李晉南,王常安,王連生,趙志剛,羅 亮,徐奇友
?
低磷飼料添加谷氨酸對(duì)松浦鏡鯉幼魚腸道消化酶活性及腸道形態(tài)的影響
李晉南,王常安,王連生,趙志剛,羅 亮,徐奇友
(中國水產(chǎn)科學(xué)研究院黑龍江水產(chǎn)研究所,黑龍江 哈爾濱 1500701)
【目的】探討低磷飼料中添加谷氨酸對(duì)松浦鏡鯉腸道消化酶活性及腸道形態(tài)的影響?!痉椒ā繉⒊跏俭w質(zhì)量(5.07±0.02)g的松浦鏡鯉450尾隨機(jī)分為5組,其中4個(gè)實(shí)驗(yàn)組在低磷(NaH2PO3質(zhì)量分?jǐn)?shù)1.5%)飼料中分別添加質(zhì)量分?jǐn)?shù)0%、0.5%、1.0%和2.0%的谷氨酸(Glu),分別為G0、G0.5、G1.0、G2.0組,同時(shí)以正常磷飼料(2.0% NaH2PO3)為對(duì)照(C組),實(shí)驗(yàn)周期為8周?!窘Y(jié)果】G1組前腸和后腸的蛋白酶活性顯著高于G0組,與C組差異不顯著;G1前腸脂肪酶活性顯著高于G0、G0.5和G2組,C和G1組中腸脂肪酶活性顯著高于G0組;C和G1組中腸淀粉酶活性顯著高于其他各組(< 0.05),各組間前腸和后腸淀粉酶活性差異不顯著(< 0.05)。各添加組的松浦鏡鯉幼魚前腸和后腸的皺襞高度顯著高于G0組,且前腸的皺襞高度與C組相比差異不顯著;C組后腸的皺襞高度顯著高于其他各組(< 0.05)。G2組前腸的絨毛寬度與C組相比差異不顯著(> 0.05),其他各組的松浦鏡鯉幼魚前腸的絨毛寬度顯著低于C組(< 0.05);中腸和后腸的絨毛寬度各組間沒有顯著差異(> 0.05)。各添加組的松浦鏡鯉幼魚前腸的基層厚度與C組比沒有顯著差異(> 0.05)。中腸和后腸的基層厚度各組間沒有顯著差異(> 0.05)。腸體指數(shù)和腸長指數(shù)各組間沒有顯著差異(> 0.05)。添加Glu組的前腸絨毛高度及密度均顯著增加,且排列整齊?!窘Y(jié)論】低磷飼料中添加谷氨酸可以增加松浦鏡鯉幼魚腸道消化酶活性并改善腸道形態(tài)結(jié)構(gòu)。
松浦鏡鯉幼魚;谷氨酸;磷;消化酶;腸道形態(tài)
磷是魚類等水產(chǎn)動(dòng)物必需的常量元素,是骨骼和魚鱗的重要組成成分,由于水體中磷含量較少,且魚類對(duì)水中磷的吸收能力較差,因此飼料磷是養(yǎng)殖魚類最主要的磷源。飼料中磷的添加量過低影響魚的正常生長發(fā)育,過高則向水體中排泄磷,加重水體磷污染。因此,如何提高飼料磷的利用率,降低飼料中無機(jī)磷的使用,減少磷向水體中的排放,受到越來越多的關(guān)注。
氨基酸除作為構(gòu)建模塊外,還有較多特殊功能,是維持、生長、繁殖和免疫反應(yīng)所必需的代謝調(diào)節(jié)劑[1-2]。功能最廣泛的氨基酸是谷氨酸家族,特別是精氨酸、谷氨酸(Glutamate,Glu)和谷氨酰胺(Glutamine,Gln)。其中谷氨酸和谷氨酰胺在哺乳動(dòng)物中有重要作用,且可相互轉(zhuǎn)化[3-5]。在魚類中,這種相互轉(zhuǎn)化對(duì)氨體內(nèi)平衡至關(guān)重要[6-7]。此外,谷氨酸和谷氨酰胺是腸道中重要能量來源[3],但谷氨酰胺有熱不穩(wěn)定性[8-9]。谷氨酸有多種生物功能,在蛋白質(zhì)合成、細(xì)胞代謝中起重要作用[10]。研究表明,飼料中添加谷氨酸鈉可增加斷奶仔豬空腸的腸絨毛高度[11],飼料中添加谷氨酸可顯著提高草魚()腸道抗氧化能力,消化、吸收能力,以及生長性能[12]。迄今,對(duì)低磷飼料條件下,Glu對(duì)腸道消化功能的影響鮮見報(bào)道,筆者探討低磷水平下添加Glu對(duì)松浦鏡鯉(L)幼魚腸道消化酶活性及腸道組織形態(tài)的影響,為Glu在水產(chǎn)飼料中的應(yīng)用提供依據(jù)。
1.1.1 試劑 Glu購自Sigma,純度≥98.5%。
1.1.2 實(shí)驗(yàn)動(dòng)物及日糧 松浦鏡鯉幼魚,體質(zhì)量(5.07±0.02)g,取自中國水產(chǎn)科學(xué)院黑龍江水產(chǎn)研究所。正常組與低磷組飼料均為以魚粉和豆粕為主要蛋白源,魚油和豆油為脂肪源,羧甲基纖維素為黏合劑,配制而成的等氮等能飼料。正常組飼料添加質(zhì)量分?jǐn)?shù)2%的NaH2PO3,各低磷組飼料在添加質(zhì)量分?jǐn)?shù)1.5% NaH2PO3基礎(chǔ)上分別添加0%、0.5%、1.0%和2.0%的Glu,分別記為G0、G0.5、G1、G2組。具體飼料配方見表1。飼料原料經(jīng)粉碎按配比混合均勻,少量組分別采用逐級(jí)擴(kuò)大法混合,用顆粒機(jī)制成直徑2 mm的顆粒飼料,置于-20℃冰箱中保存待用。
表1 基礎(chǔ)飼料配方及營養(yǎng)組成(干基)
取健康松浦鏡鯉幼魚450尾,預(yù)飼2周后隨機(jī)分組。實(shí)驗(yàn)飼料分為5組,低磷實(shí)驗(yàn)組(G0、G0.5、G1、G2組),以及正常磷對(duì)照組(C組)。每實(shí)驗(yàn)組設(shè)3個(gè)重復(fù)組,每個(gè)重復(fù)組設(shè)幼魚30尾。實(shí)驗(yàn)為期8周,每天定時(shí)投喂4次,以飽食無殘餌為準(zhǔn)。實(shí)驗(yàn)在室內(nèi)控溫循環(huán)水族箱里進(jìn)行,溫度為(23±1)℃,24 h不間斷供氧,溶氧大于5 mg/L,氨氮小于0.02 mg/L,每日吸污,每周以曝氣后的水換水2/3,每日記錄魚攝食和死亡情況。
養(yǎng)殖實(shí)驗(yàn)結(jié)束后,停飼24 h,每缸隨機(jī)取魚3尾,于冰盤中迅速剖取前腸、中腸和后腸,用預(yù)冷的質(zhì)量分?jǐn)?shù)0.86%生理鹽水洗凈腸道中的內(nèi)容物,濾紙吸干水分,測(cè)量腸質(zhì)量。按質(zhì)量比1∶9加入生理鹽水,以FJ-200CL高速組織勻漿機(jī)勻漿,以4 ℃、4 000 r/min條件離心10 min,取上清液,于-20℃條件下保存,用于蛋白酶、淀粉酶和脂肪酶測(cè)定。
蛋白酶活性測(cè)定采用福林-酚(Folin-phenol)法[13]。活性單位:在37℃下,每分鐘水解酪素產(chǎn)生相當(dāng)于1 μg 酪氨酸所需的酶量為1個(gè)酶活性單位。
淀粉酶和脂肪酶活性測(cè)定采用南京建成生物工程研究所試劑盒按照試劑盒說明書進(jìn)行。淀粉酶活性單位:在37℃下,組織中每毫克蛋白與底物作用30 min,水解10 mg淀粉定義為1個(gè)淀粉酶活力單位。脂肪酶活性單位:在37℃下,每克組織蛋白在本反應(yīng)體系中與底物反應(yīng)1 min,每消耗1 μmol底物為一個(gè)酶活力單位。組織蛋白含量采用考馬斯亮藍(lán)法測(cè)定[13]。
腸道組織切片的制備:按1.4方法取前腸、中腸和后腸組織,于Bouin氏液中固定24 h后,經(jīng)乙醇逐級(jí)脫水、二甲苯透明、石蠟包埋、切片(5 μm)、HE染色、脫水、透明、中性樹脂封片。用LeicaMD 4000B顯微鏡觀察并拍照,采用Motic Images Plus 2.0軟件,每段腸樣測(cè)量10個(gè)以上完整皺襞高度、絨毛寬度、基層厚度。
腸道指標(biāo)計(jì)算:實(shí)驗(yàn)結(jié)束時(shí),每缸隨機(jī)取魚3尾,測(cè)量實(shí)驗(yàn)魚體質(zhì)量、體長、腸質(zhì)量和腸長,計(jì)算腸體指數(shù)(Intestinal somatic index,ISI)、腸長指數(shù)(Intestinal length index,ILI)。
腸體指數(shù)= 腸質(zhì)量/體質(zhì)量×100%;
腸長指數(shù)= 腸道長/體長×100%;
數(shù)據(jù)用平均值±標(biāo)準(zhǔn)差表示。實(shí)驗(yàn)結(jié)果用SPSS 20.0軟件進(jìn)行單因素方差分析和Duncan’s多重比較,顯著性水平為0.05。
表1可見,各組間前腸蛋白酶活性差異無統(tǒng)計(jì)學(xué)意義(0.05);C組和G1組中腸蛋白酶活性顯著高于其他各組(0.05);G1組后腸的蛋白酶活性顯著高于G0組(0.05),與其他組相比差異無統(tǒng)計(jì)學(xué)意義(0.05)。C和G1組前腸脂肪酶活性顯著高于G0、G0.5和G2組(0.05);C和G1組中腸脂肪酶活性顯著高于G0組(0.05);后腸脂肪酶活性各組間差異無統(tǒng)計(jì)學(xué)意義(0.05)。C組中腸淀粉酶活性最高,G1組次之,其他各種間差異無統(tǒng)計(jì)學(xué)意義(0.05);各組間前腸和后腸淀粉酶活性差異無統(tǒng)計(jì)學(xué)意義(0.05)。
表2 低磷飼料中添加Glu對(duì)松浦鏡鯉腸道消化酶活性的影響
注:同列中標(biāo)有一個(gè)相同小寫字母或無字母者則組間差異無統(tǒng)計(jì)學(xué)意義(> 0.05)
Note: In the same column, the values with a same small letter-superscripts or without any letters mean no significant difference between them (> 0.05)
表3可見,各組前腸和后腸的皺襞高度顯著高于G0組(0.05),且前腸皺襞高度與C組相比差異無統(tǒng)計(jì)學(xué)意義(0.05);C組后腸皺襞高度顯著高于其他各組(.05)。G2組前腸絨毛寬度與C組相比差異無統(tǒng)計(jì)學(xué)意義(0.05),其他各組前腸絨毛寬度顯著低于C組(0.05);中腸和后腸的絨毛寬度各組間差異無統(tǒng)計(jì)學(xué)意義(0.05)。G0組前腸基層厚度顯著低于C組(0.05),其他各組間差異無統(tǒng)計(jì)學(xué)意義(0.05)。各組間中腸和后腸基層厚度差異無統(tǒng)計(jì)學(xué)意義(0.05)。
腸體指數(shù)和腸長指數(shù)在各組間的差異均無統(tǒng)計(jì)學(xué)意義(0.05)。
各前腸組織切片如圖1所示。圖1可見,添加質(zhì)量分?jǐn)?shù)0.5%、1.0%和2.0% Glu組的前腸絨毛均發(fā)育良好,排列整齊緊密,與對(duì)照C組相比,差異不顯著。而G0組的前腸皺襞高度顯著下降,絨毛密度較稀疏。
各組中腸組織切片如圖2所示。圖2可見,各組中腸的腸絨毛均發(fā)育良好,排列整齊緊密,各組間無顯著差異。
各實(shí)驗(yàn)組后腸組織切片如圖3所示。圖3可見,G0組后腸的皺襞高度顯著低于其他組,其他各組后腸的腸絨毛均發(fā)育較好,排列較為緊密。
表3 低磷飼料中添加Glu對(duì)松浦鏡鯉腸道形態(tài)的影響
注:同列中標(biāo)有一個(gè)相同小寫字母或無字母者則組間差異無統(tǒng)計(jì)學(xué)意義(> 0.05)
Note: In the same column, the values with a same small letter-superscripts or without any letters mean no significant difference between them (> 0.05)
MF:皺襞高度Fold height;VW:絨毛寬度Villus width;MC:肌層厚度Muscular thickness;A:C組;B:G0組;C:G0.5組;D:G1組;E:G2組
A:C組;B:G0組;C:G0.5組;D:G1組;E:G2組
A: C group; B: G0 group; C: G0.5 group; D: G1 group; E: G2 group
圖2 松浦鏡鯉中腸組織切片
Fig. 2 Tissue slice of midgut of Songpu mirror carp
A:C組;B:G0組;C:G0.5組;D:G1組;E:G2組
A: C group; B:G0 group; C:G0.5 group; D:G1 group; E:G2 group
圖3 松浦鏡鯉后腸組織切片
Fig. 3 Tissue slice of hindgut of Songpu mirror carp
磷是魚類所需的礦物質(zhì)之一,在動(dòng)物體內(nèi)參與碳水化合物、脂肪和氨基酸的代謝,同時(shí)與能量轉(zhuǎn)化、體液的穩(wěn)態(tài)和核酸的正常功能有密切聯(lián)系[14]。魚類飼料中需添加適量的磷方可滿足正常生長需求。目前,淡水魚類飼料配方中飼料總磷質(zhì)量分?jǐn)?shù)為0.94% ~ 1.28%,而淡水魚類對(duì)飼料總磷實(shí)際利用量僅為0.3% ~ 0.4%,因此需添加磷酸鹽補(bǔ)充有效磷,效率最高的磷酸二氫鈣(MCP)使用量(質(zhì)量分?jǐn)?shù))多為1.8% ~ 2.5%[15]。在鯉魚配合飼料行業(yè)標(biāo)準(zhǔn)(2002)中指出,魚種前期飼料中的總磷需要量大于等于1.4%,而魚種后期飼料中總磷需要量大于等于1.2%,而GBT36782-2018(《鯉魚配合飼料》)規(guī)定,鯉魚苗種、魚種和成魚配合飼料中的總磷質(zhì)量分?jǐn)?shù)為0.9% ~ 1.8%。建鯉(var.)飼料中有效磷為0.55%可滿足其營養(yǎng)需求[16]。Kim研究表明,飼料中添加質(zhì)量分?jǐn)?shù)2%的MCP鏡鯉生長性能最佳,其總磷質(zhì)量分?jǐn)?shù)大于1.4%,有效磷質(zhì)量分?jǐn)?shù)為0.67%[17]。Ogino等[18]研究表明,鯉魚幼魚飼料中有效磷質(zhì)量分?jǐn)?shù)為0.6% ~ 0.7%即可滿足其營養(yǎng)需求。本研究中,幼魚規(guī)格較小(約5 g),根據(jù)2002年的行業(yè)標(biāo)準(zhǔn),正常磷添加組添加質(zhì)量分?jǐn)?shù)2%的磷酸二氫鈉,其總磷質(zhì)量分?jǐn)?shù)為1.2%,有效磷質(zhì)量分?jǐn)?shù)為0.61%,可滿足鯉魚正常的生長需要。而當(dāng)磷酸二氫鈉質(zhì)量分?jǐn)?shù)為1.5%時(shí),其總磷質(zhì)量分?jǐn)?shù)為1.02% ~ 1.07%,有效磷質(zhì)量分?jǐn)?shù)為0.50%,磷水平低于鯉魚生長需求,因此對(duì)其腸道消化和吸收功能有一定影響。G0組腸道皺襞高度、絨毛寬度,以及消化酶活性均低于對(duì)照C組亦說明質(zhì)量分?jǐn)?shù)0.50%的有效磷不能滿足鏡鯉幼魚生長需求。
魚類的生長性能與腸道的消化吸收能力密不可分[19],腸道消化酶活性是腸道消化和吸收能力的重要指標(biāo)[20-21]。動(dòng)物體生長發(fā)育與消化酶活性存在一定的正相關(guān)性[22]。本研究探討低磷條件下添加Glu對(duì)腸道消化酶活性的影響,結(jié)果顯示,在低磷飼料中添加質(zhì)量分?jǐn)?shù)1%的Glu顯著提高了腸道中腸和后腸的蛋白酶活性,前腸和中腸的脂肪酶活性,以及中腸的淀粉酶活性。李晉南等[13]研究表明,添加質(zhì)量分?jǐn)?shù)1.5%的Glu可顯著提高松浦鏡鯉前腸的脂肪酶活性。Zhao等[12]對(duì)草魚()的研究也表明,飼料中添加Glu可顯著提高草魚的腸道胰蛋白酶和脂肪酶活性,以及生長性能。Glu是Gln的前體物,以往的研究發(fā)現(xiàn),飼料中添加Gln可促進(jìn)動(dòng)物腸道發(fā)育和提高消化酶活力[11-12,23]。Lin等[24]對(duì)建鯉幼魚的研究也表明,魚腸道蛋白酶和脂肪酶活力隨飼料Gln添加量上升而提高。
此外,對(duì)于無胃魚類松浦鏡鯉,其皺襞高度和基層厚度等腸道形態(tài)結(jié)構(gòu)均可影響動(dòng)物體的生長發(fā)育和營養(yǎng)物質(zhì)的消化吸收[25]。魚類腸道形成皺襞的數(shù)量和高度,微絨毛長度及密度等均可影響對(duì)營養(yǎng)物質(zhì)的吸收能力,是水產(chǎn)動(dòng)物腸道發(fā)育和吸收能力的重要標(biāo)志[26]。Zhao等[12]研究表明,飼料中添加質(zhì)量分?jǐn)?shù)0.8%的Glu可顯著增加前腸和中腸皺襞高度,Rezaei等[11]研究表明,谷氨酸鹽可增加斷奶仔豬空腸絨毛高度。本研究顯示,低磷飼料中添加Glu顯著提高了松浦鏡鯉前腸和后腸皺襞高度,且有增加前腸絨毛寬度和基層厚度的趨勢(shì),說明Glu有改善腸道形態(tài)結(jié)構(gòu)作用。腸體指數(shù)(ISI)和腸長指數(shù)(ILI)也是衡量腸道健康的一個(gè)重要指標(biāo)[13],但是低磷對(duì)ISI和ILI的影響鮮有報(bào)道,本研究顯示,各實(shí)驗(yàn)組中ISI和ILI差異均無統(tǒng)計(jì)學(xué)意義,說明低磷并未影響ISI和ILI,且低磷水平下添加Glu亦未影響二指數(shù)變化。但切片結(jié)果可見,添加Glu組的前腸絨毛高度及密度均增加,且排列整齊,說明添加Glu可增加腸道吸收面積,提高腸道消化吸收能力。
綜上,低磷飼料中添加Glu可增加松浦鏡鯉腸道消化酶活性,同時(shí)改善腸道形態(tài)結(jié)構(gòu),提高腸道消化吸收功能。
[1] MEIJER A J. Amino acids as regulators and components of nonproteinogenic pathways.[J]. Journal of Nutrition, 2003, 133: 2057–2062.
[2] LI P, MAI K, TRUSHENSKI J, et al. New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds[J]. Amino Acids, 2009, 37(1): 43-53.
[3] NEU J, SHENOY V, CHAKRABARTI R. Glutamine nutrition and metabolism: where do we go from here?[J]. Faseb Journal, 1996, 10(8): 829-837.
[4] YOUNG V R, AJAMI A M. Glutamine: The emperor or His clothes?[J]. Journal of Nutrition, 2001, 131(9 Suppl): 2449–2459.
[5] TAPIERO H, G MATHé, COUVREUR P, et al. Dossier: Free amino acids in human health and pathologies II. Glutamine and glutamate[J]. Biomedicine & Pharmacotherapy, 2002, 56(9): 446-457.
[6] ANDERSON P M. Urea and glutamine synthesis: environmental influences on nitrogen excretion [M] // Wright P A, Anderson P M, ed. Fish Physiology, Vol. 20. New York: Academic Press, 2001: 239–277.
[7] TERJESEN B F. Nitrogen excretion [M] // FYNN R, KAPOOR B, ed. Fish Larval Physiology. New York: Science Publishers, 2008: 263–302.
[8] SOWDEN M K, BAXTER J H, BERGANA M M, et al. Stability of Nacetylglutamine and glutamine in aqueous solution and in a liquid nutritional product by an improved HPLC method[J]. Journal of Food Science, 2002,67: 384–389.
[9] OEHME M, GRAMMES F, TAKLE H, et al. Dietary supplementation of glutamate and arginine to Atlantic salmon (L.) increases growth during the first autumn in sea[J]. Aquaculture, 2010, 310(1/2): 156-163.
[10] BROSNAN J T, BROSNAN M E. Glutamate: a truly functional amino acid[J]. Amino Acids, 2013, 45: 413-418.
[11] REZAEI R, KNABE D A, TEKWE C D, et al. Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs[J]. Amino Acids, 2013, 44: 911-923.
[12] ZHAO Y, HU Y, ZHOU X Q, et al. Effects of dietary glutamate supplementation on growth performance, digestive enzyme activities and antioxidant capacity in intestine of grass carp ()[J]. Aquaculture Nutrition, 2015, 21(6):935-941.
[13] 李晉南, 徐奇友, 王常安, 等. 谷氨酰胺及其前體物對(duì)松浦鏡鯉腸道消化酶活性及腸道形態(tài)的影響[J]. 動(dòng)物營養(yǎng)學(xué)報(bào), 2014, 26(5): 1347-1352.
[14] HALVER J E, HARDY R W. Fish Nutrition [M]. New York: Academic Press, 2002: 264-274.
[15] 葉元土, 蔡春芳. 淡水魚類飼料原料模塊化分析技術(shù)(下)[J]. 水產(chǎn)前沿, 2010 (7): 34-39.
[16] 楊雨虹, 郭慶, 黃金善, 等. 鯉魚飼料磷的需要量研究[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào), 2006(1): 48-51.
[17] KIM J D, KIM K S, SONG J S, et al. Optimum level of dietary monocalcium phosphate based on growth and phosphorus excretion of mirror carp,[J]. Aquaculture, 1998, 161: 337–344.
[18] OGINO C, TAKEDA H. Mineral requirements in fish: III. Calcium and phosphorus[J]. Bull Jpn Soc Sci Fish, 1976, 42: 793–799.
[19] RUNGRUANGSAK-TORRISSEN K, MOSS R, ANDRESEN L, et al. Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (L.)[J]. Fish Physiol Biochem, 2006, 32: 7–23.
[20] ZHAO J, LIU Y, JIANG J et al. Effects of dietary isoleucine on growth, the digestion and absorption capacity and gene expression in hepatopancreas and intestine of juvenile Jian carp (var.)[J]. Aquaculture, 2012, 368-369: 117-128.
[21] TANG L, WANG G X, JIANG J, et al. Effect of methionine on intestinal enzymes activities, microflora and humoral immune of juvenile Jian carp (var.) [J]. Aquaculture Nutrition, 2009, 15(5): 477-483.
[22] 葉元土, 張勇, 張字, 等. 酶制劑EA-II和生物制劑 BA-I對(duì)鯉腸道、肝胰臟的蛋白酶和淀粉酶活力的影響[J]. 大連水產(chǎn)學(xué)院學(xué)報(bào), 1993, 8 (1): 79-82.
[23] QI X, QING Z, HONG X, et al. Dietary glutamine supplementation improves growth performance and intestinal digestion/absorption ability in young hybrid sturgeon (female ×male)[J]. J Appl Ichthyol, 2011, 27: 721–726.
[24] LIN Y, ZHOU X Q. Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp (var.) [J]. Aquaculture, 2006, 256: 389-394.
[25] 李晉南, 魏玉強(qiáng), 徐奇友, 等.-酮戊二酸對(duì)松浦鏡鯉腸道形態(tài)與功能的影響[J]. 水產(chǎn)學(xué)雜志, 2016, 29(4): 43-47
[26] 王蕾, 劉堅(jiān), 侯永清, 等.-酮戊二酸對(duì)LPS慢性應(yīng)激仔豬小腸黏膜形態(tài)與功能的影響[J]. 畜牧獸醫(yī)學(xué)報(bào), 2010, 41(1): 46-52.
Effects of Glutamate Supplementation in Low Phosphorus Diets on Intestinal Digestive Enzyme Activities and Intestinal Morphology of Juvenile Songpu Mirror Carp (L.)
LI Jin-nan, WANG Chang-an, WANG Lian-sheng, ZHAO Zhi-gang, LUO Liang, XU Qi-you
(,,150070,)
【Objective】To study the effects of glutamate (Glu) supplementation in low phosphorus diets on intestinal digestive enzyme activities and intestinal morphology of Songpu mirror carp (L). 【Method】 Four hundred and fifty Songpu mirror carps (body weight 5.07±0.02 g) were randomly divided into triplicate groups of 5 dietary treatments with 30 fish per triplicate. The fish in 4 groups were fed graded levels of Glu (0, 0.5%, 1% and 2% diet) (G0, G0.5, G1, G2) in low phosphorus diet (1.5% NaH2PO3) and the fish in the control group was fed normal phosphorus diet (2% NaH2PO3) without Glu (C). The experiment lasted for 8 weeks. 【Result】The activities of protease in midgut and hindgut of G1 group were significantly higher than that of the G0 group (<0.05) but not significantly different from the C group (>0.05). The activity of lipase in foregut of G1 group was significantly higher than that of G0, G0.5 and G2 groups (<0.05). The activities of lipase in midgut of the C and G1 groups was significantly higher than that of the G0 group (<0.05).The activities of amylase in midgut of C and G1 groups were significantly higher than those of other groups (<0.05). The fold height in foregut and hindgut of Glu supplementation groups were significantly higher than that of the G0 group (<0.05) and not significantly different from the C group (>0.05). The fold height in hindgut of the C group was significantly higher than that of other groups (<0.05). The villus width in foregut of G2 group was not significantly different from that of the C group (>0.05). But the villus width in foregut of other groups was significantly lower than that of the C group (<0.05). The muscular thickness in foregut of Glu supplementation groups was not significantly different from that of the C group (>0.05). In addition, no significant difference was shown in the villus width and muscular thickness of midgut and hindgut among the groups (>0.05). There was no significant difference in intestinal somatic index and intestinal length index among the groups (>0.05). The villus height and density in the foregut of Glu supplement groups increased significantly and arranged neatly.【Conclusion】The optimal Glu supplementation in low phosphorus diet could promote intestine development and digestive enzyme activities in juvenile Songpu mirror carp.
juvenile Songpu mirror carp; glutamate; phosphorus; digestive activities; intestinal morphology
S963.73
A
1673-9159(2019)04-0020-07
10.3969/j.issn.1673-9159.2019.04.004
2019-01-22
中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(HSY201605);國家自然科學(xué)基金項(xiàng)目(31702353);黑龍江省優(yōu)秀青年基金項(xiàng)目(YQ2019C035);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-45); 黑龍江省應(yīng)用技術(shù)研究與開發(fā)計(jì)劃重大項(xiàng)目(GA18B202)
李晉南(1983―),女,博士,助理研究員,主要研究方向?yàn)樗a(chǎn)動(dòng)物營養(yǎng)與飼料。E-mail:lijinnan123@163.com
王連生(1984—),男,博士,副研究員,主要研究方向?yàn)樗a(chǎn)動(dòng)物營養(yǎng)與飼料。liansheng0429@163.com
李晉南,王常安,王連生,等. 低磷飼料添加谷氨酸對(duì)松浦鏡鯉幼魚腸道消化酶活性及腸道形態(tài)的影響[J]. 廣東海洋大學(xué)學(xué)報(bào), 2019, 39(4): 20-26.
(責(zé)任編輯:劉慶穎)