王青旦 王紅勝 李磊 趙四海 種磊剛 李培成
摘 要:針對(duì)傾斜厚煤層拱形沿空巷道圍巖控制難題,以魏家地煤礦2303工作面運(yùn)輸巷為工程背景,采用數(shù)值分析的方法,對(duì)其圍巖應(yīng)力分布、變形與破壞規(guī)律進(jìn)行了探討。結(jié)果表明:煤柱內(nèi)存在水平位移的零分界線,分界線采空區(qū)側(cè)煤體破壞形式主要為拉剪混合破壞,另一側(cè)煤體破壞形式主要為剪切破壞,煤柱穩(wěn)定性差,實(shí)體煤幫角應(yīng)力集中系數(shù)高達(dá)3.0且作用范圍大,頂板巖體沿弱面發(fā)生剪切滑移,壓剪破壞嚴(yán)重。提出“兩區(qū)一讓”圍巖控制技術(shù):短錨索抑制分界線附近煤柱分離,長(zhǎng)錨索抑制煤體沿煤巖接觸面剪切滑移,并采用木托盤整體讓壓,數(shù)值分析結(jié)果表明頂板下沉量減少40%,煤柱幫移近量減少50%,實(shí)體煤幫移近量減少44.4%,成功應(yīng)用于控制實(shí)踐。
關(guān)鍵詞:拱形斷面;沿空掘巷;煤柱;破壞特征;錨桿
中圖分類號(hào):TD 353.6?文獻(xiàn)標(biāo)志碼:ADOI:10.13800/j.cnki.xakjdxxb.2019.0107文章編號(hào):1672-9315(2019)01-0043-07
Failure characteristics of roadway driving along
goaf with crowned section and its control technology
WANG Qing?dan1,WANG Hong?sheng2,3,LI Lei2,3,
ZHAO Si?hai1,CHONG Lei?gang1,LI Pei?cheng1
(1.Weijiadi Coal Mine,Gansu Jingyuan Coal Industry & Electricity Power Co.,Ltd.,Pingchuan 730923,China;
2.College of Energy Science and Engineering,Xi’an University of Science and Technology,Xi’an 710054,China;
3.Institute of Dynamic Pressure in Mine,,Xi’an University of Science and Technology,Xi’an 710054,China)
Abstract:Aiming at the problem of surrounding rock control of arched roadway along inclined thick coal seam,and taking the 2303 working face transportation lane of Weijiadi coal mineas the engineering background,the stress distribution,deformation and failure law of surrounding rock were discussed by numerical analysis method.The results show that there is a zero boundary line of horizontal displacement in the coal pillar,and the main failure mode of the side coal body in the goaf of the boundary line is the tensile?shear mixing failure.The main failure form of the other side coal body is shear failure,and the stability of the coal pillar is poor.The stress concentration factor of the coal?supporting angle is as high as 3.0 and the range of action is large.The shearing slip of the roof rock mass along the weak surface occurs,and the compression?shear damage is serious.The surrounding rock control technology of “two zones and one yield” is proposed:the short anchor cable restrains the separation of coal pillar near the boundary line,and the long anchor cable restrains the shear slip of the coal body along the coal rock contact surface,and the wooden pallet is used to yield.The numerical analysis results show that the roof subsidence is reduced by 40%,the coal pillar convergence isreduced by 50%,and the physical coal convergence is reduced by 44.4%,which has successfully been applied to control practice.
Key words:crowned section;roadway driving along goaf;coal pillar;failure characteristics;bolt
0?引?言
科學(xué)采礦是指在保證安全、保護(hù)環(huán)境和珍惜資源的前提下,實(shí)現(xiàn)高效采出煤炭資源的開采技術(shù)[1-5],提高煤炭資源采出率、珍惜資源是實(shí)現(xiàn)科學(xué)采礦的重要途徑。工作面隔段煤柱損失,約占煤炭采區(qū)采出率的5%,是我國(guó)煤礦采出率低的關(guān)鍵因素之一[6],隔段煤柱的留設(shè)方式一般有3種,寬煤柱護(hù)巷(煤柱寬度15~30 m)、窄煤柱沿空掘巷(煤柱寬度3~6 m)和無(wú)煤柱的沿空留巷[7-12],窄煤柱沿空掘巷煤柱寬度相對(duì)較小,巷道處于側(cè)向支承壓力降低區(qū),使巷道處在較為有利的應(yīng)力環(huán)境下,服務(wù)期間僅受一次動(dòng)壓影響,動(dòng)壓影響時(shí)間短,容易維護(hù),相對(duì)于沿空留巷,沿空掘巷工藝簡(jiǎn)單,無(wú)需充填體,巷道支護(hù)費(fèi)用低,更利于推廣。
拱形斷面是巷道常見的斷面之一,動(dòng)壓顯現(xiàn)劇烈時(shí),拱形斷面因受力相對(duì)均勻而承壓性能好,國(guó)內(nèi)外學(xué)者對(duì)此類巷道的控制技術(shù)進(jìn)行了大量研究,錨桿與中心點(diǎn)樁耦合支護(hù)、高強(qiáng)高預(yù)緊力錨網(wǎng)梁索噴非對(duì)稱支護(hù)、U型鋼可伸縮拱形支架等控制技術(shù)均取得良好地工程實(shí)踐效果[13-19]。魏家地煤礦1101和2107工作面回采巷道均采用拱形斷面窄煤柱沿空掘巷,掘進(jìn)期間,動(dòng)壓顯現(xiàn)劇烈,錨桿破斷、失效較為嚴(yán)重,如圖1所示,底鼓量大。
針對(duì)魏家地煤礦沿空巷道圍巖變形嚴(yán)重、支護(hù)大面積失效的問(wèn)題,開展了拱形沿空巷道破環(huán)特征研究,指出拱形沿空巷道圍巖控制的重點(diǎn)并開發(fā)相應(yīng)的圍巖控制技術(shù),為拱形斷面沿空掘巷圍巖控制提供借鑒,豐富和完善了巷道圍巖控制理論與技術(shù)。
1?工程概況
魏家地煤礦2303工作面所采3煤煤層結(jié)構(gòu)簡(jiǎn)單,區(qū)域內(nèi)無(wú)大的地質(zhì)構(gòu)造,平均厚度6.3 m,平均傾角12°,平均埋深500 m.2303綜放工作面設(shè)計(jì)走向1 122 m,傾斜長(zhǎng)232.5 m,該工作面下區(qū)段為1304工作面和2301工作面,分別于2005年9月、2011年2月回采結(jié)束,基本頂回轉(zhuǎn)及采空區(qū)重新壓實(shí)后的應(yīng)力分布已基本穩(wěn)定,因此,為提高資源采出率,2303綜放工作面運(yùn)輸巷采用留5.0 m窄煤柱沿空掘巷。運(yùn)輸巷斷面為5.4 m×3.9 m(直墻高1.2 m),沿3煤底板掘進(jìn),上覆巖層主要以粉砂巖—粗粒砂巖為主,厚度較厚,水平層理明顯,煤層頂板屬于穩(wěn)定頂板,具體頂?shù)装鍘r體物理力學(xué)參數(shù)見表1.
2?拱形沿空巷道破壞特征
2.1?模型建立
選取魏家地煤礦2303工作面運(yùn)輸巷典型地質(zhì)條件段50 m為研究對(duì)象,模型大小為180 m×100 m×50 m.該模型4個(gè)側(cè)面限制水平移動(dòng),底面固支,上表面施加上覆巖層壓力。材料的破壞服從M?C準(zhǔn)則,煤層與頂?shù)装鍘r層間的滑移面用interface模擬。數(shù)值計(jì)算模型如圖2所示?;泼嫖锢砹W(xué)特性參數(shù)見表2.
2.2?應(yīng)力分布
沿空掘巷煤柱留設(shè)的原則是窄煤柱處于應(yīng)力降低區(qū)且煤柱內(nèi)有利于錨桿承載的較穩(wěn)定區(qū)域,如圖3所示,窄煤柱寬度為5.0 m時(shí),窄煤柱內(nèi)存在應(yīng)力集中系數(shù)為1.0的較大范圍的穩(wěn)定承載區(qū)域,此范圍內(nèi)煤體處于峰后應(yīng)變軟化至殘余強(qiáng)度過(guò)渡階段,實(shí)體煤幫承受高支承壓力作用,右上角圍巖應(yīng)力集中系數(shù)高達(dá)3.0且作用范圍大,需要適當(dāng)?shù)淖寜阂员苊庵ёo(hù)系統(tǒng)失效。
2.3?變形特征
圍巖位移場(chǎng)如圖4所示,直墻拱形巷道頂板偏實(shí)體煤側(cè)垂直位移最大,在同樣位置水平位移也最大,說(shuō)明此處為圍巖劇烈活動(dòng)區(qū)域,同樣是圍巖應(yīng)力峰值區(qū)域,窄煤柱內(nèi)存在水平位移的零分界線,左邊煤柱向采空區(qū)移動(dòng),右邊煤柱向巷道開挖空間移動(dòng),近零位移附近煤體穩(wěn)定性較差,支護(hù)體系應(yīng)超過(guò)零位移分界線,增強(qiáng)零位移分界線附近煤柱的穩(wěn)定性。在頂板弱面附近,圍巖位移明顯呈不連續(xù)性分布,弱面上下巖體發(fā)生相反方向的塑性剪切滑移運(yùn)動(dòng),頂板容易離層,穩(wěn)定性差。
2.4?破壞特征
傾斜煤層拱形沿空巷道實(shí)體煤幫垂直應(yīng)力集中系數(shù)高且煤柱內(nèi)存在近零位移區(qū)域,巷道圍巖整體穩(wěn)定性差,圍巖破壞具有以下規(guī)律。
1)在實(shí)體煤幫高集中應(yīng)力作用下,煤體與頂?shù)装鍘r體間弱面發(fā)生剪切滑移,實(shí)體煤幫角壓剪破壞嚴(yán)重,應(yīng)使用強(qiáng)力錨索斜穿弱面,增強(qiáng)滑移面的抗剪強(qiáng)度;
2)在煤柱幫近零位移區(qū)域,偏向采空區(qū)側(cè)煤體主要破壞形式為拉剪混合破壞,另一側(cè)煤體為剪切破壞,穩(wěn)定性相對(duì)較高,應(yīng)采用高預(yù)應(yīng)力支護(hù)深入向采空區(qū)側(cè)移動(dòng)煤體一定深度,消除其拉應(yīng)力并增加近零區(qū)域范圍,增強(qiáng)煤柱穩(wěn)定性;
3)在巷道煤柱側(cè)和頂板,淺部圍巖破壞主要表現(xiàn)為拉破壞,需要高預(yù)應(yīng)力錨桿支護(hù)減少甚至消除淺部圍巖拉應(yīng)力,為適應(yīng)巷道動(dòng)壓顯現(xiàn)劇烈、變形量大的特點(diǎn),支護(hù)體系應(yīng)適當(dāng)讓壓。
3?“兩區(qū)一讓”圍巖控制技術(shù)
3.1?控制技術(shù)
基于拱形沿空巷道圍巖破壞特征,提出窄煤柱近零位移區(qū)、實(shí)體煤幫壓剪破壞區(qū)“兩區(qū)”加強(qiáng)支護(hù)及整體讓壓的支護(hù)技術(shù),支護(hù)斷面如圖6所示。
3.1.1?錨桿支護(hù)參數(shù)
錨桿間排距為600 mm×700 mm,均垂直巖面安裝,錨桿參數(shù)為22 mm×2 600 mm的高強(qiáng)度錨桿,每根錨桿一支Z2360與一支K2360錨固,錨固長(zhǎng)度1.5 m.兩幫第1排錨桿與水平成15°夾角安裝,第2排垂直煤巖面安裝。
3.1.2?錨索支護(hù)參數(shù)
錨索排距為1 400 mm,煤柱幫側(cè)布置3根短錨索,參數(shù)為17.8 mm×4 300 mm,第1根距離底板1.0 m水平安裝,第2根距離底板2.0 m垂直巖面安裝,第3根與半圓拱中心成45°夾角垂直巖面安裝。實(shí)體煤幫布置2根錨索,參數(shù)為17.8 mm×7 000 mm,第1根錨索距離底板2.0 m垂直巖面安裝,第2根與半圓拱中心成45°夾角垂直巖面安裝。拱頂中心布置一根錨索,垂直巖面安裝,參數(shù)為17.8 mm×7 000 mm.每根錨索使用樹脂藥卷1支K2360,2支Z2360錨固,錨固長(zhǎng)度2.1 m.
3.1.3?讓壓支護(hù)參數(shù)
每根錨桿配套采用200 mm×200 mm×60 mm木托板、每根錨索配套托盤采用300 mm×300 mm×80 mm木托板,以實(shí)現(xiàn)整體讓壓效果,實(shí)驗(yàn)室測(cè)試結(jié)果如圖7所示,木托盤承受壓力100 kN時(shí),才開始破壞,直至160 kN才完全喪失承載能力,能夠滿足支護(hù)體系讓壓要求。
3.2?控制效果初步評(píng)價(jià)
3.2.1?圍巖變形
采用“兩區(qū)一讓”的控制技術(shù)后,2303綜放工作面運(yùn)輸巷(5m煤柱)位移矢量如圖8所示,頂板下沉量減少40%,底鼓量基本不變,而煤柱幫移近量減少50%,實(shí)體煤幫移近量減少44.4%,有效地控制了巷道圍巖變形。
3.2.2?圍巖應(yīng)力
如圖9所示,采用“兩區(qū)一讓”的控制技術(shù)后,巷道圍巖的應(yīng)力集中程度并沒有明顯降低,但應(yīng)力峰值區(qū)域明顯向淺部圍巖轉(zhuǎn)移,實(shí)體煤幫右上角,采用斜拉長(zhǎng)錨索支護(hù)后,應(yīng)力峰值區(qū)范圍明顯減小,在煤柱幫,采用短錨索支護(hù)后,煤柱穩(wěn)定承載區(qū)域明顯增大,并且向煤柱幫淺部圍巖擴(kuò)散。
3.2.3?圍巖破壞
如圖10所示,采用“兩區(qū)一讓”的控制技術(shù)后,圍巖塑性區(qū)范圍明顯減小,在巷道淺部,圍巖破壞方式由過(guò)去的拉剪混合破壞變?yōu)榧羟衅茐?,穩(wěn)定性明顯增強(qiáng),并且實(shí)體煤幫壓剪破壞區(qū)域明顯減小。
4?工程應(yīng)用效果
表面位移是巷道圍巖應(yīng)力、巖體力學(xué)特性及地質(zhì)發(fā)育等綜合作用結(jié)果體現(xiàn),為及時(shí)應(yīng)對(duì)巷道圍巖變形與破壞狀況,2303工作面運(yùn)輸巷采用“兩區(qū)一讓”控制技術(shù)后,每隔50m進(jìn)行表面位移監(jiān)測(cè):巷道開挖后,圍巖變形急劇增加,持續(xù)時(shí)間6 d左右,巷道達(dá)到穩(wěn)定狀態(tài)后,圍巖變形速度在0.1 mm/d以下,兩幫移近量為160 mm,頂板下沉量為65mm,巷道整體支護(hù)效果如圖11所示。
5?結(jié)?論
1)2303工作面運(yùn)輸巷窄煤柱寬度為5.0 m時(shí),窄煤柱內(nèi)存在穩(wěn)定承載區(qū)(處于塑性狀態(tài)向殘余強(qiáng)度狀態(tài)過(guò)渡的煤體),利于錨桿錨固,但窄煤柱存在零位移分界線,分界線兩側(cè)煤體主要破壞形式分別為拉剪混合破壞和剪切破壞,煤柱整體穩(wěn)定性差。頂板偏實(shí)體煤側(cè)垂直位移最大,同時(shí)水平位移也達(dá)到最大,此處圍巖運(yùn)動(dòng)最為劇烈,垂直應(yīng)力集中系數(shù)高達(dá)3.0且作用范圍大。頂板弱面上下部巖體沿弱面發(fā)生相反方向的塑性剪切滑移運(yùn)動(dòng),頂板容易離層;
2)基于拱形沿空巷道圍巖變形破壞特征,提出“兩區(qū)一讓”圍巖控制技術(shù),即短錨索作用范圍應(yīng)超過(guò)煤柱零位移附近不穩(wěn)定區(qū),抑制分界線附近煤柱分離,長(zhǎng)錨索深入到實(shí)體煤幫壓剪破壞區(qū),抑制煤體沿煤巖接觸面剪切滑移,并采用木托盤整體讓壓:“兩區(qū)一讓”圍巖控制技術(shù)有效地減少實(shí)體煤幫右上角應(yīng)力峰值區(qū)范圍與壓剪破壞范圍,消除巷道淺部圍巖拉應(yīng)力,增強(qiáng)煤柱幫穩(wěn)定性,頂板下沉量減少40%,煤柱幫移近量減少50%,實(shí)體煤幫移近量減少44.4%;
3)成功應(yīng)用于魏家地煤礦2303工作面運(yùn)輸巷控制實(shí)踐,兩幫移近量為160 mm,頂板下沉量為65 mm,圍巖控制效果好。
參考文獻(xiàn)(References):
[1] 錢鳴高,許家林.科學(xué)采礦的理念與技術(shù)框架[J].中國(guó)礦業(yè)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版),2011,13(3):1-7,23.QIAN Ming?gao,XU Jia?lin.Concept and technical framework of sustainable mining[J].Journal of China University of Mining & Technology(Social Sciences),2011,13(3):1-7,23.
[2]錢鳴高,繆協(xié)興,許家林,等.論科學(xué)采礦[J].采礦與安全工程學(xué)報(bào),2008,25(1):1-10.QIAN Ming?gao,MIAO Xie?xing,XU Jia?lin,et al.On scientized mining[J].Journal of Mining & Safety Engineering,2008,25(1):1-10.
[3]張東升,劉洪林,范鋼偉,等.新疆大型煤炭基地科學(xué)采礦的內(nèi)涵與展望[J].采礦與安全工程學(xué)報(bào),2015,32(1):1-6.ZHANG Dong?sheng,LIU Hong?lin,F(xiàn)AN Gang?wei.et al.Connotation and prospection on scientific mining of large Xinjiang coal base[J].Journal of Mining & Safety Engineering,2015,32(1):1-6.
[4]李東印,李化敏,周?英,等.煤炭資源科學(xué)采礦評(píng)價(jià)方法探討[J].煤炭學(xué)報(bào),2012,37(4):543-547.LI Dong?yin,LI Hua?min,ZHOU Ying,et al.Discussion on evaluation method of the coal scientized mining[J].Journal of China Coal Society,2012,37(4):543-547.
[5]鄭愛華,許家林,錢鳴高.科學(xué)采礦視角下的完全成本體系[J].煤炭學(xué)報(bào),2008,33(10):1196-1200.ZHENG Ai?hua,XU Jia?lin,QIAN Ming?gao.Total cost system based on the scientized mining[J].Journal of China Coal Society,2008,33(10):1196-1200.
[6]李俊龍.提高綜放面采出率的措施[J].煤炭工程,2007,39(2):56-58.LI Jun?long.The measures to enhance the recovery ratio of the fully mechanized caving coalface[J].Coal Engineering,2007,39(2):56-58.
[7]李?磊,柏建彪,王襄禹.綜放沿空掘巷合理位置及控制技術(shù)[J].煤炭學(xué)報(bào),2012,37(9):1564-1569.LI Lei,BAI Jian?biao,WANG Xiang?yu.Rational position and control technique of roadway driving along next goaf in fully mechanized top coal caving face[J].Journal of China Coal Society,2012,37(9):1564-1569.
[8]柏建彪,侯朝炯,黃漢富.沿空掘巷窄煤柱穩(wěn)定性數(shù)值模擬研究[J].巖石力學(xué)與工程學(xué)報(bào),2004,23(20):3475-3479.BAI Jian?biao,HOU Chao?jiong,Huang Han?fu.Numerical simulation study on stability of narrow coal pillar of roadway driving along goaf[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(20):3475-3479.
[9]王紅勝,李樹剛,張新志,等.沿空巷道基本頂斷裂結(jié)構(gòu)影響窄煤柱穩(wěn)定性分析[J].煤炭科學(xué)技術(shù),2014,42(2):19-22.WANG Hong?sheng,LI Shu?gang,ZHANG Xin?zhi,et al.Analysis on stability of narrow coal pillar influenced by main roof fracture structure of gob?side roadway[J].Coal Science and Technology,2014,42(2):19-22.
[10]王紅勝,張東升,李樹剛,等.基于基本頂關(guān)鍵巖塊B斷裂線位置的窄煤柱合理寬度的確定[J].采礦與安全工程學(xué)報(bào),2014,31(1):10-16.WANG Hong?sheng,ZHANG Dong?sheng,LI Shu?gang,et al.Rational width of narrow coal pillar based on the fracture line location of key rock B in main roof[J].Journal of Mining & Safety Engineering,2014,31(1):10-16.
[11]ZHANG Zhi?yi,ZHANG Nong,Hideki Shimada,et al.Optimization of hard roof structure over retained goaf?side gateroad by pre?split blasting technology[J].International Journal of Rock Mechanics and Mining Sciences,
2017,100:330-337.
[12]WANG Qi,HE Man?chao,YANG Jun,et al.Study of a no?pillar mining technique with automatically formed gob?side entry retaining for longwall mining in coal mines[J].International Journal of Rock Mechanics and Mining Sciences,2018,110:1-8.
[13]周思友.大傾角中厚煤層拱形斷面復(fù)合沿空留巷技術(shù)[J].煤炭科學(xué)技術(shù),2015,43(S1):67-69.ZHOU Si?you.Compound gob?side entry retaining technology of large dip angle and thick coal seam with arch section[J].Coal Science and Technology,2015,43(S1):67-69.
[14]王?勝,許德新,馬?驥,等.松軟破碎圍巖回采巷道支護(hù)技術(shù)研究[J].煤礦開采,2017,22(1):69-72.WANG Sheng,XU De?xin,MA Ji,et al.Supporting technique of mining roadway with soft and broken surrounding rock[J].Coal Mining Technology,2017,22(1):69-72.
[15]侯?健.楊家村礦弱膠結(jié)軟巖大斷面煤巷失穩(wěn)機(jī)制及支護(hù)技術(shù)[D].北京:中國(guó)礦業(yè)大學(xué)(北京),2017.HOU Jian.Support technology and instability mechanism of large section coal roadway with weakly cemented soft rock in Yangjiacun mine[D].Beijing:China University of Mining & Technology(Beijing),2017.
[16]郜明明.整合礦井沿空巷道圍巖破壞機(jī)制及支護(hù)優(yōu)化[J].中國(guó)礦業(yè),2017,26(7):105-110.GAO Ming?ming.Failure mechanism of roadway surrounding rock in integration mine and its support optimization[J].China Mining Magazine,2017,26(7):105-110.
[17]LIU Gang,LONG Jing?kui,CAI Hong?du,et al.Design method of synergetic support for coal roadway[J].Procedia Earth and Planetary Science,
2009,1(1):524-529.
[18]XIE Wen?bing,JING Sheng?guo,REN You?kui,et al.The invalidation mechanism of bolt?mesh support in soft coal roadway[J].Procedia Earth and Planetary Science,2009,1(1):384-389.
[19]谷拴成,王恩波,史向東.層狀巖體中拱形巷道拱肩破壞機(jī)理分析[J].煤礦安全,2014,45(11):172-175.GU Shuan?cheng,WANG En?bo,
SHI Xiang?dong.Spandrel failure mechanism analysis of arched roadway in layered rock mass[J].Journal of Coal Mine Safety,2014,45(11):172-175.