代表側(cè)向的懸伸距離。
1)第Ⅰ測站觀測了工作面初次來壓和第1次周期來壓期間不同層位的頂板運(yùn)動。在工作面距第Ⅰ測站15 m時,10 m以下層位的頂板在超前支承壓力作用下,發(fā)生超前運(yùn)動;在工作面推過第I測站5~7 m后,位于采空區(qū)上方的15 m和20 m層位的頂板有大范圍的運(yùn)動,高層位的運(yùn)動具有滯后性,如圖3所示。(圖3和圖4中的零點為第Ⅰ測站和第Ⅱ測站的位置)。
2)第Ⅱ測站持續(xù)觀測了5次周期來壓期間的頂板破斷運(yùn)動(圖4),發(fā)現(xiàn)周期來壓期間同一層位的覆巖運(yùn)動具有相似性。且頂板不同層位會發(fā)生超前破斷,超前破斷距離約15~20 m.
3)通過鉆孔窺視結(jié)果分析,發(fā)現(xiàn)不同層位頂板的運(yùn)動具有時間和空間特征。以第I測站的鉆孔窺視結(jié)果為例說明:①當(dāng)工作面推進(jìn)至32 m,頂板初次來壓,煤壁前方5 m處頂板未發(fā)現(xiàn)明顯破斷。但圖3中監(jiān)測到10 m以下層位發(fā)生超前運(yùn)動,一定程度表明頂板運(yùn)動超前于工作面礦壓顯現(xiàn);②當(dāng)工作面推進(jìn)到36.6 m,初次來壓結(jié)束,煤壁處頂板24.4 m層位(側(cè)懸19 m)出現(xiàn)斷裂,如圖5(a)所示;推進(jìn)到45.4 m,在工作面煤壁后方84,22.1 m層位(側(cè)懸15 m)巖層破裂,如圖5(b)所示;6 m層位(側(cè)懸6.5 m)頂板垮落,如圖5(c)所示;推進(jìn)到46.6 m,第1次周期來壓時,工作面煤壁后方9.6 m頂板垮落高度6.4 m.由D1鉆孔持續(xù)實測,得出10 m層位端頭懸頂垮落步距7~9 m;③當(dāng)工作面推進(jìn)到75 m,在工作面煤壁后方38 m處,頂板4.8 m層位(側(cè)懸1.8 m)垮落,如圖5(d)所示;頂板9.3 m層位(側(cè)懸3.2 m)垮落,如圖5(e)所示;頂板16.2 m層位(側(cè)懸6.6 m)垮落,如圖5(f)所示;表明頂板發(fā)生破斷后,覆巖與上覆松散載荷層的運(yùn)動持續(xù)大約40 m.
4)得出覆巖冒落帶高度約15~18 m,鉸接裂隙帶的高度約18~28 m.通過地表觀測,初次來壓時地表出現(xiàn)下沉漏斗,且周期性臺階裂縫高度達(dá)1.7 m,表明典型淺埋大采高工作面的頂板仍形成臺階巖梁。
5)每個鉆孔均垂直于工作面走向施工,當(dāng)工作面推過測站后,待采空區(qū)頂板垮落穩(wěn)定,結(jié)合鉆孔窺視結(jié)果(圖5(d)~(f))可得出頂板的破斷角。以第I測站為例,得出0~10 m頂板破斷角約72°,10~20 m頂板破斷角約64°,頂板平均破斷角約68°,如圖6所示。
6)通過對每個測站的D孔、E孔和F孔在開采過程的持續(xù)觀測(圖5),將同一推進(jìn)距離下,3組鉆孔發(fā)生裂隙、離層和垮落的位置進(jìn)行統(tǒng)計,持續(xù)窺視結(jié)果如圖7所示。
圖7既反映了工作面頂板破斷角的演化過程,又反映了工作面沿著傾向在10,20和30 m層位頂板在端頭區(qū)域的弧形拱狀破壞過程。
3 工作面來壓規(guī)律
3.1 工作面初次來壓
結(jié)合22201工作面的礦壓實時監(jiān)測系統(tǒng)數(shù)據(jù),當(dāng)工作面推進(jìn)至32 m時工作面初次來壓,圖8為初次來壓當(dāng)天的支架立柱壓力報表。初次來壓強(qiáng)度大,范圍廣(覆蓋工作30~120#支架,占總支架數(shù)的65%),來壓時工作面中部支架的平均工作阻力約為11 448 kN/架,占額定工作阻力的95.4%,來壓持續(xù)距離約為4.6 m.
3.2 工作面周期來壓
當(dāng)工作面推進(jìn)至45 m時,第1次周期來壓。來壓時工作面頂板淋水增多,20~70#支架平均工作阻力約10 910 kN/架(圖9),來壓步距13 m,持續(xù)距離3.4 m.
當(dāng)工作面推進(jìn)至61.5 m時,第2次周期來壓。16~126#支架工作阻力明顯增大,平均工作阻力約11 118 kN/架,來壓步距16.5 m,持續(xù)距離4 m,如圖10所示。
當(dāng)工作面推進(jìn)至71 m時,工作面第3次周期來壓。19~120#支架來壓明顯,平均工作阻力約11 068 kN/架,來壓步距9.5 m,持續(xù)距離3.6 m,如圖11所示。
統(tǒng)計分析得出6次周期來壓步距分別為13,16.5,9.5,15,12和12 m,平均周期來壓步距為13 m.來壓期間,工作面中部的支架工作阻力大,而端頭區(qū)域35 m范圍內(nèi)壓力較小;中部支架平均工作阻力為10 343 kN/架,上下端分別為9 058 kN/架和8 682 kN/架。來壓時頂板淋水增多,但工作面煤壁夾矸片冒,煤壁片幫不明顯。
3.3 支架工作阻力分析
根據(jù)工作面初次來壓和周期來壓支架的最大工作阻力(表3和表4),得出
1)初次來壓期間,76%的支架達(dá)到額定工作阻力的70%以上,56%的支架達(dá)到額定工作阻力的90%,安全閥開啟率小于8%;
2)周期來壓期間,81%的支架達(dá)到額定工作阻力的70%以上,27%的支架達(dá)到額定工作阻力的90%.支架總體利用率高,適應(yīng)性較好。
3.4 超前支承壓力分布特征
22201工作面運(yùn)輸順槽和的回風(fēng)順槽側(cè)的超前支架型號分別為ZYDC10300/27/47,初撐力為7 888 kN.超前支架上的四排立柱,分別位于工作面前方5,10,15和20 m位置。實測非來壓和來壓期間的超前支架支柱壓力,見表5和圖12,分析工作面的超前支承壓力。
對表5和圖12進(jìn)行分析,得出22201工作面超前支承壓力分布規(guī)律如下
1)超前支承壓力峰值位于工作面前方5 m內(nèi),顯著影響區(qū)范圍為10 m,一般影響區(qū)為15 m.
2)來壓時超前支承壓力大于非來壓時,運(yùn)輸順槽側(cè)為1.31倍,回風(fēng)順槽側(cè)為1.35倍。
3)回風(fēng)順槽超前支承壓力峰值大于運(yùn)輸順槽超前支承壓力峰值,約為1.08倍。
4 結(jié) 論
1)通過頂板鉆孔位移觀測和鉆孔窺視,薄基巖大采高工作面來壓期間,頂板呈分層次破斷運(yùn)動,超前破斷距離約15~20 m;頂板冒落帶高度15~18 m,頂板平均破斷角65°.
2)工作面初次來壓步距32 m,初次來壓范圍廣,強(qiáng)度大,來壓時支架工作阻力約11 448 kN/架;周期來壓步距平均13 m,工作面中部礦壓顯現(xiàn)明顯,來壓時支架工作阻力約10 343 kN/架,架型選合理,利用率高。
3)淺埋薄基巖大采高工作面超前支承壓力峰值位于工作面前方5 m,支承壓力顯著影響區(qū)范圍為10 m,一般影響區(qū)范圍為15 m.
參考文獻(xiàn)(References):
[1] 王家臣.厚煤層開采理論與技術(shù)[M].北京:冶金工業(yè)出版社,2009.
WANG Jiachen.Theory and technology of thick coal seam mining[M].Beijing:Metallurgical Industry Press,2009.
[2]王金華.特厚煤層大采高綜放開采關(guān)鍵技術(shù)[J].煤炭學(xué)報,2013,38(12):2089-2098.
WANG Jinhua.Key technology for fullymechanized top coal caving with large mining height in extrathick coal seam[J].Journal of China Coal Society,2013,38(12):2089-2098.
[3]屠世浩,袁 永.厚煤層大采高綜采理論與實踐[M].徐州:中國礦業(yè)大學(xué)出版社,2012.
TU Shihao,YUAN Yong.Theory and practice of large mining height and fully mechanized mining in thick coal seam[M].Xuzhou:China University of Mining and Technology Press,2012.
[4]黃慶享.淺埋煤層的礦壓特征與淺埋煤層定義[J].巖石力學(xué)與工程學(xué)報,2002,21(8):1174-1177.
HUANG Qingxiang.Ground pressure behavior and definition of shallow seams[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(8):1174-1177.
[5]黃慶享,張 沛.厚砂土層下頂板關(guān)鍵塊上的動態(tài)載荷傳遞規(guī)律[J].巖石力學(xué)與工程學(xué)報,2004,23(24):4179-4182.
HUANG Qingxiang,ZHANG Pei.Study on dynamic load distribution on key roof blocks[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(24):4179-4182.
[6]黃慶享.采場老頂初次來壓的結(jié)構(gòu)分析[J].巖石力學(xué)與工程學(xué)報,1998,17(5):521-526.
HUANG Qingxiang.Structural analysis of main roof stability during first weighting in longwall face[J].Chinese Journal of Rock Mechanics and Engineering,1998,17(5):521-526.
[7]HUANG Qingxiang.Experimental research of overburden movement and subsurface water seeping in shallow seam mining[J].Journal of University of Science and Technology Beijing,2007,14(6):483-489.
[8]黃慶享,胡火明,劉玉衛(wèi),等.淺埋煤層工作面液壓支架工作阻力的確定[J].采礦與安全工程學(xué)報,2009,26(3):304-307.
HUANG Qingxiang,HU Huoming,LIU Yuwei,et al.Determination of proper support resistance in working face of shallowly buried coal seam[J].Journal of Mining & Safety Engineering,2009,26(3):304-307.
[9]黃慶享,賀雁鵬,周海峰.榆家梁煤礦多煤層開采礦壓顯現(xiàn)規(guī)律研究[J].西安科技大學(xué)學(xué)報,2017,37(1):21-25.
HUANG Qingxiang,HE Yanpeng,ZHOU Haifeng.Study on roof pressure of multiple seams mining in Yujialiang mine[J].Journal of Xi’an University of Science and Technology,2017,37(1):21-25.
[10]黃慶享,馬龍濤,董 博,等.大采高工作面等效直接頂與頂板結(jié)構(gòu)研究[J].西安科技大學(xué)學(xué)報,2015,35(5):541-546.
HUANG Qingxiang,MA Longtao,DONG Bo,et al.Research on equivalent immediate roof and roof structure of large mining height face[J].Journal of Xi’an University of Science and Technology,2015,35(5):541-546.
[11]黃慶享,唐鵬飛.淺埋煤層大采高工作面頂板結(jié)構(gòu)分析[J].采礦與安全工程學(xué)報,2017,34(2):282-286.
HUANG Qingxiang,TANG Pengfei.Roof structure analysis on large mining height longwall face in shallow coal seam[J].Journal of Mining & Safety Engineering,2017,34(2):282-286.
[12]黃慶享,周金龍.淺埋煤層大釆高工作面礦壓規(guī)律及頂板結(jié)構(gòu)研究[J].煤炭學(xué)報,2016,41(S2):279-286.
HUANG Qingxiang,ZHOU Jinlong.Roof weighting behavior and roof structure of large mining height longwall face in shallow coal seam[J].Journal of China Coal Society,2016,41(S2):279-286.
[13]黃慶享,周金龍,馬龍濤,等.近淺埋煤層大釆高工作面雙關(guān)鍵層結(jié)構(gòu)[J].煤炭學(xué)報,2017,42(10):2504-2510.
HUANG Qingxiang,ZHOU Jinlong,MA longtao,et al.Double key strata structure analysis of large mining height longwall face in nearly shallow coal seam[J].Journal of China Coal Society,2017,42(10):2504-2510.
[14]弓培林,靳鐘銘.大采高綜采采場頂板控制力學(xué)模型研究[J].巖石力學(xué)與工程學(xué)報,2008,27(1):193-198.
GONG Peilin,JIN Zhongming.Mechanical model study on roof control for fullymechanized coal face with large mining height[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(1):193-198.
[15]許家林,鞠金峰.特大采高綜采面關(guān)鍵層結(jié)構(gòu)形態(tài)及其對礦壓顯現(xiàn)的影響[J].巖石力學(xué)與工程學(xué)報,2011,30(8):1547-1556.
XU Jialin,JU Jinfeng.Structural morphology of key stratum and its influence on strata behaviors in fullymechanized face with superlarge mining height[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(8):1547-1556.
[16]鞠金峰,許家林,朱衛(wèi)兵,等.7.0 m支架綜采面礦壓顯現(xiàn)規(guī)律研究[J].采礦與安全工程學(xué)報,2012,29(3):344-351.
JU Jinfeng,XU Jialin,ZHU weibing,et al.Strata behavior of fullymechanized face with 7.0 m height support[J].Journal of Mining & Safety Engineering,2012,29(3):344-351.
[17]閆少宏,尹希文,許紅杰,等.大采高綜采頂板短懸臂梁-鉸接巖梁結(jié)構(gòu)與支架工作阻力的確定[J].煤炭學(xué)報,2011,36(11):1816-1820.
YAN Shaohong,YIN Xiwen,XU Hongjie,et al.Roof structure of short cantileverarticulated rock beam and calculation of support resistance in fullymechanized face with large mining height[J].Journal of China Coal Society,2011,36(11):1816-1820.
[18]龐義輝,王國法,張金虎,等.超大采高工作面覆巖斷裂結(jié)構(gòu)及穩(wěn)定性控制技術(shù)[J].煤炭科學(xué)技術(shù),2017,45(11):45-50.
PANG Yihui,WANG Guofa,ZHANG Jinhu,et al.Overlying strata fracture structure and stability control technology for ultralarge mining height working face[J].Coal Science and Technology,2017,45(11):45-50.
[19]LIU Chuang,LI Huaming,Mitri Hani,et al.Voussoir beam model for lower strong roof strata movement in longwall miningcase study[J].Journal of Rock Mechanics and Geotechnical Engineering,2017(9):1171-1176.
[20]李化敏,蔣東杰,李東印.特厚煤層大采高綜放工作面礦壓及頂板破斷特征[J].煤炭學(xué)報,2014,39(10):1956-1960.
LI Huamin,JIANG Dongjie,LI Dongyin. Analysis of ground pressure and roof movement in fullymechanized top coal caving with large mining height in ultrathick seam[J].Journal of China Coal Society,2014,39(10):1956-1960.
[21]YUAN Yong,TU Shihao,ZHANG Xiaogang,et.al.System dynamics model of the supportsurrounding rock system in fullymechanized mining with large mining height face and its application[J].International Journal of Mining Science and Technology,2013,23(6):879-884.
[22]任艷芳,齊慶新.淺埋煤層長壁開采圍巖應(yīng)力場特征研究[J].煤炭學(xué)報,2011,36(10):1612-1618.
REN Yanfang,QI Qingxin.Study on characteristic of stress field in surrounding rocks of shallow coalface under long wall mining[J].Journal of China Coal Society,2011,36(10):1612-1618.
[23]劉學(xué)生,寧建國,譚云亮.近淺埋深層頂板破斷力學(xué)模型研究[J].采礦與安全工程學(xué)報,2014,31(2):214-219.
LIU Xuesheng,NING Jianguo,TAN Yunliang.Study on roof breaking model of near shallow seam[J].Journal of Mining & Safety Engineering,2014,31(2):214-219.
[24]楊治林,余學(xué)義,郭何明,等.淺埋煤層長壁開采頂板巖層災(zāi)害機(jī)理研究[J].巖土工程學(xué)報,2007,29(12):1763-1766.
YANG Zhilin,YU Xueyi,GUO Heming,et al.Study on catastrophe mechanism for roof strata in shallow seam longwall mining[J].Chinese Journal of Geotechnical Engineering,2007,29(12):1763-1766.
[25]賀雁鵬,黃慶享,王碧清,等.淺埋煤層大采高工作面頂板破斷角實測研究[J].采礦與安全工程學(xué)報,2019,36(4):746-752.
HE Yanpeng,HUANG Qingxiang,WANG Biqing,et al.Fieldmeasurement study on roof breaking angle of working face with large mining height in shallow coal seam[J].Journal of Mining & Safety Engineering,2019,36(4):746-752.
[26]周金龍,黃慶享.淺埋大采高工作面頂板關(guān)鍵層結(jié)構(gòu)穩(wěn)定性分析[J].巖石力學(xué)與工程學(xué)報,2019,38(7):1396-1407.
ZHOU Jinlong,HUANG Qingxiang.Stability analysis of key stratum structures of large mining height longwall face in shallow coal seam[J].Chinese Journal of Rock Mechanics and Engineering,2019,38(7):1396-1407.