国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于生物絮團(tuán)技術(shù)構(gòu)建的零換水養(yǎng)殖系統(tǒng)對(duì)凡納濱對(duì)蝦高密度養(yǎng)殖效果分析

2019-09-10 07:22范鵬程徐武杰文國樑徐煜許云娜李卓佳楊鏗張建設(shè)曹煜成

范鵬程 徐武杰 文國樑 徐煜 許云娜 李卓佳 楊鏗 張建設(shè) 曹煜成

摘要:【目的】探討在零換水條件下開展凡納濱對(duì)蝦高密度養(yǎng)殖的可行性,為后續(xù)推動(dòng)對(duì)蝦零換水高效健康養(yǎng)殖模式的規(guī)?;a(chǎn)業(yè)應(yīng)用提供參考依據(jù)?!痉椒ā坎捎梅忾]式串聯(lián)養(yǎng)殖池系統(tǒng),凡納濱對(duì)蝦蝦苗放養(yǎng)密度690尾/m3,養(yǎng)殖周期91 d(13周),以生物絮團(tuán)技術(shù)調(diào)控養(yǎng)殖水質(zhì),養(yǎng)殖全程不換水,定期監(jiān)測(cè)與分析養(yǎng)殖水體主要水質(zhì)指標(biāo)及細(xì)菌數(shù)量的動(dòng)態(tài)變化特征?!窘Y(jié)果】經(jīng)13周的零換水養(yǎng)殖后,凡納濱對(duì)蝦平均存活率為(83.90±2.74)%,收獲規(guī)格平均為14.50±0.99 g/尾,單位水體對(duì)蝦產(chǎn)量平均為8.39±0.48 kg/m3,飼料系數(shù)平均為1.25±0.06,養(yǎng)殖對(duì)蝦單產(chǎn)平均耗水量為120.00±6.38 L/kg。從養(yǎng)殖第7周起,水體中生物絮團(tuán)量維持在18.2~30.4 mL/L,pH基本維持在7.31~7.60,總堿度在116~224 mg/L范圍內(nèi)波動(dòng)變化,總氨氮(TAN)濃度降低至0.45 mg/L以下并保持至試驗(yàn)結(jié)束,亞硝酸鹽氮(NO2--N)濃度保持低于0.70 mg/L,硝酸鹽氮(NO3?-N)濃度呈持續(xù)上升趨勢(shì),至試驗(yàn)結(jié)束時(shí)接近135.0 mg/L。養(yǎng)殖水體中的異養(yǎng)細(xì)菌和弧菌數(shù)量均呈先升高后降低的變化趨勢(shì),其中,異養(yǎng)細(xì)菌從第9周后一直維持在×106 CFU/mL的數(shù)量級(jí)水平,弧菌從第7周后一直維持在×102 CFU/mL的數(shù)量級(jí)水平。【結(jié)論】科學(xué)運(yùn)用生物絮團(tuán)技術(shù)對(duì)凡納濱對(duì)蝦養(yǎng)殖水質(zhì)進(jìn)行原位調(diào)控能實(shí)現(xiàn)高密度零換水的高效健康養(yǎng)殖,還可有效提高水資源的利用效率,有助于推動(dòng)對(duì)蝦養(yǎng)殖產(chǎn)業(yè)的綠色健康發(fā)展。

關(guān)鍵詞: 凡納濱對(duì)蝦;高密度養(yǎng)殖;零換水;微生物調(diào)控;生物絮團(tuán)

中圖分類號(hào): S966.129? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2019)12-2833-08

Production trial and analysis of Litopenaeus vannamei based on biofloc technology at a high density in zero-water exchange systems

FAN Peng-cheng1,2, XU Wu-jie2,3, WEN Guo-liang1,2, XU Yu2,3, XU Yun-na2, LI Zhuo-jia2, YANG Keng2, ZHANG Jian-she1, CAO Yu-cheng1,2,3*

(1Zhejiang Ocean University/National Marine Facility Breeding Engineering Technology Research Center,Zhoushan, Zhejiang? 316022, China; 2South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/ Guangdong Key Laboratory of Fishery Ecology and Environment/Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou? 510300, China; 3Shenzhen

Experimental Base, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences,Shenzhen,Guangdong? 518121, China)

Abstract:【Objective】This study discussed the feasibility of zero-water exchange for high density culture of Litopenaeus vannamei, in order to provide reference for future promotion of large-scale industrial application of the environment friendly and high effective aquaculture. 【Method】In this trial, a closed cascaded ponds system was adopted, the stocking density of L. vannamei was 690 ind/m3, and the culture period was 91 d(13 weeks). Biofloc technology was used to control the water quality of pond systems, and no water was exchanged during the whole culture period. Key water quality parameters and dynamic change of bacteria volume were regularly monitored and analyzed. 【Result】After the 13 weeks(91 d) zero-water exchange culture, the average yield was 8.39±0.48 kg/m3 with an average weight of 14.50±0.99 g/ind, and an average survival rate of (83.9±2.74)%. The feed coefficient was 1.25±0.06 and average water volume used for producing 1 kg shrimps was 120.00±6.38 L/kg. Seven weeks after the start of the trial, the bioflocs volume in the culture water was 18.2-30.4 mL/L, pH remained at 7.31-7.60, total alkali showed no obvious fluctuation regulation within the range of 116-224 mg/L. The concentrations of ammonia nitrogen(TAN) and nitrite nitrogen(NO2--N) were kept below 0.45 mg/L and 0.70 mg/L respectively till the end of the experiment. The concentration of nitrite nitrogen(NO3--N) showed an escalating trend, reaching 135.0 mg/L in the end. The quantity variation of the heterotrophic bacteria and vibrio in water increased at the initial stage and then decreased, with the former maintaining at the level of ×106 CFU/mL since the 9th week and the latter at the level of ×102 CFU/mL since the 7th week. 【Conclusion】Scientific application of biofloc technology for water quality control in situ can realize efficient and healthy aquaculture of L. vannamei in zero-water exchange systems, and meanwhile improve the utilization efficiency of water resources, thereby helping to drive the sustaina-ble development of shrimp aquaculture industry.

Key words: Litopenaeus vannamei; high density production; zero-water exchange; microbial regulation; biofloc

0 引言

【研究意義】近年來,因?qū)ξr養(yǎng)殖病害頻發(fā)及水體環(huán)境不斷惡化(曹伏龍等,2015),傳統(tǒng)的池塘養(yǎng)蝦產(chǎn)量和穩(wěn)定性受到明顯影響。在傳統(tǒng)的集約化養(yǎng)殖過程中一旦管理不善或受不良天氣條件影響,池塘極易形成以微囊藻或顫藻等有害微藻為優(yōu)勢(shì)的水體環(huán)境,或形成以副溶血弧菌等病原菌為優(yōu)勢(shì)的微生物環(huán)境,進(jìn)而嚴(yán)重影響?zhàn)B殖對(duì)蝦的成活率及產(chǎn)量。在水體環(huán)境管理良好的池塘中,其養(yǎng)殖對(duì)蝦成活率及產(chǎn)量分別較管理不善的池塘提高18.0%~19.4%和19.7%~23.3%(Cao et al.,2014)。據(jù)報(bào)道,2013年因受不良菌藻環(huán)境誘發(fā)的對(duì)蝦肝胰腺壞死綜合癥影響,全球?qū)ξr養(yǎng)殖產(chǎn)量下降23%,其中,我國養(yǎng)殖對(duì)蝦產(chǎn)量下跌超過13%,泰國下降幅度超過54%,越南對(duì)蝦養(yǎng)殖區(qū)減產(chǎn)68%(文國樑等,2015)。因此,發(fā)展并推廣對(duì)蝦零換水養(yǎng)殖模式以提高對(duì)蝦養(yǎng)殖產(chǎn)量與節(jié)約水資源,降低對(duì)蝦養(yǎng)殖對(duì)周邊水環(huán)境的影響及減少病原微生物侵入,已勢(shì)在必行?!厩叭搜芯窟M(jìn)展】零換水養(yǎng)殖模式主要通過循環(huán)水養(yǎng)殖系統(tǒng)來實(shí)現(xiàn),分原位水處理和異位水處理兩種方式(曹煜成等,2006;宿墨,2017)。異位水處理系統(tǒng)雖然實(shí)現(xiàn)養(yǎng)殖過程零換水且自動(dòng)化水平相對(duì)較高,但該模式的水處理過程需配備大量相關(guān)設(shè)備設(shè)施,初次成本投入高,占地面積大,對(duì)養(yǎng)殖管理人員的技術(shù)水平要求也相對(duì)較高(張慶文等,2002;劉鷹等,2005),其高投入、高技術(shù)和高風(fēng)險(xiǎn)的特點(diǎn)限制了該系統(tǒng)大規(guī)模推廣應(yīng)用(孟慶武等,2008;劉晃等,2009)?;谏镄鯃F(tuán)技術(shù)的對(duì)蝦原位水處理養(yǎng)殖模式可將對(duì)蝦養(yǎng)殖過程中產(chǎn)生的代謝產(chǎn)物及水體中的氨氮和亞硝酸鹽等有毒有害物質(zhì),直接在養(yǎng)殖池中及時(shí)分解轉(zhuǎn)化,無需再經(jīng)過濾、生物基反應(yīng)和消毒等復(fù)雜處理環(huán)節(jié)(羅亮等,2013;Avnimelech,2015)。國外已有研究表明,生物絮團(tuán)技術(shù)在水產(chǎn)養(yǎng)殖中能起到有效的水質(zhì)凈化作用(Hari et al.,2006;Azim and Little,2008)。Crab等(2007)研究認(rèn)為,與傳統(tǒng)的生物濾池、固著生物等水處理技術(shù)相比,生物絮團(tuán)技術(shù)不僅可保持養(yǎng)殖水體良好的水質(zhì),還能提供天然營養(yǎng)來源和提高飼料營養(yǎng)利用。在國內(nèi),趙大虎等(2014)研究表明,生物絮團(tuán)在對(duì)蝦養(yǎng)殖過程中能有效降低水中的氨氮含量,進(jìn)而提高蝦體免疫活性和解毒代謝能力;李奕雯和徐武杰(2016)報(bào)道,采用單池100 m3的跑道池結(jié)合生物絮團(tuán)技術(shù)進(jìn)行對(duì)蝦養(yǎng)殖,其產(chǎn)量可達(dá)6.0 kg/m3,且在未配置復(fù)雜水處理設(shè)施的條件下僅利用微生物定向培養(yǎng)也能實(shí)現(xiàn)養(yǎng)殖全程零換水;李曉梅和郭體環(huán)(2017)研究表明,生物絮團(tuán)在凡納濱對(duì)蝦養(yǎng)殖過程中發(fā)揮去除氨氮和亞硝酸氮的作用,并建議利用生物絮團(tuán)技術(shù)進(jìn)行水產(chǎn)養(yǎng)殖時(shí)應(yīng)提前培養(yǎng)好生物絮團(tuán)再投苗,使生物絮團(tuán)對(duì)氨氮和亞硝酸氮的去除作用得到更好的發(fā)揮?!颈狙芯壳腥朦c(diǎn)】目前,我國沿海地區(qū)眾多養(yǎng)殖戶將原用于苗種繁育的水泥池改為對(duì)蝦養(yǎng)殖池,其生產(chǎn)過程中主要以大量換水方式進(jìn)行水質(zhì)控制,既不符合產(chǎn)業(yè)綠色可持續(xù)發(fā)展的要求,也不利于對(duì)蝦病害的防控,因此亟需對(duì)該養(yǎng)殖技術(shù)模式進(jìn)行改造升級(jí)。生物絮團(tuán)技術(shù)可實(shí)現(xiàn)零換水的集約化養(yǎng)殖,為上述問題的解決提供良好技術(shù)解決方案?!緮M解決的關(guān)鍵問題】在前人研究(趙大虎等,2014;李奕雯和徐武杰,2016;李曉梅和郭體環(huán),2017)的基礎(chǔ)上,對(duì)廢舊的水產(chǎn)育苗水泥池進(jìn)行改造升級(jí),構(gòu)建由室內(nèi)水泥池、循環(huán)水泵、氣水混合射流器增氧系統(tǒng)和絮團(tuán)顆粒去除裝置等組成的封閉式高效養(yǎng)殖系統(tǒng),并進(jìn)行凡納濱對(duì)蝦高密度養(yǎng)殖試驗(yàn),定期監(jiān)測(cè)與分析養(yǎng)殖水體主要水質(zhì)指標(biāo)及細(xì)菌數(shù)量的動(dòng)態(tài)變化特征,探討在零換水條件下開展對(duì)蝦高密度養(yǎng)殖的可行性,為后續(xù)推動(dòng)對(duì)蝦零換水高效健康養(yǎng)殖模式的規(guī)模化產(chǎn)業(yè)應(yīng)用提供參考依據(jù)。

1 材料與方法

1. 1 零換水養(yǎng)殖試驗(yàn)系統(tǒng)

試驗(yàn)在廣東汕尾市施公寮村對(duì)蝦養(yǎng)殖基地進(jìn)行。12個(gè)試驗(yàn)池均為圓弧切角正方形水泥池,池內(nèi)邊長5.5 m,邊高0.8 m,中間高1.05 m,池中間留有排水口,養(yǎng)殖過程中以文丘里射流器進(jìn)行水體增氧,使水體溶解氧穩(wěn)定在4~8 mg/L。共設(shè)4組簡(jiǎn)易型內(nèi)循環(huán)水養(yǎng)殖池系統(tǒng)(各組均為平行組),各試驗(yàn)池系統(tǒng)均由3個(gè)池串聯(lián)組成(圖1),配置1臺(tái)1.5 kW的循環(huán)水泵,1個(gè)120 L的生物絮團(tuán)沉淀桶,每個(gè)池布置4個(gè)射流器,分別安裝在池底四角位置,每個(gè)射流器均與循環(huán)水管及循環(huán)水泵聯(lián)通,養(yǎng)殖中后期利用沉淀桶調(diào)控水體中的生物絮團(tuán)數(shù)量。養(yǎng)殖池系統(tǒng)頂部設(shè)鋼架大棚,棚頂覆蓋半透明塑料膜,四周敞開通風(fēng),以避免雨水對(duì)養(yǎng)殖水體的影響。

1. 2 凡納濱對(duì)蝦養(yǎng)殖管理

各組池于4月17日引入28‰的砂濾海水,池水深0.8 m,以8 mg/L二氧化氯消毒水體24 h,曝氣36 h,待水中余氯散除后,各池均添加芽孢桿菌、光合細(xì)菌及硝化菌制劑(用于人工誘導(dǎo)培育水體初始菌群),每類菌的添加濃度均為103 CFU/mL,同時(shí)添加5 g/m3紅糖用于益生菌培養(yǎng)。添加的功能益生菌包括地衣芽孢桿菌(Bacillus licheniformis)、沼澤紅假單胞菌(Rhodopseudomonas palustris)、玫瑰紅紅球菌(Rhodococcus rhodochrous)、嗜鹽堿外硫紅螺菌(Ectothiorhodospira haloalkaliphila)和海水硝酸鹽還原菌(Nitratireductor aquimarinus)等;以上菌種均由中國水產(chǎn)科學(xué)研究院南海水產(chǎn)研究所海水池塘養(yǎng)殖生態(tài)調(diào)控功能實(shí)驗(yàn)室提供。5 d后各池按690 尾/m3的密度分別放入凡納濱對(duì)蝦PL7蝦苗。試驗(yàn)期間每天定時(shí)觀察對(duì)蝦攝食、活動(dòng)及蛻皮等情況,投喂優(yōu)質(zhì)配合飼料(5次/d),并根據(jù)水體生物絮團(tuán)形成情況,在放苗后30 d內(nèi)每天按飼料投喂量的50%補(bǔ)充投入紅糖,同時(shí)接入實(shí)驗(yàn)室馴化培養(yǎng)的硝化菌,待水體形成以硝化菌團(tuán)為優(yōu)勢(shì)的生物絮團(tuán)后逐步停止添加紅糖。養(yǎng)殖過程中,通過添加碳酸鈉溶液和生石灰水調(diào)節(jié)水體pH和總堿度;養(yǎng)殖中后期以沉淀桶控制水體中的生物絮團(tuán)濃度穩(wěn)定在15~20 mL/L。養(yǎng)殖全程不換水,僅以少量淡水補(bǔ)充因蒸發(fā)損失的水量。

1. 3 水質(zhì)監(jiān)測(cè)及微生物測(cè)定

試驗(yàn)期間每天定時(shí)測(cè)定各組池水的溫度、鹽度、溶解氧濃度及pH;每周取水樣分別測(cè)定水體中的生物絮團(tuán)、總堿度、總氨氮(Total ammonium-nitrogen,TAN)、亞硝酸鹽氮(NO2?-N)、硝酸鹽氮(NO3?-N)及異養(yǎng)細(xì)菌和弧菌的濃度。其中,生物絮團(tuán)量參考Xu等(2013)的方法進(jìn)行測(cè)定,其他指標(biāo)參考GB 17378.4—2007《海洋監(jiān)測(cè)規(guī)范第4部分:海水分析》進(jìn)行測(cè)定。

1. 4 對(duì)蝦生產(chǎn)性能指標(biāo)測(cè)定

養(yǎng)殖91 d后進(jìn)行對(duì)蝦個(gè)體稱重,并計(jì)算存活率、單位產(chǎn)量、飼料系數(shù)及耗水量等相關(guān)指標(biāo)。

存活率(%)=初始放苗數(shù)量/(收獲蝦產(chǎn)量/收獲

蝦均重)×100

單位產(chǎn)量(kg/m3)=收獲蝦產(chǎn)量/養(yǎng)殖水體體積

飼料系數(shù)=飼料投入量/收獲蝦產(chǎn)量

耗水量(L/kg)=養(yǎng)殖水體使用量/收獲蝦產(chǎn)量

1. 5 統(tǒng)計(jì)分析

采用Excel 2010對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,并繪制水質(zhì)指標(biāo)和細(xì)菌數(shù)量變動(dòng)曲線圖。

2 結(jié)果與分析

2. 1 凡納濱對(duì)蝦養(yǎng)殖生產(chǎn)性能分析

試驗(yàn)初始放養(yǎng)對(duì)蝦蝦苗密度為690尾/m3,經(jīng)13周(91 d)的零換水系統(tǒng)養(yǎng)殖后,對(duì)蝦平均存活率為(83.90±2.74)%,收獲規(guī)格平均為14.50±0.99 g/尾,單位水體對(duì)蝦產(chǎn)量平均為8.39±0.48 kg/m3,飼料系數(shù)平均為1.25±0.06,養(yǎng)殖對(duì)蝦單產(chǎn)平均耗水量為120.00±6.38 L/kg(表1)。與楊菁等(2010)報(bào)道的對(duì)蝦工程化循環(huán)水養(yǎng)殖試驗(yàn)結(jié)果相比,本研究的總體養(yǎng)殖效果良好,尤其是在養(yǎng)殖全程零換水的條件下,養(yǎng)成對(duì)蝦單位產(chǎn)量耗水量明顯降低,有效提升水資源的利用效率(表2)。

2. 2 主要水質(zhì)指標(biāo)的變動(dòng)趨勢(shì)

養(yǎng)殖期間,各試驗(yàn)池水體的鹽度、水溫及溶解氧濃度變動(dòng)范圍如表3所示,均可滿足凡納濱對(duì)蝦健康生長的需求。各試驗(yàn)池水體中生物絮團(tuán)量在前期呈逐漸上升趨勢(shì),從第7周起維持在18.2~30.4 mL/L(圖2-A);pH整體上呈逐漸下降趨勢(shì),至7周后基本維持在7.31~7.60(圖2-B);總堿度在116~224 mg/L范圍內(nèi)波動(dòng)變化(圖2-C);TAN濃度在6周前均呈先上升后下降的變化趨勢(shì),分別于第3~5周時(shí)相繼出現(xiàn)峰值,最高值為4.80 mg/L,至第6周時(shí)均降低至0.45 mg/L以下,并保持至試驗(yàn)結(jié)束(圖2-D);NO2?-N濃度在前2周時(shí)相對(duì)較低,隨后呈逐漸上升趨勢(shì),于第5~6周時(shí)相繼出現(xiàn)峰值,最高達(dá)6.55 mg/L,此后大幅下降,至第8周時(shí)相繼降低至0.70 mg/L以下,并保持至試驗(yàn)結(jié)束(圖2-E);NO3?-N濃度在前4周相對(duì)較低,于第5周開始持續(xù)升高,至試驗(yàn)結(jié)束時(shí)接近135.0 mg/L(圖2-F)。

2. 3 養(yǎng)殖水體中異養(yǎng)細(xì)菌和弧菌的數(shù)量變動(dòng)規(guī)律

養(yǎng)殖期間,養(yǎng)殖水體中的異養(yǎng)細(xì)菌數(shù)量在第3~5周時(shí)不斷升高至×107 CFU/mL的數(shù)量級(jí)水平,之后逐漸下降,從第9周后一直維持在×106 CFU/mL的數(shù)量級(jí)水平(圖3-A);養(yǎng)殖水體中的弧菌數(shù)量在第3~5周時(shí)升高至×104 CFU/mL的數(shù)量級(jí)水平,從第6~7周起呈大幅下降趨勢(shì),第7周后一直維持在×102 CFU/mL的數(shù)量級(jí)水平(圖3-B)。

3 討論

3. 1 凡納濱對(duì)蝦高密度零換水養(yǎng)殖的可行性分析

Zhao等(2012)通過106 d的零換水生物絮團(tuán)應(yīng)用養(yǎng)殖試驗(yàn),證實(shí)生物絮團(tuán)在高集約化、零換水養(yǎng)殖系統(tǒng)中的應(yīng)用效果良好;Rego等(2017)、Maciel等(2018)研究報(bào)道,在對(duì)蝦養(yǎng)殖生產(chǎn)中引進(jìn)生物絮團(tuán)技術(shù)后,對(duì)蝦生長快、產(chǎn)量高、效益好。本研究進(jìn)行13周的凡納濱對(duì)蝦高密度零換水養(yǎng)殖,收獲對(duì)蝦規(guī)格平均為14.50±0.99 g/尾,單位水體對(duì)蝦產(chǎn)量平均為8.39±0.48 kg/m3,對(duì)蝦生長速度不低于傳統(tǒng)池塘的精養(yǎng)模式,對(duì)蝦平均成活率為(83.90±2.74)%,與Reid和Arnold(1992)的研究結(jié)果較接近,但略低于國內(nèi)其他學(xué)者(徐紀(jì)萍等,2012;索建杰等,2015)的相關(guān)報(bào)道;養(yǎng)殖對(duì)蝦單產(chǎn)平均耗水量為120.00±6.38 L/kg,全程零換水,總體效果優(yōu)于國內(nèi)的已有研究報(bào)道(徐如衛(wèi)等,2015),用水量遠(yuǎn)低于工廠化循環(huán)水養(yǎng)殖系統(tǒng)模式(Timmons and Ebeling,2006;楊菁等,2010)。養(yǎng)殖期間,水體TAN和NO2?-N濃度在第3~6周相繼出現(xiàn)峰值,分別達(dá)4.80和6.55 mg/L,但隨后大幅下降并保持至試驗(yàn)結(jié)束,與李曉梅和郭體環(huán)(2017)的研究結(jié)果相似。Furtado等(2015)研究指出,在鹽度為23‰且零換水的養(yǎng)殖條件下,即使水體中的NO3?-N濃度達(dá)177.0 mg/L也不會(huì)對(duì)凡納濱對(duì)蝦的健康養(yǎng)殖產(chǎn)生明顯影響。此外,生物絮團(tuán)中含有的益生菌及生物活性多糖類物質(zhì)可增強(qiáng)對(duì)蝦免疫力(孫振等,2013;Xu and Pan,2013)??梢?,在海水條件下進(jìn)行凡納濱對(duì)蝦高密度零換水養(yǎng)殖具有可行性,尤其是基于該技術(shù)模式的零換水養(yǎng)殖管理,可大幅提升水資源利用效率,有效減輕養(yǎng)殖生產(chǎn)對(duì)水域環(huán)境的潛在負(fù)面影響。

3. 2 養(yǎng)殖水質(zhì)原位調(diào)控技術(shù)的重要環(huán)節(jié)

養(yǎng)殖前期通過添加一定量的碳源,可有效促進(jìn)功能菌團(tuán)生長(Avnimelech,1999;鄧吉朋等,2014;Xu et al.,2016;Deb et al.,2017),調(diào)節(jié)養(yǎng)殖水體C/N,而有利于生物絮團(tuán)形成(Xu and Pan,2014;萬國強(qiáng)等,2015)。本研究前期按菌濃度103 CFU/L分別在池水中添加芽孢桿菌、光合細(xì)菌及硝化菌,同時(shí)添加5 g/m3紅糖用于益生菌培養(yǎng);在放苗后30 d內(nèi)每天按飼料投喂量的50%補(bǔ)充投入紅糖,同時(shí)接入實(shí)驗(yàn)室馴化培養(yǎng)的硝化菌,待水體形成以硝化菌團(tuán)為優(yōu)勢(shì)的生物絮團(tuán)后逐步停止添加紅糖。結(jié)果顯示,養(yǎng)殖期間水體中生物絮團(tuán)量在前7周逐漸上升,之后保持在相對(duì)穩(wěn)定的水平上;同時(shí),養(yǎng)殖期間水體中的異養(yǎng)細(xì)菌和弧菌數(shù)量變化趨勢(shì)基本一致,在第4~5周內(nèi)相繼出現(xiàn)峰值,隨后大幅下降,與水體中TAN和NO2?-N濃度的變動(dòng)趨勢(shì)基本吻合。說明在調(diào)節(jié)水體C/N的同時(shí)通過添加特定功能的微生物,有利于對(duì)水體菌群生態(tài)功能進(jìn)行定向誘導(dǎo)。

隨著生物絮團(tuán)量的增加,養(yǎng)殖水體pH和總堿度逐漸下降,主要是微生物的硝化效應(yīng)過程所致(鄭春華等,2017)。陳旭良等(2006)研究表明,以Na2CO3調(diào)節(jié)水體總堿度的效果優(yōu)于NaOH。王大鵬等(2014)研究指出,加強(qiáng)養(yǎng)殖水體pH和總堿度調(diào)節(jié)有利于微生物和凡納濱對(duì)蝦的生長。為此,本研究通過添加Na2CO3溶液和生石灰水以調(diào)節(jié)水體pH和總堿度,并輔以沉淀桶將水中的生物絮團(tuán)濃度數(shù)量穩(wěn)定控制在15~20 mL/L,旨在為水體中的微生物和養(yǎng)殖對(duì)蝦提供相對(duì)穩(wěn)定的水質(zhì)條件。鄧應(yīng)能等(2012)將生物絮團(tuán)技術(shù)應(yīng)用于凡納濱對(duì)蝦試驗(yàn)性封閉養(yǎng)殖系統(tǒng)中,在84 d的養(yǎng)殖期內(nèi)養(yǎng)殖水體TAN和NO2?-N濃度均維持在較低水平,對(duì)蝦存活率則在80%以上。索建杰等(2015)通過對(duì)比常規(guī)換水、循環(huán)水和生物絮團(tuán)3種凡納濱對(duì)蝦養(yǎng)殖模式下其水質(zhì)指標(biāo)的變化規(guī)律及凡納濱對(duì)蝦的存活與生長情況,也發(fā)現(xiàn)以生物絮團(tuán)養(yǎng)殖模式的效果最優(yōu)。可見,在養(yǎng)殖水體中構(gòu)建和培育以優(yōu)勢(shì)功能菌群為核心的水質(zhì)原位調(diào)控技術(shù),不僅能保障養(yǎng)殖水質(zhì)滿足養(yǎng)殖生物健康生長的需求,還可實(shí)現(xiàn)養(yǎng)殖全程零換水的目標(biāo)。

3. 3 對(duì)蝦零換水高效健康養(yǎng)殖模式的優(yōu)勢(shì)

對(duì)蝦零換水高效健康養(yǎng)殖模式的優(yōu)勢(shì)主要表現(xiàn)為:(1)實(shí)現(xiàn)養(yǎng)殖全程零換水,與傳統(tǒng)池塘養(yǎng)殖的大量及頻繁換水相比,可有效調(diào)控養(yǎng)殖水質(zhì),提高水資源利用效率。(2)可有效減少養(yǎng)殖對(duì)蝦病害暴發(fā),提高養(yǎng)殖效益。由于養(yǎng)殖全程零換水,可避免通過換水引入外來病原的風(fēng)險(xiǎn);且生物絮團(tuán)技術(shù)可有效抑制有害病原菌的生長繁殖,部分益生菌團(tuán)還能分泌特定的抑菌因子如細(xì)菌素、溶菌酶等而抑制致病微生物(Verschuere et al.,2000)。(3)提高飼料蛋白利用率,降低養(yǎng)殖成本。投喂的飼料一部分被養(yǎng)殖對(duì)蝦利用,還有部分殘留在水體中或通過代謝效應(yīng)進(jìn)入養(yǎng)殖環(huán)境中,生物絮團(tuán)中的微生物對(duì)其碳水化合物和氮素進(jìn)行轉(zhuǎn)換利用,形成菌體蛋白再被養(yǎng)殖對(duì)蝦攝食利用(Epp et al.,2002;Abreu et al.,2007),從而實(shí)現(xiàn)養(yǎng)殖環(huán)境系統(tǒng)中物質(zhì)的高效利用,同時(shí)降低飼料系數(shù)及提高養(yǎng)殖綜合效益。(4)水體中的生物絮團(tuán)有利于增強(qiáng)養(yǎng)殖對(duì)蝦的消化吸收及抗病能力(Xu and Pan,2012;Sajali et al.,2019)。Suita等(2015)對(duì)在零換水系統(tǒng)中的對(duì)蝦肝胰腺發(fā)育及生理狀態(tài)進(jìn)行分析,發(fā)現(xiàn)與常規(guī)生產(chǎn)系統(tǒng)相比,生物絮團(tuán)零換水養(yǎng)殖系統(tǒng)更有利于促進(jìn)對(duì)蝦肝胰腺的正常發(fā)育,進(jìn)而增強(qiáng)其生理功能;Cardona等(2016)研究發(fā)現(xiàn),生物絮團(tuán)零換水養(yǎng)殖系統(tǒng)中的對(duì)蝦腸道細(xì)菌群落與換水養(yǎng)殖系統(tǒng)中的存在顯著差異;陳文斌等(2017)研究表明,生物絮團(tuán)中的功能菌株不僅能高效降解水體TAN和NO2?-N,還可抑制部分致病弧菌的生長,顯著提高對(duì)蝦的生長發(fā)育、免疫防御能力及飼料利用率。

4 結(jié)論

科學(xué)運(yùn)用生物絮團(tuán)技術(shù)對(duì)養(yǎng)殖水質(zhì)進(jìn)行原位調(diào)控,可實(shí)現(xiàn)凡納濱對(duì)蝦高密度零換水的高效健康養(yǎng)殖,還可有效提高水資源的利用效率,有助于推動(dòng)對(duì)蝦養(yǎng)殖產(chǎn)業(yè)的綠色健康發(fā)展。

參考文獻(xiàn):

曹伏龍,夏麗華,郭治興,馮海媛. 2015. 海水養(yǎng)殖污染研究進(jìn)展[J]. 廣東農(nóng)業(yè)科學(xué),42(22):97-105. [Cao F L,Xia L H,Guo Z X,F(xiàn)eng H Y. 2015. Advances in mariculture contamination[J]. Guangdong Agricultural Sciences,42(22):97-105.]

曹煜成,李卓佳,賈曉平,文國樑,李純厚. 2006. 對(duì)蝦工廠化養(yǎng)殖的系統(tǒng)結(jié)構(gòu)[J]. 南方水產(chǎn),2(3):72-76. [Cao Y C,Li Z J,Jia X P,Wen G L,Li C H. 2006. System configuration of industrial shrimp farming[J]. South China Fisheries Science,2(3):72-76.]

陳文斌,潘魯青,黃飛. 2017. 對(duì)蝦生物絮團(tuán)中亞硝態(tài)氮降解菌分離鑒定與安全性評(píng)價(jià)[J]. 海洋湖沼通報(bào),(3):121-129. [Chen W B,Pan L Q,Huang F. 2017. Isolation,identification and safety evaluation of efficient nitrite-N degradation strain from biofloc-based shrimp culture ponds[J]. Transactions of Oceanology and Limnology,(3):121-129.]

陳旭良,蔡靖,鄭平,周尚興,丁革勝. 2006. 硝化系統(tǒng)堿度特征與調(diào)控對(duì)策的研究[J]. 浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版),32(3):318-322. [Chen X L,Cai J,Zheng P,Zhou S X,Ding G S. 2006. Alkalinity characteristics and control strategy in nitrification system[J]. Journal of Zhejiang University(Agriculture & Life Sciences),32(3):318-322.]

鄧吉朋,黃建華,江世貴,李濤,楊其彬,周發(fā)林,邱麗華. 2014. 生物絮團(tuán)在斑節(jié)對(duì)蝦養(yǎng)殖系統(tǒng)中的形成條件及作用效果[J]. 南方水產(chǎn)科學(xué),10(3):29-37. [Deng J P,Huang J H,Jiang S G,Li T,Yang Q B,Zhou F L,Qiu L H. 2014. Conditions for bio-floc formation and its effects on Penaeus monodon culture system[J]. South China Fishe-ries Science,10(3):29-37.]

鄧應(yīng)能,趙培,孫運(yùn)忠,楊叢海,黃倢. 2012. 生物絮團(tuán)在凡納濱對(duì)蝦封閉養(yǎng)殖試驗(yàn)中的形成條件及作用效果[J]. 漁業(yè)科學(xué)進(jìn)展,33(2):69-75. [Deng Y N,Zhao P,Sun Y Z,Yang C H,Huang J. 2012. Conditions for bio-floc formation and its effects in closed culture system of Litopenaeus vannamei[J]. Progress in Fishery Sciences,33(2):69-75.]

李奕雯,徐武杰. 2016. 生物絮團(tuán)零換水養(yǎng)蝦模式[J]. 海洋與漁業(yè),(1):46-47. [Li Y W,Xu W J. 2016. Biofloc-based zero water exchange shrimp culture model[J]. Ocean and Fishery,(1):46-47.]

李曉梅,郭體環(huán). 2017. 生物絮團(tuán)對(duì)凡納濱對(duì)蝦養(yǎng)殖過程中氨氮和亞硝酸氮含量的影響[J]. 漁業(yè)研究,39(4):283-286. [Li X M,Guo T H. 2017. Impact of biological floc on ammonia nitrogen and nitrite nitrogen content in the process of Litopenaeus vannamei culture[J]. Journal of Fishe-ries Research,39(4):283-286.]

劉晃,張宇雷,吳凡,倪琦,徐皓. 2009. 美國工廠化循環(huán)水養(yǎng)殖系統(tǒng)研究[J]. 農(nóng)業(yè)開發(fā)與裝備,(5):10-13. [Liu H,Zhang Y L,Wu F,Ni Q,Xu H. 2009. Study on recircula-ting aquaculture systems in USA[J]. Agricultural Deve-lopment and Equipments,(5):10-13.]

劉鷹,楊紅生,劉石林,游奎,張福綏. 2005. 封閉循環(huán)系統(tǒng)對(duì)蝦合理養(yǎng)殖密度的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),21(6):122-125. [Liu Y,Yang H S,Liu S L,You K,Zhang F S. 2005. Experimental study on the appropriate breeding density for the production of prawn in closed-recirculating system[J]. Transactions of the Chinese Society of Agricultural Engineering,21(6):122-125.]

羅亮,徐奇友,趙志剛,祖岫杰,閆有利,繳建華. 2013. 基于生物絮團(tuán)技術(shù)的碳源添加對(duì)池塘養(yǎng)殖水質(zhì)的影響[J]. 漁業(yè)現(xiàn)代化,40(3):19-24. [Luo L,Xu Q Y,Zhao Z G,Zu X J,Yan Y L,Jiao J H. 2013. Effect of the adding of carbon resource on water quality of pond aquaculture in bio-flocs technology[J]. Fishery Modernization,40(3):19-24.]

孟慶武,王圣,趙玉潔,朱建峰. 2008. 我國對(duì)蝦工廠化養(yǎng)殖的特點(diǎn)、發(fā)展趨勢(shì)及前景[J]. 海洋開發(fā)與管理,25(3):124-127. [Meng Q W,Wang S,Zhao Y J,Zhu J F. 2008. Characteristics, development trends and prospects of industrialized shrimp farming in China[J]. Ocean Development and Management,25(3):124-127.]

宿墨. 2017. 我國水產(chǎn)養(yǎng)殖產(chǎn)業(yè)供給側(cè)改革的思考——推廣工廠化循環(huán)水養(yǎng)殖技術(shù)的機(jī)遇與動(dòng)力[J]. 中國水產(chǎn),(1):40-44. [Su M. 2017. Reflections on the supply-side reform of aquaculture industry in China—Opportunities and motivation for promoting industrial recycling aquaculture technology[J]. China Fisheries,(1):40-44.]

孫振,王秀華,黃倢. 2013. 一種微生物絮團(tuán)的生化分析及其對(duì)凡納濱對(duì)蝦免疫力的影響[J]. 水產(chǎn)學(xué)報(bào),37(3):473-480. [Sun Z,Wang X H,Huang J. 2013. The biochemical analysis of a microbial floc and its effect on the immunity of Litopenaeus vannamei[J]. Journal of Fisheries of China,37(3):473-480.]

索建杰,王玉瑋,姜玉聲,李曉東,司永國,劉谞,吳俊,孫娜. 2015. 三種凡納濱對(duì)蝦養(yǎng)殖模式的水質(zhì)特征及養(yǎng)殖效果[J]. 水產(chǎn)學(xué)雜志,28(5):12-17. [Suo J J,Wang Y W,Jiang Y S,Li X D,Si Y G,Liu X,Wu J,Sun N. 2015. Characterization of water quality and growth performance of pacific white leg shrimp Litopenaeus vannamei reared in three culture systems[J]. Chinese Journal of Fis-heries,28(5):12-17.]

萬國強(qiáng),陳文斌,潘魯青. 2015. 不同C/N對(duì)生物絮團(tuán)形成和凡納濱對(duì)蝦生長、養(yǎng)殖效果的影響[J]. 齊魯漁業(yè),32(9):1-4. [Wan G Q,Chen W B,Pan L Q. 2015. Effects of different C/N ratios on bioflocculation and growth and culture of Litopenaeus vannamei[J]. Shandong Fisheries,32(9):1-4.]

王大鵬,何安尤,韓耀全,施軍,陳曉漢. 2014. 堿度調(diào)節(jié)對(duì)凡納濱對(duì)蝦室內(nèi)高密度養(yǎng)殖固定化微生物處理效果的影響[J]. 中國水產(chǎn)科學(xué),21(2):330-339. [Wang D P,He A Y,Han Y Q,Shi J,Chen X H. 2014. Alkalinity-regula-ting effect of immobilized microorganisms on indoor high-density culture of Litopenaeus vannamei[J]. Journal of Fishery Sciences of China,21(2):330-339.]

文國樑,曹煜成,徐煜,胡曉娟,徐武杰,李卓佳. 2015. 養(yǎng)殖對(duì)蝦肝胰腺壞死綜合癥研究進(jìn)展[J]. 廣東農(nóng)業(yè)科學(xué),42(11):118-123. [Wen G L,Cao Y C,Xu Y,Hu X J,Xu W J,Li Z J. 2015. Review on hepatopancreas necrosis syndrome of shrimp[J]. Guangdong Agricultural Sciences,42(11):118-123.]

徐紀(jì)萍,談小蘭,錢輝仁. 2012. 凡納濱對(duì)蝦高密度零換水高產(chǎn)養(yǎng)殖技術(shù)[J]. 水產(chǎn)科技情報(bào),39(1):26-29. [Xu J P,Tan X L,Qian H R. 2012. High-density aquaculture technology of Litopenaeus vannamei in the zero-water exchange system[J]. Fisheries Science & Technology Information,39(1):26-29.]

徐如衛(wèi),楊福生,俞奇力,陳菲,王亞妮. 2015. 凡納濱對(duì)蝦循環(huán)水養(yǎng)殖可行性研究[J]. 河北漁業(yè),(3):25-28. [Xu R W,Yang F S,Yu Q L,Chen F,Wang Y N. 2015. Feasibility study on recirculating aquaculture of Litopenaeus vannamei[J]. Hebei Fisheries,(3):25-28.]

楊菁,倪琦,張宇雷,徐寶榮. 2010. 對(duì)蝦工程化循環(huán)水養(yǎng)殖系統(tǒng)構(gòu)建技術(shù)[J]. 農(nóng)業(yè)工程學(xué)報(bào),26(8):136-140. [Yang J,Ni Q,Zhang Y L,Xu B R. 2010. Construction technology on RAS for shrimp culture[J]. Transactions of the Chinese Society of Agricultural Engineering,26(8):136-140.]

張慶文,田景波,黃濱,唐賢明. 2002. 對(duì)蝦封閉循環(huán)式綜合養(yǎng)殖系統(tǒng)的規(guī)劃設(shè)計(jì)[J]. 海洋水產(chǎn)研究,23(4):29-34. [Zhang Q W,Tian J B,Huang B,Tang X M. 2002. The design of experimental base of shrimp in comprehensive culturing and circulating-closed systems[J]. Marine Fishe-ries Research,23(4):29-34.]

趙大虎,潘魯青,王超. 2014. 生物絮團(tuán)對(duì)養(yǎng)殖環(huán)境的清潔作用及對(duì)蝦生理指標(biāo)的影響[J]. 海洋湖沼通報(bào),(1):67-73. [Zhao D H,Pan L Q,Wang C. 2014. Effects of biofloc on the breeding environment cleanings and shrimp physiological indicators[J]. Transactions of Oceanology and Limnology,(1):67-73.]

鄭春華,耿安鋒,李金國. 2017. 堿度對(duì)生物脫氮工藝的影響及其調(diào)控[J]. 中國給水排水,33(10):34-36. [Zheng C H,Geng A F,Li J G. 2017. Role and control of alkalinity in the process for biological nitrogen removal[J]. China Water & Wastewater,33(10):34-36.]

Abreu P C,Ballester E L C,Odebrecht C,Jr W W,Cavalli R O,Graneli W,Anesio A M. 2007. Importance of biofilm as food source for shrimp(Farfantepenaeus paulensis) eva-luated by stable isotopes(δ13C and δ15N)[J]. Journal of Experimental Marine Biology and Ecology,347(1-2):88-96.

Avnimelech Y. 1999. Carbon/nitrogen ratio as a control element in aquaculture systems[J]. Aquaculture,176(3-4):227-235.

Avnimelech Y. 2015. Biofloc technology-A practical guide book[M]. The 3rd Edition. Baton Rouge:The World Aquaculture Society.

Azim M E,Little D C. 2008. The biofloc technology(BFT) in indoor tanks:Water quality,biofloc composition,and growth and welfare of Nile tilapia(Oreochromis niloticus)[J]. Aquaculture,283(1-4):29-35.

Cao Y C,Wen G L,Li Z J,Liu X Z,Hu X J,Zhang J S,He J G. 2014. The effects of dominant microalgae species and bacterial quantity on shrimp production in final culture season[J]. Journal of Applied Phycology,26(4):1749-1757.

Cardona E,Gueguen Y,Magré K,Lorgeoux B,Piquemal D,Pierrat F,Noguier F,Saulnier D. 2016. Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system[J]. BMC Microbiology,16:157.

Crab R,Avnimelech Y,Defoirdt T,Bossier P,Verstraete W. 2007. Nitrogen removal techniques in aquaculture for a sustainable production[J]. Aquaculture,270(1-4):1-14.

Deb S,Noori M T,Rao S P. 2017. Experimental study to eva-luate the efficacy of locally available waste carbon sources on aquaculture water quality management using biofloc technology[J]. Aquaculture International,25(6):2149-2159.

Epp M A,Ziemann D A,Schell D M. 2002. Carbon and nitrogen dynamics in zero-water exchange shrimp culture as indicated by stable isotope tracers[J]. Aquaculture Research,33(11):839-846.

Furtado P S,Campos B R,Serra F P,Klosterhoff M,Romano L A,Jr W W. 2015. Effects of nitrate toxicity in the Paci-fic white shrimp,Litopenaeus vannamei, reared with biofloc technology(BFT)[J]. Aquaculture International,23(1):315-327.

Hari B,Kurup M B,Varghese J T,Schrama J W,Verdegem M C J. 2006. The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems[J]. Aquaculture,252(2-4):248-263.

Maciel J C,F(xiàn)rancisco C J,Miranda-Filho K C. 2018. Compensatory growth and feed restriction in marine shrimp production,with emphasis on biofloc technology[J]. Aquaculture International,26(1):203-212.

Rego M A S,Sabbag O J,Soares R,Peixoto S. 2017. Risk analysis of the insertion of biofloc technology in a marine shrimp Litopenaeus vannamei production in a farm in Pernambuco,Brazil:A case study[J]. Aquaculture,469:67-71.

Reid B,Arnold C R. 1992. The intensive culture of the penaeid shrimp Penaeus vannamei boone in a recirculating raceway system[J]. Journal of the World Aquaculture Society,23(2):146-153.

Sajali U S B A,Atkinson N L,Desbois A P,Little D C,Murray F J,Shinn A P. 2019. Prophylactic properties of biofloc or Nile tilapia-conditioned water against Vibrio parahaemolyticus infection of whiteleg shrimp(Penaeus vannamei)[J]. Aquaculture,498:496-502.

Suita S M,Cardozo A P,Romano L A,Abreu P C,Jr W W. 2015. Development of the hepatopancreas and quality analysis of post-larvae Pacific white shrimp Litopenaeus vannamei produced in a BFT system[J]. Aquaculture International,23(2):449-463.

Timmons M B,Ebeling J M. 2006. The role for recirculating aquaculture systems(RAS).I.[J]. Aquaculture Magazine,32(3):26-31.

Verschuere L,Rombaut G,Sorgeloos P,Verstraete W. 2000. Probiotic bacteria as biological control agents in aquaculture[J]. Microbiology and Molecular Biology Reviews,64(4):655-671.

Xu W J,Pan L Q. 2012. Effects of bioflocs on growth performance,digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed[J]. Aquaculture,356-357:147-152.

Xu W J,Pan L Q. 2013. Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input[J]. Aquaculture,412-413:117-124.

Xu W J,Pan L Q. 2014. Dietary protein level and C/N ratio manipulation in zero-exchange culture of Litopenaeus vannamei:Evaluation of inorganic nitrogen control,biofloc composition and shrimp performance[J]. Aquaculture Research,45(11):1842-1851.

Xu W J,Pan L Q,Sun X H,Huang J. 2013. Effects of bioflocs on water quality,and survival,growth and digestive enzyme activities of Litopenaeus vannamei(Boone) in zero-water exchange culture tanks[J]. Aquaculture Research,44(7):1093-1102.

Xu W J,Morris T C,Samocha T M. 2016. Effects of C/N ratio on biofloc development,water quality,and performance of Litopenaeus vannamei juveniles in a biofloc-based,high-density,zero-exchange,outdoor tank system[J]. Aquaculture,453:169-175.

Zhao P,Huang J,Wang X H,Song X L,Yang C H,Zhang X G,Wang G C. 2012. The application of bioflocs technology in high-intensive,zero exchange farming systems of Marsupenaeus japonicas[J]. Aquaculture,354-355:97-106.

(責(zé)任編輯 蘭宗寶)