李云鵬 崔峰 楊文化 尉遲小騫
摘 要:為研究急斜特厚煤層開采過程中殘留煤柱的穩(wěn)定性及其應(yīng)力異常區(qū)引起的回采安全問題,以烏魯木齊礦區(qū)烏東煤礦南采區(qū)87°急斜特厚煤層為研究背景,運(yùn)用塊體理論構(gòu)建了殘留煤柱滑移失穩(wěn)力學(xué)模型,采用FLAC3D數(shù)值模擬軟件分析開采擾動下殘留煤柱的應(yīng)力演化特征,提出了殘留煤柱分段深孔爆破弱化的卸壓措施。結(jié)果表明:當(dāng)煤層傾角α,頂板側(cè)圍巖與殘留煤柱的摩擦系數(shù)μ1,底板側(cè)圍巖與殘留煤柱的摩擦系數(shù)μ2之間滿足α>arctan(μ1+μ2)時(shí),殘留煤柱將發(fā)生滑移失穩(wěn);殘留煤柱易使頂?shù)装鍛?yīng)力狀態(tài)改變,在開采擾動和頂?shù)装甯邞?yīng)力雙重作用下,殘留煤柱極易誘發(fā)動力災(zāi)害;卸壓措施有效削減殘留煤柱內(nèi)部儲存的應(yīng)力強(qiáng)度,降低動力災(zāi)害的發(fā)生頻率,實(shí)現(xiàn)工作面安全通過煤柱危險(xiǎn)區(qū)域。
關(guān)鍵詞:急斜特厚煤層;殘留煤柱;力學(xué)模型;動力災(zāi)害中圖分類號:TD 353
文獻(xiàn)標(biāo)志碼:A
文章編號:1672-9315(2021)04-0657-08
DOI:10.13800/j.cnki.xakjdxxb.2021.0411開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):
Stability analysis and dynamic disasters prevention of residual coal
pillar in steeply inclined and extremely thick coal seam
LI Yunpeng1,CUI Feng2,3,YANG Wenhua2,3,YUCHI Xiaoqian2,3
(1.Department of Resources and Civil Engineering,Yantai Gold College,Yantai? 265401,China;
2.College of Energy Science and Engineering,Xian University of Science and Technology,Xian 710054,China;
3.Key Laboratory of Western Mine Exploitation and Hazard Prevention,Ministry of Education,
Xian University of Science and Technology,Xian 710054,China)
Abstract:In order to study the stability of residual coal pillars and the safety problems caused by abnormal stress areas during the mining of steep and extra-thick coal seams,this paper takes the 87° steep extra thick coal seam,which was in the south mining area of Wudong coal mine in Urumqi mining area,as the research objects.The mechanical model is constructed of sliding instability of residual coal pillar using the block theory,and then the stress evolution characteristics are analyzed of the residual coal pillar during the mining disturbance adapting FLAC3D numerical simulation software.
The suggestion is made to use the segmentation of residual coal pillar to pressure relief measures for weakening of deep hole blasting.The results show that when the dip angle of coal seam α,friction coefficient between surrounding rock on roof side and residual coal pillar μ1,friction coefficient between surrounding rock and residual coal pillar at floor side μ2,meet with α>arctan(μ1+μ2),the residual coal pillar will slide and lose stability;residual coal pillar is easy to change the stress state of roof and floor,so under the dual action of mining disturbance and high stress of roof and floor,residual coal pillar tends to induce dynamic disaster; pressure relief measures effectively reduce the internal storage of residual coal pillar.The stress intensity reduces the frequency of dynamic disasters and ensures the safety of working face passing through the dangerous area of coal pillar.Key words:steeply inclined and extremely thick coal seam;residual coal pillar;mechanical model;dynamic disasters
0 引 言烏魯木齊礦區(qū)急斜特厚煤層占世界急傾斜煤層儲量的30%,煤層傾角45°~87°,煤層賦存環(huán)境復(fù)雜多變[1-5],其開采工藝與近水平煤層相差甚大,動力災(zāi)害頻發(fā)[6-12]。隨采深的增加,歷史殘留煤柱頂?shù)装鍏^(qū)域應(yīng)力集中明顯[13-17],嚴(yán)重影響鄰近煤層和殘留煤柱下分段煤層的安全高效開采。目前,許多專家學(xué)者針對殘留煤柱進(jìn)行了多角度的分析研究。秦凱等對近距離煤層群下伏工作面過遺留煤柱異常礦壓顯現(xiàn)規(guī)律進(jìn)行了研究,揭示了下伏工作面進(jìn)集中煤柱異常礦壓的發(fā)生機(jī)理[18];付興玉等對上覆房式采空區(qū)集中煤柱回采動載礦壓問題進(jìn)行了研究,提出了提前爆破集中煤柱的防治措施[19];李春元等根據(jù)殘留煤柱對底板應(yīng)力的擾動規(guī)律,分析計(jì)算了殘留煤柱區(qū)域下伏煤層開采的擾動范圍[20];周連春等采用數(shù)值模擬軟件對煤柱應(yīng)力集中區(qū)的應(yīng)力分布規(guī)律進(jìn)行研究,提出了有效的防范措施[21];馬寧等采用數(shù)值模擬軟件對煤柱的塑性區(qū)和支撐壓力分布演化規(guī)律進(jìn)行研究,提出了回采期間煤柱監(jiān)測和卸壓解危措施[22];周輝等綜合運(yùn)用數(shù)值模擬、理論分析、現(xiàn)場監(jiān)測等研究方法,分析了大采高工作面回撤通道煤柱內(nèi)支撐應(yīng)力及塑性區(qū)分布規(guī)律,建立了“煤柱-頂板”力學(xué)模型[23];于洋等研究了采空區(qū)殘留煤柱的應(yīng)力環(huán)境和變形狀態(tài),分析了不同寬度窄煤柱條件下煤柱的垂直應(yīng)力分布,提出了殘留煤柱內(nèi)巷道圍巖控制原則和技術(shù)[24]。上述專家學(xué)者對煤柱的穩(wěn)定性以及受力狀態(tài)進(jìn)行了大量的研究,但針對急斜特厚煤層殘留煤柱的研究相對較少,以烏魯木齊礦區(qū)南采區(qū)87°特厚煤層為工程背景,通過理論分析、數(shù)值模擬對殘留煤柱的滑移失穩(wěn)以及應(yīng)力演化特征進(jìn)行研究,提出了分段深孔
爆破的卸壓措施,有效降低了動力災(zāi)害的發(fā)生頻率。
1 工程背景烏魯木齊烏東煤礦南采區(qū)總儲量達(dá)4.6億t,主采煤層為B1+2與B3+6這2層平均傾角為87°的急斜特厚煤層,煤層厚度分別為30與40 m,且煤層之間夾雜有50 m厚的層間巖柱,層間巖柱即為B3+6煤層的底板,又為B1+2煤層的頂板。煤層老頂、老底均為粉砂巖,開采工藝為水平分段綜放開采,段高為25 m,采放比達(dá)1
∶7,工作面沿煤層厚度布置。礦井初期為小煤窯倉儲式開采,其中+518至+590水平東三采區(qū)有歷史殘留石門保護(hù)煤柱,殘留煤柱高86 m,最大走向長度124 m。+495水平B3+6煤層回采穿過殘留煤柱時(shí),工作面巷道變形較大,礦壓顯現(xiàn)強(qiáng)烈,殘留煤柱結(jié)構(gòu)下易形成應(yīng)力異常區(qū)進(jìn)而誘發(fā)動力災(zāi)害。殘留煤柱賦存特征如圖1所示。
2 殘留煤柱穩(wěn)定性及力學(xué)特征分析
2.1 殘留煤柱滑移失穩(wěn)力學(xué)模型烏東煤礦南采區(qū)急斜特厚煤層開采工藝和工作面布置與緩斜煤層不同,煤層傾角越大,上覆巖層作用在殘留煤柱沿傾向向下的分力以及殘留煤柱自身重力沿傾向向下的分力則越大。由殘留煤柱賦存結(jié)構(gòu)可以看出,殘留煤柱受頂?shù)装宓膴A持作用,正上方以及前后均為采空區(qū),當(dāng)+495水平B3+6煤層回采穿過殘留煤柱時(shí),其正下方也將成為采空區(qū),此時(shí)則可將殘留煤柱視為一個(gè)塊體。當(dāng)作用在殘留煤柱沿傾向向下的合力大于頂?shù)装鍖ζ淠Σ亮Φ暮狭r(shí),殘留煤柱將沿傾向產(chǎn)生下挫運(yùn)動,發(fā)生滑移失穩(wěn),從而誘發(fā)動力災(zāi)害,殘留煤柱滑移失穩(wěn)力學(xué)簡化模型如圖2所示。
在不考慮水平應(yīng)力的前提下,殘留煤柱受頂板側(cè)上覆巖層非均布載荷q1(x)的作用,設(shè)其合力為F1,殘留煤柱傾角為α,則F1沿殘留煤柱切向分量為F1sinα
,法向分量為F1cosα;設(shè)殘留煤柱受上分段采空區(qū)充填體均布載荷q2的作用,設(shè)其合力為F2,則F2沿殘留煤柱切向分量為F2sinα,法向分量為F2cosα;設(shè)G為殘留煤柱的重力,則重力沿殘留煤柱切向分量為Gsinα,法向分量為Gcosα;設(shè)頂板側(cè)圍巖對殘留煤柱的摩擦力為f1,摩擦系數(shù)為μ1,底板側(cè)圍巖對殘留煤柱的摩擦力為f2,摩擦系數(shù)為μ2;殘留煤柱受底板側(cè)圍巖沿法向均布載荷q3的作用,設(shè)其合力為F3。則當(dāng)殘留煤柱發(fā)生滑移失穩(wěn)時(shí)有如下關(guān)系
F1sinα+F2sinα+Gsinα>f1+f2
f1=μ1F1cosα
f2=μ2(F1cosα+F2cosα+Gcosα)
(1)將(1)式進(jìn)行化簡最終可以得到
F1>
(G+F2)(μ2-tanα)
tanα-μ1-μ2
(2)
式中 F1,G,F(xiàn)2都是恒大于零的常數(shù),煤層傾角α為87°,則分子是恒小于零的常數(shù),要使式(2)恒成立,分母恒大于零時(shí)則等式恒成立,可以得到
α>arctan(μ1+μ2)
(3)當(dāng)α>arctan(μ1+μ2)時(shí)殘留煤柱將產(chǎn)生下挫運(yùn)動,發(fā)生滑移失穩(wěn),從而誘發(fā)動力災(zāi)害。
2.2 殘留煤柱應(yīng)力場分布特征為了獲得隨+495水平B3+6煤層回采穿過殘留煤柱時(shí),殘留煤柱的應(yīng)力演化特征,采用FLAC3D數(shù)值模擬軟件進(jìn)行模擬計(jì)算與分析,模型如圖3所示。煤層傾角為87°,B3+6煤層厚度為40 m,B1+2煤層厚度為30 m,直接頂、直接底厚度為8 m,殘留煤柱高為86 m,層間巖柱厚度為50 m,模型尺寸為246 m×50 m×250 m(X×Y×Z),根據(jù)現(xiàn)場取樣及巖體力學(xué)特性,選用摩爾-庫倫本構(gòu)模型,沿Y方向推進(jìn)。在X方向施加梯度水平應(yīng)力模擬構(gòu)造應(yīng)力對頂?shù)装寮懊簩拥膲毫?,通過室內(nèi)巖石力學(xué)實(shí)驗(yàn)獲得煤巖體力學(xué)參數(shù)見表1。
圖4為+495水平B3+6煤層回采穿過殘留煤柱時(shí),殘留煤柱垂直應(yīng)力與應(yīng)力分布矢量特征。從圖4(a)可以看出,隨+495水平B3+6煤層工作面的推進(jìn),殘留煤柱、B1+2煤層局部區(qū)域在垂直方向上都出現(xiàn)了明顯的應(yīng)力升高特征;隨工作面的走向推進(jìn),殘留煤柱懸空面積會隨之增大,將會促使殘留煤柱下方未采煤體應(yīng)力集中程度進(jìn)一步增大;當(dāng)殘留煤柱在垂直方向上的應(yīng)力超過其承載能力時(shí),將會發(fā)生剪切滑移破壞,從而誘發(fā)動力災(zāi)害;殘留煤柱的存在致使+495水平B3+6煤層工作面頂板相對于殘留煤柱呈現(xiàn)出應(yīng)力降低特征,頂板不易發(fā)生變形,易形成懸空頂板,當(dāng)懸空頂板突然垮落時(shí),將誘發(fā)動力災(zāi)害。從圖4(b)可以看出,殘留煤柱將B3+6煤層上覆巖層的作用力傳遞到了層間巖柱上,即B1+2煤層的頂板上,使得B1+2煤層頂板處局部范圍內(nèi)出現(xiàn)應(yīng)力集中現(xiàn)象,應(yīng)力強(qiáng)度顯著增大。殘留煤柱不僅對+495水平以及+495水平以下B3+6煤層的安全開采有重要影響,還對鄰近B1+2煤層的安全高效開采產(chǎn)生重要影響。因此,必須有效削減殘留煤柱儲存的應(yīng)力強(qiáng)度,進(jìn)而實(shí)現(xiàn)安全高效生產(chǎn)。
3 殘留煤柱動力災(zāi)害防治
3.1 防治措施殘留煤柱的滑移失穩(wěn)以及其所產(chǎn)生的應(yīng)力集中,極易誘發(fā)動力災(zāi)害。工作面的推進(jìn)過程中,現(xiàn)場礦壓顯現(xiàn)強(qiáng)烈,巷道變形破壞嚴(yán)重,為了降低動力災(zāi)害的發(fā)生頻率,確保工作面的安全高效開采,提出了如圖5所示的殘留煤柱分段深孔爆破弱化的卸壓措施。利用東三采區(qū)各分段石門作為爆破工藝巷,對東三采區(qū)殘留煤柱從+590到+518水平自上而下進(jìn)行分段深孔爆破。在+590水平石門布置10排炮孔,排距5m,每排5個(gè)炮孔,總裝藥量25.6 t;+564水平石門布置7排炮孔,排距為7 m,每排6個(gè)炮孔,總裝藥量57.6 t;+541水平石門布置8排炮孔,排距為7 m,每排7個(gè)炮孔,總裝藥量55.2 t;+518水平石門布置11排炮孔,排距為5 m,每排11個(gè)炮孔,總裝藥量67.6 t。
3.2 現(xiàn)場綜合實(shí)測及效果評價(jià)為了確定防治措施的作用效果,在對殘留煤柱實(shí)施分段深孔爆破卸壓后,現(xiàn)場通過鉆孔窺視儀、地質(zhì)雷達(dá)、電磁輻射儀對+495水平工作面前方待采煤體和殘留煤柱進(jìn)行了綜合實(shí)測。為了查看殘留煤柱實(shí)施卸壓措施后,其內(nèi)部的裂隙發(fā)育特征,在+495水平B3巷超前工作面15 m處,通過鉆孔窺視儀對殘留煤柱進(jìn)行鉆孔監(jiān)測,監(jiān)測方案如圖6(a)所示,圖6(b)為現(xiàn)場監(jiān)測結(jié)果??梢钥闯?,0~20 m處孔內(nèi)煤壁相對完整,此處為+495水平待采頂煤,未進(jìn)行深孔爆破;20~30 m處孔內(nèi)煤壁出現(xiàn)大量裂隙,孔壁較為破碎;30~45 m處孔內(nèi)煤壁破碎程度最為嚴(yán)重,說明深孔爆破卸壓措施有效致裂了殘留煤柱。
地質(zhì)雷達(dá)通過發(fā)射高頻電磁脈沖波和接收反射波來形成探測圖像。完整煤體和破碎煤體的介電常數(shù)存在明顯差異性,即存在明顯的分界面,則發(fā)射波遇到不同的分界面將會產(chǎn)生不同的反射波。在+495水平B6巷超前工作面15 m處,通過地質(zhì)雷達(dá)對殘留煤柱進(jìn)行測深60 m、走向測距100 m的平面立體探測,探測方案如圖7(a)所示,圖7(b)為現(xiàn)場探測結(jié)果。可以看出,在測深0~5 m范圍內(nèi)探測圖以紫色、綠色和紅色交錯(cuò)分布,表明此處煤體已發(fā)生破碎,但破碎程度較小,為巷道塑性區(qū)范圍;5~20 m范圍內(nèi)探測圖以紅色為主,相對均勻分布,表明此處煤體較為完整,裂隙發(fā)育較小,因?yàn)榇朔秶饕?495水平待采頂煤,未進(jìn)行深孔爆破;20~50 m范圍內(nèi)探測圖以綠色、黃色和紫色交錯(cuò)分布,顏色變化復(fù)雜且變化程度最大,表明此處煤體破碎程度最為嚴(yán)重,進(jìn)一步說明了卸壓措施有效的致裂了殘留煤柱。
煤巖體內(nèi)部應(yīng)力越大,變形破裂程度將越大,則變形破裂所釋放的電磁輻射能量也就越高,電磁輻射強(qiáng)度與煤巖體內(nèi)部應(yīng)力成正比關(guān)系。現(xiàn)場采用KBD-5電磁輻射儀對+495水平工作面前10~50 m范圍內(nèi)進(jìn)行測點(diǎn)布置,在B6和B3巷各布置5個(gè)測點(diǎn),測點(diǎn)間距10 m,測點(diǎn)隨工作面的推進(jìn)保持隨動狀態(tài),測點(diǎn)布置方案如圖8(a)所示,圖8(b)為31 d的現(xiàn)場持續(xù)監(jiān)測結(jié)果。可以看出,深孔爆破卸壓后,工作面前方待采煤體電磁輻射強(qiáng)度值明顯下降,每天平均強(qiáng)度值小于30 mV,每天強(qiáng)度最大值小于45 mV,遠(yuǎn)小于未實(shí)施卸壓措施前,現(xiàn)場發(fā)生動力災(zāi)害時(shí)的預(yù)警值80 mV,說明卸壓措施有效降低了+495水平工作面前方待采煤體的應(yīng)力強(qiáng)度。
4 結(jié) 論1)運(yùn)用塊體理論構(gòu)建了殘留煤柱滑移失穩(wěn)力學(xué)模型,得出當(dāng)作用在殘留煤柱沿傾向向下的合力大于頂?shù)装鍖ζ淠Σ亮Φ暮狭r(shí),殘留煤柱將發(fā)生滑移失穩(wěn),從而誘發(fā)動力災(zāi)害,并獲得了殘留煤柱滑移失穩(wěn)的必要條件為α>arctan(μ1+μ2)。
2)隨工作面的推進(jìn),殘留煤柱、B1+2煤層局部區(qū)域在垂直方向上出現(xiàn)了明顯的應(yīng)力升高特征;殘留煤柱的存在將使B3+6煤層工作面的頂板側(cè)應(yīng)力降低,易形成懸空頂板;殘留煤柱起到了應(yīng)力傳遞的作用,使B1+2煤層頂板處局部范圍內(nèi)出現(xiàn)應(yīng)力集中現(xiàn)象。3)現(xiàn)場鉆孔窺視儀、地質(zhì)雷達(dá)、電磁輻射儀綜合實(shí)測結(jié)果表明:殘留煤柱分段深孔爆破卸壓措施效果顯著,成功解除了由于上覆殘留煤柱應(yīng)力集中而可能導(dǎo)致工作面回采過程中發(fā)生的動力災(zāi)害,實(shí)現(xiàn)了動力學(xué)破壞過程中儲能的改變與轉(zhuǎn)移。
參考文獻(xiàn)(References):
[1]
張宏偉,榮海,陳建強(qiáng),等.基于地質(zhì)動力區(qū)劃的近直立特厚煤層沖擊地壓危險(xiǎn)性評價(jià)[J].煤炭學(xué)報(bào),2015,40(12):2755-2762.ZHANG Hongwei,RONG Hai,CHEN Jianqiang,et al.Risk assessment of rockburst based on geo-dynamic division method in suberect and extremely thick coal seam[J].
Journal of China Coal Society
,2015,40(12):2755-2762.
[2]來興平,李云鵬,王寧波,等.基于梁結(jié)構(gòu)的急斜煤層綜放工作面頂板變形特征[J].采礦與安全工程學(xué)報(bào),2015,32(6):871-876.LAI Xingping,LI Yunpeng,WANG Ningbo,et al.Roof deformation characteristics with full-mechanized caving face based on beam structure in extremely inclined coal seam[J].Journal of Mining and Safety Engineering,2015,32(6):871-876.
[3]鞠文君,李前,魏東,等.急傾斜特厚煤層水平分層開采礦壓特征[J].煤炭學(xué)報(bào),2006,31(5):558-561.JU Wenjun,LI Qian,WEI Dong,et al.Pressure character in caving steep-inclined and extremely thick coal seam with horizontally grouped top-coal drawing mining method[J].Journal of China Coal Society,2006,31(5):558-561.
[4]王寧波,張農(nóng),崔峰,等.急傾斜特厚煤層綜放工作面采場運(yùn)移與巷道圍巖破裂特征[J].煤炭學(xué)報(bào),2013,38(8):1312-1318.WANG Ningbo,ZHANG Nong,CUI Feng,et al.Characteristics of stope migration and roadway surrounding rock fracture for fully-mechanized top-coal caving face in steeply dipping and extra-thick coal seam[J].Journal of China Coal Society,2013,38(8):1312-1318.
[5]劉旭東.烏東煤礦南區(qū)急傾斜特厚煤層沖擊地壓發(fā)生機(jī)理與防治研究[J].煤炭工程,2016,48(1):62-65.LIU Xudong.Study on occurring mechanism and prevention of rock burst in extra-thick steep coal seam in southern area of Wudong coal mine[J].Coal Engineering,2016,48(1):62-65.
[6]來興平,楊毅然,陳建強(qiáng),等.急斜特厚煤層群采動應(yīng)力畸變致誘動力災(zāi)害控制[J].煤炭學(xué)報(bào),2016,41(7):1610-1616.LAI Xingping,YANG Yiran,CHEN Jianqiang,et al.Control of dynamic hazards induced by mining stress distortion in extremely steep and thick coal seams[J].Journal of China Coal Society,2016,41(7):1610-1616.
[7]來興平,孫歡,蔡明,等.急斜煤層淺轉(zhuǎn)深綜放開采煤巖動力災(zāi)害誘發(fā)機(jī)理[J].西安科技大學(xué)學(xué)報(bào),2017,37(3):305-311.
LAI Xingping,SUN Huan,CAI Ming,et al.Mechanism of dynamic hazards due to coal and rock mass instability in extremely steep coal seams with the deepening mining[J].Journal of Xian University of Science and Technology,2017,37(3):305-311.
[8]藍(lán)航,杜濤濤.急傾斜特厚煤層開采沖擊地壓發(fā)生過程監(jiān)測與分析[J].煤炭科學(xué)技術(shù),2016,44(6):78-82.LAN Hang,DU Taotao.Monitoring and analysis of rock burst process during steeply inclined and ultra thick seam mining[J].Coal Science and Technology,2016,44(6):78-82.
[9]來興平,王寧波,胥海東,等.復(fù)雜環(huán)境下急傾斜特厚煤層安全開采[J].北京科技大學(xué)學(xué)報(bào),2009,31(3):277-280.LAI Xinping,WANG Ningbo,XU Haidong,et al.Safety top-coal-caving of heavy and steep coal seams under complex environment[J].Journal of University of Science and Niversity Beijing,2009,31(3):277-280.
[10]楊磊,藍(lán)航,杜濤濤.特厚近直立煤層上覆煤柱誘發(fā)沖擊地壓的機(jī)制研究及應(yīng)用[J].煤礦開采,2015,20(2):75-77.YANG Lei,LAN Hang,DU Taotao.Mechanism of rock-burst induced by overlying coal-pillar in extremely-thick and sub-erect coal-seam[J].Coal Mining Technology,2015,20(2):75-77.
[11]秦子晗,杜濤濤,楊磊.急傾斜特厚煤層開采的動力災(zāi)害防治技術(shù)研究[J].中國煤炭,2015,41(12):57-59.QIN Zihan,DU Taotao,YANG Lei.Study on prevention and control technology for dynamic disaster of steeply inclined and extremely thick coal seam[J].China Coal,2015,41(12):57-59.
[12]曹建濤,來興平,崔峰,等.急斜特厚煤層開采擾動區(qū)(MDZ)煤巖體動力學(xué)變形失穩(wěn)過程分析[J].西安科技大學(xué)學(xué)報(bào),2015,35(4):397-402.CAO Jiantao,LAI Xingping,CUI Feng,et al.Characteristics on dynamical deformation and instability of coal and rock mass in Mining Disturbed Zone(MDZ)of steeply dipping heavy thick coal seams mining[J].Journal of Xian University of Science and Technology,2015,35(4):397-402.
[13]曹建濤,來興平,閆瑞兵.急斜煤層殘留高階段煤柱動力失穩(wěn)機(jī)理研究[J].采礦與安全工程學(xué)報(bào),2018,35(1):133-139.CAO Jiantao,LAI Xingping,YAN Ruibing.Research and application of non-pillar mining technology in high cutting working face of thick coal seam[J].Journal of Mining and Safety Engineering,2018,35(1):133-139.
[14]謝廣祥,楊科,劉全明.綜放面傾向煤柱支承壓力分布規(guī)律研究[J].巖石力學(xué)與工程學(xué)報(bào),2006,25(3):545-549.XIE Guangxiang,YANG Ke,LIU Quanming.Study on distribution laws of stress in inclined coal pillar for fully-mechanized top-coal caving face[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(3):545-549.
[15]陳建強(qiáng),閆瑞兵,劉昆輪.烏魯木齊礦區(qū)沖擊地壓危險(xiǎn)性評價(jià)方法研究[J].煤炭科學(xué)技術(shù),2018,46(10):22-29.
CHEN Jianqiang,YAN Ruibing,LIU Kunlun.Study on evaluation method of rock burst danger in Urumqi Mining Area[J].Coal Science and Technology,2018,46(10):22-29.
[16]程蓬.近距離煤層煤柱集中應(yīng)力傳遞及巷道分區(qū)支護(hù)對策研究[J].煤礦開采,2016,21(6):31-34.CHENG Peng.Stress concentration transmission of coal pillar with contiguous coal seam and roadway partitioned supporting measures[J].Coal Mining Technology,2016,21(6):31-34.
[17]賈尚偉,樊志剛,宋祖光,等.近距離煤層殘留煤柱下底板應(yīng)力分析及回采巷道合理布置[J].煤炭工程,2020,52(10):11-15.JIA Shangwei,F(xiàn)AN Zhigang,SONG Zuguang,et al.Floor stress analysis and mining roadway reasonable layout under residual coal pillar floor in lower seam of continuous coal seams[J].Coal Engineering,2020,52(10):11-15.
[18]秦凱,王健達(dá),李宏艷,等.集中煤柱誘發(fā)下伏近距離煤層異常礦壓及機(jī)理研究[J].煤炭科學(xué)技術(shù),2019,47(8):102-107.QIN Kai,WANG Jianda,LI Hongyan,et al.Study on abnormal mine pressure and mechanism of near-distance coal seam induced by concentrated coal pillar[J].Coal Science and Technology,2019,47(8):102-107.
[19]付興玉,李宏艷,李鳳明,等.房式采空區(qū)集中煤柱誘發(fā)動載礦壓機(jī)理及防治[J].煤炭學(xué)報(bào),2016,41(6):1375-1383.
FU Xingyu,LI Hongyan,LI Fengming,et al.Mechanism and prevention of strong strata behaviors induced by the concentration coal pillar of a room mining goaf[J].Journal of China Coal Society,2016,41(6):1375-1383.
[20]李春元,王泓博,石瑤玉.上覆遺留區(qū)段煤柱對下伏煤層開采擾動影響研究[J].煤炭科學(xué)技術(shù),2020,48(3):232-239.LI Chunyuan,WANG Hongbo,SHI Yaoyu.Study on disturbing influence of overlying remaining coal pillars on underlying coal seam mining[J].Coal Science and Technology,2020,48(3):232-239.
[21]周連春,李望,王琰.上覆煤層煤柱下采掘工作面應(yīng)力分布規(guī)律研究[J].煤炭工程,2020,52(5):121-125.ZHOU Lianchun,LI Wang,WANG Yan.Stress distribution law of mining face under coal pillar of overlying coal seam[J].Coal Engineering,2020,52(5):121-125.
[22]馬寧,張臣,賈江鋒.上分層遺留煤柱影響下工作面安全回采研究[J].煤礦安全,2019,50(12):192-196.MA Ning,ZHANG Chen,JIA Jiangfeng.Study on safe mining of working face under the influence of upper stratified coal pillar[J].Safety in Coal Mines,2019,50(12):192-196.
[23]周輝,謝福星.大采高工作面回撤通道間隔煤柱失穩(wěn)機(jī)理[J].煤礦安全,2019,50(10):216-220.ZHOU Hui,XIE Fuxing.Study on failure mechanism of interval coal pillar in withdrawal channel of large mining height working face[J].Safety in Coal Mines,2019,50(10):216-220.
[24]于洋,陳勇,趙祥岍.采空區(qū)殘留煤柱內(nèi)巷道布置與圍巖控制技術(shù)[J].煤炭工程,2019,51(9):66-69.YU Yang,CHEN Yong,ZHAO Xiangqian.Roadway layout and surrounding rock control technology in gob residual pillar[J].Coal Engineering,2019,51(9):66-69.