王貞麗 李丙華 姚如永 岳麓 石樺
[摘要]?目的?觀察狹鱈魚皮多肽對H2O2誘導(dǎo)的血管內(nèi)皮細(xì)胞氧化損傷的保護(hù)作用及機(jī)制。
方法?制備H2O2誘導(dǎo)的人臍靜脈內(nèi)皮細(xì)胞(HUVECs)氧化損傷模型。實(shí)驗(yàn)分為正常對照組、模型組以及狹鱈魚皮多肽高、中、低等3個劑量預(yù)處理組。狹鱈魚皮多肽各劑量組應(yīng)用多肽預(yù)處理6 h后,除正常對照組以外,其余各組細(xì)胞培養(yǎng)液中均加入H2O2,37 ℃孵育12 h。應(yīng)用CCK-8方法檢測細(xì)胞活性,酶法測定細(xì)胞抗氧化活性,流式細(xì)胞術(shù)檢測細(xì)胞的凋亡情況,Western blot方法測定Caspase-3、P53及Bax/Bcl-2的表達(dá)。
結(jié)果?與正常對照組比較,模型組HUVECs增殖活性下降,抗氧化能力顯著降低,凋亡率升高;與模型組比較,狹鱈魚皮多肽高、中劑量組細(xì)胞增殖活性顯著增加,抗氧化能力顯著恢復(fù),凋亡細(xì)胞減少,差異有顯著性(F=4.71~56.90,P<0.05)。Western blot分析顯示,狹鱈魚皮多肽預(yù)處理可抑制Caspase-3的活化,下調(diào)P53表達(dá),降低Bax/Bcl-2比值,顯著降低H2O2介導(dǎo)的HUVECs凋亡(F=37.30~1 508.00,P<0.05)。
結(jié)論?狹鱈魚皮多肽對H2O2誘導(dǎo)的血管內(nèi)皮細(xì)胞氧化損傷具有明顯的保護(hù)作用,其作用與狹鱈魚皮多肽顯著提高內(nèi)皮細(xì)胞的抗氧化能力,下調(diào)P53表達(dá),抑制Caspase-3活化并降低Bax/Bcl-2比值,降低細(xì)胞凋亡有關(guān)。
[關(guān)鍵詞]?海洋多肽;氧化性應(yīng)激;內(nèi)皮,血管;抗氧化劑
[中圖分類號]?R364
[文獻(xiàn)標(biāo)志碼]?A
[文章編號]??2096-5532(2019)06-0652-06
doi:10.11712/jms201906006
[開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]
PROTECTIVE EFFECT AND MECHANISM OF POLYPEPTIDE FROM POLLOCK SKIN AGAINST OXIDATIVE INJURY IN VASCULAR ENDOTHELIAL CELLS
WANG Zhenli, LI Binghua, YAO Ruyong, YUE Lu, SHI Hua
(Quality Management Section of Qingdao Special Service Sanatorium Center of PLA Navy, Qingdao 266071, China)
[ABSTRACT] Objective To investigate the protective effect and mechanism of pollock skin polypeptide against oxidative injury in vascular endothelial cells induced by H2O2.
Methods Human umbilical vein endothelial cells (HUVECs) were used to establish a model of H2O2-induced oxidative injury, and the experimental cells were divided into normal control group, model group, and high-, middle-, and low-dose pollock skin polypeptide groups. The high-, middle-, and low-dose pollock skin polypeptide groups were pretreated with polypeptide for 6 h, and then all groups except the normal control group were cultured with H2O2 for 12 h at 37 ℃. CCK-8 assay was used to evaluate cell viability, the enzymatic method was used to measure the antioxidant activities of cells, flow cytometry was used to measure apoptosis rate, and Western blot was used to measure the expression of Caspase-3, P53, and Bcl-2-associated X (Bax)/B-cell lymphoma-2 (Bcl-2).
Results Compared with the normal control group, the model group had significant reductions in proliferative activity and antioxidant capacity and a significant increase in apoptosis rate. Compared with the model group, the high-and middle-dose pollock skin polypeptide groups had a significant increase in proli-
ferative activity, a significant recovery of antioxidant capacity, and a significant reduction in cell apoptosis (F=4.71-56.90,P<0.05). Western blot showed that pretreatment with pollock skin polypeptide inhibited the activation of Caspase-3, downregulated the expression of P53, and reduced Bax/Bcl-2 ratio and the apoptosis of HUVECs due to H2O2(F=37.30-1 508.00,P<0.05).
Conclusion Pollock skin polypeptide exerts a marked protective effect against H2O2-induced oxidative injury in vascular endothe-
lial cells, possibly by increasing the antioxidant capacity of vascular endothelial cells, downregulating P53, inhibiting the activation of caspase-3, and reducing Bax/Bcl-2 ratio and cell apoptosis.
[KEY WORDS] marine polypeptide; oxidative stress; endothelium, vascular; antioxidants
隨著人們生活水平的提高,心腦血管疾病的發(fā)生率逐年增加,已成為引起死亡的重要原因之一。血管功能異常是引起心腦血管疾病的主要原因,其中內(nèi)皮細(xì)胞的功能障礙是血管功能異常的早期事件,在血管功能異常的發(fā)生、發(fā)展進(jìn)程中,常伴隨一系列的風(fēng)險(xiǎn)因素從而引起內(nèi)皮細(xì)胞的損傷,如血壓和高糖血癥、血脂異常、吸煙以及肥胖等,這些常見危險(xiǎn)因素又與血管內(nèi)皮細(xì)胞氧化損傷引起的功能障礙緊密相關(guān)[1-4]。氧化損傷通過直接氧化細(xì)胞組成成分中的蛋白質(zhì)、脂質(zhì)、核酸等大分子及其他小分子物質(zhì),導(dǎo)致內(nèi)皮細(xì)胞的損傷?;钚匝酰≧OS)氧化應(yīng)激通過激活相關(guān)的細(xì)胞信號通路調(diào)控一系列基因的異常表達(dá),如caspase-3、p53激活等[5-6]。當(dāng)內(nèi)皮細(xì)胞氧化受損時(shí),充滿細(xì)胞碎片和粥樣硬化斑塊積聚在血管內(nèi)壁上,引起血管腔狹窄,進(jìn)而導(dǎo)致血管阻塞[7-8]。因此,在發(fā)生嚴(yán)重血管粥樣硬化之前,使用抗氧化劑進(jìn)行預(yù)處理是預(yù)防血管功能異常的良好策略之一。近年來,海洋天然產(chǎn)物因其具有良好的抗氧化活性在營養(yǎng)、制藥和化妝品工業(yè)中得到了開發(fā)和應(yīng)用[9-10]。深海狹鱈魚皮是水產(chǎn)加工中的副產(chǎn)品,含有豐富的膠原等蛋白質(zhì),本課題組將狹鱈魚皮經(jīng)過復(fù)合酶液降解得到了抗氧化多肽——狹鱈魚皮多肽,目前還沒有關(guān)于狹鱈魚皮多肽對氧化應(yīng)激介導(dǎo)的內(nèi)皮功能障礙作用的報(bào)道。本研究擬觀察狹鱈魚皮多肽對H2O2誘導(dǎo)的血管內(nèi)皮細(xì)胞氧化損傷的作用及其機(jī)制,為海洋多肽應(yīng)用提供依據(jù)。
1?材料和方法
1.1?材料
狹鱈魚皮多肽粉劑購自青島福生食品有限公司,其基本的理化指標(biāo)如下:水分質(zhì)量分?jǐn)?shù)0.018,灰分質(zhì)量分?jǐn)?shù)0.004,蛋白質(zhì)質(zhì)量分?jǐn)?shù)0.976,羥脯氨酸質(zhì)量分?jǐn)?shù)0.060;平均分子量為3 000。使用前用細(xì)胞培養(yǎng)液完全溶解,現(xiàn)用現(xiàn)配。人臍靜脈內(nèi)皮細(xì)胞(HUVECs)由青島大學(xué)附屬醫(yī)院醫(yī)學(xué)研究中心惠贈。超氧化物歧化酶(SOD)、過氧化氫酶(CAT)、谷胱甘肽過氧化物酶(GPx)試劑盒購自南京建成生物工程公司;過氧化氫(H2O2)、CCK-8檢測試劑盒、單溴雙胍(mBBr)、Annexin V-FITC細(xì)胞凋亡檢測試劑盒、WB檢測試劑盒以及Caspase-3、P53、Bax、Bcl-2抗體均購自Sigma-Aldrich公司。
1.2?細(xì)胞培養(yǎng)及處理
HUVECs加入含體積分?jǐn)?shù)0.10胎牛血清的DMEM細(xì)胞培養(yǎng)液中培養(yǎng)(含100 kU/L青霉素/鏈霉素),在含體積分?jǐn)?shù)0.05 CO2培養(yǎng)箱中37 ℃培養(yǎng),每2 d更換1次培養(yǎng)液,待細(xì)胞達(dá)到90%左右融合時(shí),用0.5 g/L的胰蛋白酶溶液消化后進(jìn)行傳代培養(yǎng),取傳代3次后的細(xì)胞,調(diào)整細(xì)胞密度為5×106/L用于實(shí)驗(yàn)。實(shí)驗(yàn)時(shí)將細(xì)胞分為正常對照組(A組)、模型組(B組)、狹鱈魚皮多肽低劑量組(C組)、狹鱈魚皮多肽中劑量組(D組)、狹鱈魚皮多肽高劑量組(E組)。將HUVECs接種于96孔(每孔100 μL)或24孔培養(yǎng)板(每孔1 mL,測定熒光時(shí)用黑色板)中,當(dāng)細(xì)胞達(dá)到60%~80%融合時(shí),正常對照組和模型組加正常培養(yǎng)液常規(guī)培養(yǎng),低、中、高劑量狹鱈魚皮多肽組分別加入60、120、240 mg/L狹鱈魚皮多肽孵育。6 h后,模型組、各劑量狹鱈魚皮多肽組均去除培養(yǎng)上清液,再加入100 μmol/L的H2O2培養(yǎng)液繼續(xù)培養(yǎng)12 h,然后進(jìn)行下述實(shí)驗(yàn)。每組實(shí)驗(yàn)均重復(fù)3次。
1.3?檢測指標(biāo)及方法
1.3.1?細(xì)胞增殖檢測?各組細(xì)胞經(jīng)處理后,吸出細(xì)胞上清液,加入含體積分?jǐn)?shù)0.10 CCK-8的新鮮培養(yǎng)基,繼續(xù)培養(yǎng)4 h后,應(yīng)用多功能微孔板測讀儀測定450 nm波長處的吸光度(A),參比波長為600~650 nm。
計(jì)算細(xì)胞增殖率:細(xì)胞增殖率(%)=(實(shí)驗(yàn)組A-空白組A)/(對照組A-空白組A)×100%。
1.3.2?細(xì)胞內(nèi)谷胱甘肽(GSH)水平測定?用mBBr作為熒光硫醇探針測定GSH水平。在上述96孔黑色平板中,各組分別加入30 μmol/L mBBr處理30 min,形成mBBr-GSH熒光結(jié)合物,然后在多功能微孔板測讀儀上檢測,使用激發(fā)波長360 nm激發(fā),然后檢測發(fā)射波長465 nm的熒光強(qiáng)度。
1.3.3?抗氧化酶活性測定?在上述24孔培養(yǎng)板中,各組細(xì)胞分別用RIPA緩沖液制備細(xì)胞裂解物。應(yīng)用試劑盒檢測細(xì)胞抗氧化酶SOD、CAT和GPx活性,按照說明書進(jìn)行測定。
1.3.4?流式細(xì)胞術(shù)檢測細(xì)胞凋亡和壞死?采用Annexin V-PI雙重染色方法。各組細(xì)胞經(jīng)處理后,離心收集細(xì)胞,將細(xì)胞懸液置于10 μg/L Annexin V-FITC/PI雙染色液中,在室溫、避光環(huán)境中孵育15 min,然后加入400 μL的結(jié)合緩沖液。立即用流式細(xì)胞術(shù)(BD FACS Caliber system)進(jìn)行分析。
1.3.5?Western blot檢測Caspase-3、P53、Bax及Bcl-2表達(dá)?采用RIPA緩沖液提取細(xì)胞總蛋白,以蛋白檢測試劑盒定量上樣濃度。將蛋白經(jīng)100 g/L的SDS-PAGE凝膠電泳分離,轉(zhuǎn)移至PVDF膜上,用含50 g/L脫脂牛奶的TBS-T緩沖液封閉膜后,加入一抗(稀釋度Caspase-3為1∶200,P53為1∶300,Bax為1∶300,Bcl-2為1∶150)4 ℃孵育過夜,TBS-T洗3次后,進(jìn)一步與辣根過氧化物酶結(jié)合的二抗孵育2 h,然后加ECL化學(xué)發(fā)光液,用Fluor Chem FC2 Alfaview凝膠成像儀(美國Alpha公司)
檢測各組蛋白的發(fā)光強(qiáng)度,隨機(jī)軟件分析各種蛋白的相對表達(dá)量。
1.4?統(tǒng)計(jì)學(xué)分析
應(yīng)用SAS 9.2軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,計(jì)量數(shù)據(jù)采用±s形式表示,多組數(shù)據(jù)間比較采用單因素方差分析,兩兩比較采用Dunnet t檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2?結(jié)?果
2.1?各組HUVECs細(xì)胞增殖活性比較
正常對照組、模型組、狹鱈魚皮多肽低劑量組、狹鱈魚皮多肽中劑量組、狹鱈魚皮多肽高劑量組細(xì)胞增殖活性分別為(100.00±9.42)%、(63.70±5.71)%、(71.62±6.48)%、(84.10±8.33)%和(92.03±6.21)%,模型組細(xì)胞增殖活性低于正常對照組,狹鱈魚皮多肽中、高劑量組細(xì)胞增殖活性高于模型組,差異均有顯著意義(F=12.04,q=3.39~6.04,P<0.05)。狹鱈魚皮多肽各組比較,隨著劑量增加細(xì)胞增殖活性也增加,組間比較差異有顯著性(q=1.90~4.80,P<0.05)。
2.2?狹鱈魚皮多肽對抗氧化酶活性和HUVECs氧化能力的影響
模型組GSH、SOD、CAT、GPx較正常對照組明顯降低,而狹鱈魚皮多肽中、高劑量組GSH和3種抗氧化酶活性得到顯著恢復(fù),各組比較差異均有顯著性(F=4.71~43.00,q=3.04~11.00,P<0.05)。見表1。
2.3?狹鱈魚皮多肽對H2O2誘導(dǎo)的HUVECs凋亡的影響
與正常對照組比較,模型組凋亡細(xì)胞和壞死細(xì)胞均增加;與模型組比較,狹鱈魚皮多肽低劑量組壞死細(xì)胞減少,而凋亡細(xì)胞無明顯減少;中、高劑量狹鱈魚皮多肽組壞死細(xì)胞和凋亡細(xì)胞均較模型組減少,差異均有顯著意義(F=7.08、56.90,q′=3.00~19.60,P<0.05)。見圖1和表2。
2.4?狹鱈魚皮多肽對H2O2誘導(dǎo)的HUVECs凋亡和死亡相關(guān)蛋白的表達(dá)
模型組P53、Caspase-3及Bcl-2表達(dá)較正常對照組升高,狹鱈魚皮多肽各劑量組Caspase-3、P53、Bax、Bcl-2表達(dá)均較模型組降低,且呈劑量依賴性,差異均有顯著性(F=37.30~1 508.00,q′=3.70~187.00, P<0.05)。見圖2和表3。
3?討?論
內(nèi)皮損傷和功能障礙被認(rèn)為是血管粥樣硬化發(fā)展的早期生物學(xué)標(biāo)志物和血管疾病的一個標(biāo)志[11]。內(nèi)皮細(xì)胞直接參與血管生物學(xué)的多種功能,包括屏障功能、血管穩(wěn)態(tài)、炎癥及血管形成和修復(fù)等[12-14]。由于氧化應(yīng)激被認(rèn)為是血管粥樣硬化發(fā)病機(jī)制的主要原因,降低內(nèi)皮細(xì)胞氧化應(yīng)激是預(yù)防血管粥樣硬化發(fā)病機(jī)制的策略之一[15-18]。
本研究中,模型組細(xì)胞經(jīng)H2O2處理導(dǎo)致細(xì)胞存活率顯著降低,凋亡升高,狹鱈魚皮多肽中、高劑量處理可以提高細(xì)胞活力和減少HUVECs凋亡,將這種損傷逆轉(zhuǎn)到正常狀態(tài)。表明狹鱈魚皮多肽預(yù)
處理可以保護(hù)HUVECs免受H2O2的氧化損傷。
ROS在細(xì)胞各種功能的調(diào)控中起著重要的作用,正常情況下內(nèi)皮細(xì)胞內(nèi)的穩(wěn)態(tài)可以通過內(nèi)源性自由基產(chǎn)生(或)抗氧化防御系統(tǒng)來平衡,包括細(xì)胞內(nèi)的抗氧化劑和各種抗氧化酶,如GSH、SOD、CAT、GPx等[19-22]。然而,ROS的過量產(chǎn)生導(dǎo)致氧化劑/抗氧化劑機(jī)制失衡,進(jìn)而導(dǎo)致氧化內(nèi)皮細(xì)胞損傷。GSH是所有細(xì)胞中含量最高的抗氧化劑,它可以作為電子供體直接清除自由基,并在ROS還原過程中作為GPx和GST的底物[23-24]。此外,SOD催化超氧化物自由基生成氧或H2O2,然后通過GPx和CAT的催化反應(yīng)將H2O2分解為水和氧[25]。因此,激活這些抗氧化能力包括抗氧化酶是預(yù)防氧化應(yīng)激引起內(nèi)皮功能障礙的較佳治療策略。為了闡明狹鱈魚皮多肽治療逆轉(zhuǎn)內(nèi)皮細(xì)胞氧化損傷的潛在機(jī)制,本文測定了H2O2誘導(dǎo)的HUVECs損傷中的細(xì)胞抗氧化水平。眾所周知,給予血管內(nèi)皮細(xì)胞H2O2處理可以刺激ROS的產(chǎn)生,而ROS是細(xì)胞凋亡的重要調(diào)節(jié)因子,可降低細(xì)胞抗氧化防御能力[26]。本文結(jié)果表明,H2O2誘導(dǎo)HUVECs損傷后抗氧化防御能力較正常對照組顯著降低,說明氧化損傷模型復(fù)制成功;與模型組相比,狹鱈魚皮多肽中、高劑量組可提高GSH的內(nèi)源性抗氧化能力和SOD、CAT、GPx的抗氧化酶活性。這些結(jié)果表明,狹鱈魚皮多肽通過提高細(xì)胞抗氧化分子水平來降低氧化應(yīng)激。
氧化損傷誘導(dǎo)細(xì)胞核損傷后,激活與細(xì)胞凋亡相關(guān)的級聯(lián)反應(yīng)。細(xì)胞凋亡的分子特點(diǎn)是凋亡信號
通路相關(guān)特異性基因異常表達(dá),如p53、caspase-3、
bcl-2家族成員等,在氧化損傷的細(xì)胞中均發(fā)生一定程度的表達(dá)異常[27-28]。p53與氧化應(yīng)激誘導(dǎo)的DNA損傷后凋亡的發(fā)生密切相關(guān),p53活化導(dǎo)致bax升高,bcl-2表達(dá)降低,細(xì)胞色素C從線粒體釋放。釋放的細(xì)胞色素C激活下游的caspase-9,隨后激活caspase-3誘導(dǎo)凋亡[29-30]。本文研究結(jié)果表明,狹鱈魚皮多肽中、高劑量處理可逆轉(zhuǎn)H2O2誘導(dǎo)的HUVECs損傷的凋亡過程。這種效應(yīng)是由于p53和caspase-3凋亡基因表達(dá)下調(diào)以及Bax/Bcl-2比值降低所致。Bax/Bcl-2比值是調(diào)控細(xì)胞凋亡的重要關(guān)鍵因子,Bax/Bcl-2比值較低可通過激活Caspase-3觸發(fā)細(xì)胞死亡。本文狹鱈魚皮多肽處理組內(nèi)皮細(xì)胞凋亡率顯著降低,提示狹鱈魚皮多肽處理可能通過調(diào)節(jié)Bax/Bcl-2比值來抑制凋亡過程。由于Bax/Bcl-2比值影響Caspase-3的活化,本文進(jìn)一步證實(shí)了狹鱈魚皮多肽預(yù)處理可抑制Caspase-3的活化,而Caspase-3是凋亡的關(guān)鍵調(diào)控因子,單獨(dú)給予H2O2處理可使Bax/Bcl-2比值升高,caspase-3基因表達(dá)上調(diào);狹鱈魚皮多肽中、高劑量處理顯著降低了H2O2處理的HUVECs中Caspase-3的活化,而Caspase-3活化降低可能是保護(hù)細(xì)胞免受氧化損傷的主要通路,狹鱈魚皮多肽通過增強(qiáng)細(xì)胞對凋亡刺激的內(nèi)在耐受來抑制細(xì)胞凋亡或死亡。
綜上所述,狹鱈魚皮多肽對H2O2誘導(dǎo)的血管內(nèi)皮細(xì)胞氧化損傷具有明顯的保護(hù)作用,其作用與狹鱈魚皮多肽顯著提高內(nèi)皮細(xì)胞的抗氧化能力,下調(diào)P53,抑制Caspase-3活化并降低Bax/Bcl-2比值,降低細(xì)胞凋亡有關(guān)。本文結(jié)果為利用狹鱈魚皮多肽保護(hù)血管內(nèi)皮細(xì)胞功能提供了依據(jù)。
[參考文獻(xiàn)]
[1]BENJAMIN E J, MUNTNER P, ALONSO A A, et al. Heart disease and stroke statistics-2019 update a report from the American heart association[J].?Circulation, 2019,139(10):E56-E528.
[2]India State-Level Disease Burden Initiative CVD Collaborators. The changing patterns of cardiovascular diseases and their risk factors in the states of India:the Global Burden of Disease Study 1990—2016[J].?The Lancet Global Health, 2018,6(12).DOI:10.1016/s2214-109x(18)30407-8.
[3]KUTIKHIN A G, YUZHALIN A E, BRUSINA E B, et al. Genetic predisposition to calcific aortic stenosis and mitral annular calcification[J].?Molecular Biology Reports, 2014,41(9):5645-5663.
[4]HELLMAN U, MORNER S, HENEIN M. Genetic variantsin cardiac calcification in Northern Sweden[J].?Medicine, 2019,98(15):e15065.
[5]KELEK S E, AFSAR E, AKCAY G, et al. Effect of chronic L-carnitine supplementation on carnitine levels, oxidative stress and apoptotic markers in peripheral organs of adult Wistar rats[J].?Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association, 2019,134:110851.
[6]DAI J, CHEN H, CHAI Y. Advanced Glycation End products (AGEs) induce apoptosis of fibroblasts by activation of NLRP3 inflammasome via reactive Oxygen species (ROS) signaling pathway[J].?Medical Science Monitor:International Medical Journal of Experimental and Clinical Research, 2019,25:7499-508.
[7]KIM S M, HUH J W, KIM E Y, et al. Endothelial dysfunction induces atherosclerosis: increased aggrecan expression promotes apoptosis in vascular smooth muscle cells[J].?BMB Reports, 2019,52(2):145-150.
[8]BAR A, TARGOSZ-KORECKA M, SURAJ J, et al. Degradation of glycocalyx and multiple manifestations of endothelial dysfunction coincide in the early phase of endothelial dysfunction before atherosclerotic plaque development in apolipoprotein E/low-density lipoprotein Receptor-Deficient mice[J].?Journal of the American Heart Association, 2019,8(6):e011171.
[9]張志慧,蘇秀蘭. 生物活性肽在醫(yī)藥領(lǐng)域的研究進(jìn)展[J].?中國醫(yī)藥導(dǎo)報(bào), 2019,16(10):37-40.
[10]崔琪, 陳敬蕊, 姜秀云,等. 海洋生物活性肽及其藥物應(yīng)用研究進(jìn)展[J].?中國海洋藥物, 2019,38(2):54-60.
[11]MARQUES V B, LEAL M A S, MAGESKI J G A, et al. Chronic iron overload intensifies atherosclerosis in apolipoprotein E deficient mice: role of oxidative stress and endothelial dysfunction[J].?Life Sciences, 2019,233:116702.
[12]王文,孫芳玲,劉婷婷,等. 心腦血管疾病再生與修復(fù)治療研究進(jìn)展[J].?神經(jīng)藥理學(xué)報(bào), 2018,8(4):62-63.
[13]JUN L W, FOONG C P, ABD HAMID R. Ardisia crispa root hexane fraction suppressed angiogenesis in human umbilical vein endothelial cells (HUVECs) and in vivo zebrafish embryo model[J].?Biomedicine & Pharmacotherapy, 2019,118:109221.
[14]丁美琳,徐敏,吳芳,等. 醛固酮誘導(dǎo)的氧化應(yīng)激損傷內(nèi)皮祖細(xì)胞介導(dǎo)的血管內(nèi)皮修復(fù)功能[J].?中山大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2018,39(6):818-826.
[15]ZHANG N, ZHANG Y, ZHAO S, et al. Septin4 as a novel binding partner of PARP1 contributes to oxidative stress induced human umbilical vein endothelial cells injure[J].?Cardiovascular Toxicology, 2018,496(2):621-627.
[16]MAJER M, GACKOWSKI D, ROZALSKI R, et al. Systemic oxidoreductive balance and vascular function in individuals without clinical manifestation of atherosclerosis[J].?Archives of Medical Sciences Atherosclerotic Diseases, 2017,2:e37-e45.
[17]KIM H, YUN J, KWON S M. Therapeutic strategies for oxidative stress-related cardiovascular diseases: removal of excess reactive oxygen species in adult stem cells[J].?Oxid Med Cell Longev, 2016, 2016:2483163.
[18]HAYBAR H, SHAHRABI S, REZAEEYAN H, et al. Endothelial cells: from dysfunction mechanism to pharmacological effect in cardiovascular disease[J].?Cardiovascular Toxicology, 2019,19(1):13-22.
[19]HUANG Meizhou, YANG Yajun, LIU Xiwang, et al. Aspirin eugenol ester attenuates oxidative injury of vascular endothelial cells by regulating NOS and Nrf2 signalling pathways[J].?British Journal of Pharmacology, 2019,176(7):906-918.
[20]DOBI A, BRAVO S B, VEEREN B A, et al. Advanced glycation end-products disrupt human endothelial cells redox ho-
meostasis: new insights into reactive Oxygen species production[J].?Free Radical Research, 2019,53(2):150-169.
[21]FARAG M R, ALAGAWANY M, ABD EL-HACK M E. Yucca schidigera extract modulates the lead-induced oxidative damage, nephropathy and altered inflammatory response and glucose homeostasis in Japanese quails[J].?CNS Neuroscience & Therapeutics, 2018,156:311-321.
[22]XIE Yanzhao, ZHANG Xiangjian, ZHANG Cong, et al. Protective effects of leonurine against ischemic stroke in mice by activating nuclear factor erythroid 2-related factor 2 pathway[J].?CNS Neuroscience & Therapeutics, 2019,25(9):1006-1017.
[23]LEE D S, JO H G, KIM M J, et al. Antioxidant and anti-stress effects of taurine against electric foot-shock-induced acute stress in rats[J].?Advances in Experimental Medicine and Biology, 2019,1155:185-196.
[24]CEYLAN H, BUDAK H, KOCPINAR E F, et al. Examining the link between dose-dependent dietary iron intake and Alz-
heimer’s disease through oxidative stress in the rat cortex[J].?Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 2019,56:198-206.
[25]JARIKRE T A, TAIWO J O, EMIKPE B O, et al. Protective effect of intranasal peste des petits ruminants virus and bacterin vaccinations: clinical, hematological, serological, and se-
rum oxidative stress changes in challenged goats[J].?Veterinary World, 2019,12(7):945-950.
[26]PARK C, CHA H J, CHOI E O, et al. Isorhamnetin induces cell cycle arrest and apoptosis via reactive oxygen species-me-
diated AMP-activated protein kinase signaling pathway activation in human bladder cancer cells[J].?Cancers, 2019,11(10):1494.
[27]RAJAVEL T, BANU PRIYA G, SURYANARAYANAN V, et al. Daucosterol disturbs redox homeostasis and elicits oxidative-stress mediated apoptosis in A549 cells via targeting thioredoxin reductase by a p53 dependent mechanism[J].?European Journal of Pharmacology,
2019,855:112-123.
[28]NEVES S P, DE CARVALHO N C, DA SILVA M M, et al. Ruthenium complexes containing heterocyclic thioamidates trigger caspase-mediated apoptosis through MAPK signaling in human hepatocellular carcinoma cells[J].?Frontiers in Oncology, 2019,9:562.
[29]MARTINEZ M A, JOSE-LUIS RODRIGUEZ I A, ROURA-MARTINEZ D, et al. Pyrethroid insecticide lambda-cyhalothrin induces hepatic cytochrome P450 enzymes, oxidative stress and apoptosis in rats[J].?Science of the Total Environment, 2018,631/632:1371-1382.