王喜蓮 程迪 王順
關(guān)鍵詞:并網(wǎng)逆變器;諧波交互;諧波預(yù)測;阻抗模型;諧振
DOI:10.15938/j.emc.2019.06.000
中圖分類號文獻(xiàn)標(biāo)志碼:A 文章編號:1007 -449X(2019)06 -0000 -00
Abstract:Aimed at harmonic prediction of gridconnected systems, a harmonic impedance modeling scheme was proposed based on output harmonic current of inverter. The gridconnected system harmonic resonance theory was analyzed for impedance modeling of singlephase LCL gridconnected inverter. The low frequency characteristic of inverter was analyzed. Further, the harmonic current of single LCL gridconnected inverter was considered to obtain the harmonic impedance model, which is in good agreement with the simulation results of circuit model. The harmonic impedance model was used for harmonic interaction analysis and harmonic prediction modeling of multiinverter gridconnected systems. An example of eight gridconnected inverters was proposed, and the resonance effect was analyzed for harmonic current and harmonic voltage over point of common coupling(PCC). This harmonic prediction model was compared with circuit model to prove its effectiveness and accuracy.
Keywords:gridconnected inverters;harmonics interactions;harmonics prediction;impedance model;resonance
0 引 言
隨著新能源發(fā)電技術(shù)的進(jìn)步,越來越多的并網(wǎng)逆變器接入到分布式發(fā)電系統(tǒng)中,這些并網(wǎng)逆變器不僅提供了諧波源,還與電網(wǎng)形成了分布式阻抗網(wǎng)絡(luò),可能產(chǎn)生諧振,對系統(tǒng)的安全和穩(wěn)定造成影響。建立較為準(zhǔn)確的并網(wǎng)系統(tǒng)諧波預(yù)測模型,既給并網(wǎng)操作的可行性提供了參考,也對經(jīng)濟(jì)合理地治理微網(wǎng)系統(tǒng)諧波有重要的指導(dǎo)意義。
在分布式發(fā)電系統(tǒng)和大型新能源發(fā)電站中,長距離輸電線和變壓器導(dǎo)致電網(wǎng)阻抗不可忽略[1-2],特別是在偏遠(yuǎn)地區(qū),此時電網(wǎng)為感性弱電網(wǎng)。諧波源和阻抗網(wǎng)絡(luò)的存在會使并網(wǎng)系統(tǒng)發(fā)生諧波交互[3]。
文獻(xiàn)[4]提出了基于阻抗模型的諧波分析方法,對逆變器側(cè)和電網(wǎng)側(cè)諧波進(jìn)行交互分析,但其阻抗模型是在理想狀態(tài)下建立的。文獻(xiàn)[5-6]將死區(qū)效應(yīng)引入到并網(wǎng)系統(tǒng)阻抗模型中對系統(tǒng)進(jìn)行分析,提高了阻抗模型的精度。文獻(xiàn)[7-8]將實(shí)際數(shù)字控制系統(tǒng)的延時引入到阻抗模型中,使并網(wǎng)逆變器阻抗模型更加精確。國內(nèi)外學(xué)者對諧波預(yù)測方面做了大量的研究。文獻(xiàn)[9-11]分別提出了三種針對電網(wǎng)公共接入點(diǎn)(point of common coupling,PCC)諧波電流的預(yù)測模型。預(yù)測模型建立的形式和方法均不同,但模型建立的過程都需要測量或者收集大量數(shù)據(jù)來進(jìn)行分析和計算,模型的建立過程復(fù)雜、工作量大。因此,建立較為簡單準(zhǔn)確的微網(wǎng)系統(tǒng)諧波預(yù)測模型有很強(qiáng)的實(shí)際意義。
實(shí)際數(shù)字控制的并網(wǎng)逆變器系統(tǒng)包含許多非線性因素,并且有的非線性因素很難定量表達(dá)出來。為使逆變器阻抗模型更加符合實(shí)際情況,只考慮諧波結(jié)果不考慮諧波產(chǎn)生的過程,本文提出將逆變器實(shí)際輸出諧波電流引入到模型中來,建立諧波阻抗模型。考慮到并網(wǎng)系統(tǒng)主要含有低次諧波,用諧波阻抗模型對多逆變器并網(wǎng)系統(tǒng)建模,進(jìn)行諧波交互分析。以單相LCL型并網(wǎng)逆變器為例,推導(dǎo)了其阻抗模型,分析了其低頻特性;在阻抗模型中引入實(shí)際諧波電流,建立多逆變器并網(wǎng)系統(tǒng)諧波預(yù)測模型,最后結(jié)合理論分析和電路仿真對模型進(jìn)行了驗(yàn)證。
5 結(jié) 論
本文以單相并網(wǎng)逆變器為研究對象,分析了其低頻特性,提出將并網(wǎng)逆變器諧波電流考慮到阻抗模型中,建立諧波阻抗模型。利用提出的諧波阻抗模型對多逆變器并網(wǎng)系統(tǒng)進(jìn)行諧波交互分析,推導(dǎo)了多逆變器并網(wǎng)電流耦合矩陣,建立了多逆變器并網(wǎng)系統(tǒng)諧波預(yù)測模型,得出以下結(jié)論:
1)建立的諧波阻抗模型較好的體現(xiàn)了逆變器的低頻特性,提高了逆變器阻抗建模的準(zhǔn)確性。
2)多逆變器并網(wǎng)系統(tǒng)中各逆變器并網(wǎng)電流相互耦合,每個逆變器并網(wǎng)電流不僅與其自身參數(shù)有關(guān),還與其他所有逆變器參數(shù)及電網(wǎng)參數(shù)有關(guān)。
3)逆變器在低頻段的幅頻特性為低次諧波的分析及預(yù)測提供了理論依據(jù)。諧波預(yù)測模型可以較準(zhǔn)確、快速地定量分析系統(tǒng)的諧振情況,預(yù)測PCC端各次諧波電流和諧波電壓的幅值及THD。
4)諧波預(yù)測模型可以較好的預(yù)測系統(tǒng)截止頻率fc以下的低次諧波幅值,甚至可以對轉(zhuǎn)折頻率ft以下的各次諧波進(jìn)行矢量預(yù)測。
參 考 文 獻(xiàn):
[1] LISERRE M, TEODORESCU R, BLAABJERG F.Stability of photovoltaic and wind turbine gridconnected inverters for a large set of grid impedance values[J].IEEE Transactions on Power Electronics, 2006,21(1):263.
[2] 王寶忠,王志兵.基于模糊控制的光伏系統(tǒng)最大功率點(diǎn)跟蹤[J].哈爾濱理工大學(xué)學(xué)報,2012,17(4):13.
WANG Baozhong, WANG Zhibing. Maximum power point tracking by using fuzzy control for photovoltaic power system[J]. Journal of Harbin University of Science and Technology, 2012,17(4):13.
[3] 謝文浩,王建賾,紀(jì)延超,等.一種LCL型并網(wǎng)逆變器的復(fù)合阻抗重塑方法[J].電機(jī)與控制學(xué)報,2018,22(10):35.
XIE Wenhao, WANG Jianze, JI Yanchao, et al. Composite impedance reshaping method for LCLtype gridtied inverter[J]. Electric Machines and Control, 2018,22(10):35.
[4] WANG Fei, LDUARTE J, AMHENDRIX M,et al. Modeling and analysis of grid harmonic distortion impact of aggregated DG inverters[J].IEEE Transactionson Power Electronics,2011,26(3):786.
[5] XU Dezhi,Wang Fei,Ruan Yi,et al.Output impedance modeling of gridconnected inverters considering nonlinear effects[C]//Control and Modeling for Power Electronics,June 10-13,2012,Kyoto,Japan. 2012:1-7.
[6] 許德志,汪飛,毛華龍,等.多并網(wǎng)逆變器與電網(wǎng)的諧波交互建模與分析[J].中國電機(jī)工程學(xué)報,2013,33(12):64.
XU Dezhi,WANG Fei,MAO Hualong,et al.Modeling and analysis of harmonic interaction between multiple gridconnected inverters and the utility grid[J]. Proceedings of the CSEE,2013,33(12):64.
[7] 許德志,汪飛,阮毅,等.多逆變器并網(wǎng)系統(tǒng)輸出阻抗建模與諧波交互[J].電機(jī)與控制學(xué)報,2014,18(2):1.
XU Dezhi,WANG Fei,RUAN Yi,et al.Output impedance modeling and harmonic interactions of multiple inverters gridconnected system[J]. Electric Machines and Control,2014,18(2):1.
[8] 張興,余暢舟,劉芳,等.光伏并網(wǎng)多逆變器并聯(lián)建模及諧振分析[J].中國電機(jī)工程學(xué)報,2014,34(3):336.
ZHANG Xing, YU Changzhou, LIU Fang, et al. Modeling and resonance analysis of multiparalleled gridtied inverters in PV systems[J]. Proceedings of the CSEE, 2014, 34(3):336.
[9] AU T M, MILANOVIC V J.Development of stochastic aggregate harmonic load model based on field measurements[J].IEEE Transactions on Power Delivery, 2007, 22(1):323.
[10] VASANASONG E, SPOONSER E D. The prediction of net harmonic currents produced by large numbers of residential PV inverters:Syndney Olympic Village case study[C]// 9th International Conference on Harmonics and Quality of Power,October 1-4,2000,Orlando,USA. 2000: 116–121.
[11] YAHYAIE F, LEHN W P.Using frequency coupling matrix techniques for the analysis of harmonic interactions[J].IEEE Transactions on Power Delivery, 2016,31(1):112.
[12] 汪飛,馮夏云,吳春華,等.多反激式微型逆變器并網(wǎng)諧波交互研究[J].中國電機(jī)工程學(xué)報,2016,36(3):712.
WANG Fei, FENG Xiayun, WU Chunhua, et al. Research on grid harmonic interaction of multiple flyback microinverters[J].Proceedings of the CSEE,2016,36(3):712.
[13] 鮑陳磊,阮新波,王學(xué)華,等.基于PI調(diào)節(jié)器和電容電流反饋有源阻尼的LCL型并網(wǎng)逆變器閉環(huán)參數(shù)設(shè)計[J].中國電機(jī)工程學(xué)報,2012,32(25):135.
BAO Chenlei, RUAN Xinbo, WANG Xuehua,et al.Design of gridconnected inverters with LCL filters based on PI regulator and capacitor current feedback active damping[J].Proceedings of the CSEE,2012,32(25):135.
[14] AGORRETA J L, BORREGA M, LOPEZ J, et al.Modeling and control of Nparalleled gridconnected inverters with LCL filter coupled due to grid impedance in PV plants[J].IEEE Transactionson Power Electronics,2011,26(3):774.
[15] SUN J. Impedancebased stability criterion for gridconnected inverters[J].IEEE Transactions on Power Electronics,2011,26(11):3075.
[16] CESPEDES M,SUN J.Impedance modeling and analysis of gridconnected voltagesource converters[J]. IEEE Transactions on Power Electronics, 2014, 29(3):1254.
(編輯:邱赫男)