王秋瑩,王偉巧,張艷,王國(guó)寧,吳立強(qiáng),張桂寅,馬峙英,楊君,王省芬
?
棉花的克隆與抗黃萎病功能分析
王秋瑩,王偉巧,張艷,王國(guó)寧,吳立強(qiáng),張桂寅,馬峙英,楊君,王省芬
(河北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/教育部華北作物種質(zhì)資源研究與利用重點(diǎn)實(shí)驗(yàn)室,河北保定 071001)
【】黃萎?。╒erticillium wilt)是棉花生產(chǎn)上的重要病害,嚴(yán)重影響棉花的產(chǎn)量和品質(zhì)。棉花基因組測(cè)序工作的完成為抗病基因挖掘提供了重要的信息資源。通過(guò)對(duì)一個(gè)尚未有功能注釋的陸地棉基因(cotton resistance to Verticillium wilt)進(jìn)行克隆與抗病功能驗(yàn)證,為棉花基因組信息完善、抗病機(jī)制解析和分子育種等方面奠定基礎(chǔ)。根據(jù)參考基因組序列設(shè)計(jì)引物,同源克隆陸地棉()農(nóng)大601(ND601)中的開(kāi)放讀碼框(open reading frame,ORF)。利用在線(xiàn)工具ProtParam預(yù)測(cè)蛋白氨基酸組成、分子量、理論等電點(diǎn)、不穩(wěn)定指數(shù)和總平均親水性等性質(zhì);應(yīng)用PSIPRED v3.3預(yù)測(cè)蛋白二級(jí)結(jié)構(gòu);在線(xiàn)工具ProtComp v. 9.0進(jìn)行亞細(xì)胞定位預(yù)測(cè);PlantCARE在線(xiàn)軟件分析順式作用元件。構(gòu)建與綠色熒光蛋白基因融合表達(dá)載體,通過(guò)基因槍介導(dǎo)法轉(zhuǎn)化洋蔥表皮細(xì)胞,觀(guān)察的表達(dá)位置。利用qRT-PCR檢測(cè)在棉花不同組織、黃萎病菌脅迫條件下不同抗、感品種間,以及水楊酸(salicylic acid,SA)誘導(dǎo)處理?xiàng)l件下的表達(dá)模式。構(gòu)建沉默載體,應(yīng)用病毒誘導(dǎo)的基因沉默(virus-induced gene silencing,VIGS)技術(shù)進(jìn)一步驗(yàn)證該基因在棉花中的抗病功能。檢測(cè)沉默后一些與植物抗病調(diào)控相關(guān)標(biāo)志基因的表達(dá)變化,分析其介導(dǎo)的抗病通路。從陸地棉品種ND601中克隆到的ORF,其全長(zhǎng)780 bp,編碼259個(gè)氨基酸殘基,分子量約為30.2 kD,理論等電點(diǎn)9.59;蛋白二級(jí)結(jié)構(gòu)含69.50%不規(guī)則卷曲、17.76% α-螺旋、11.20%延伸鏈和1.54% β-卷曲。綜合生物信息學(xué)預(yù)測(cè)和熒光觀(guān)察結(jié)果,顯示CRVW主要存在于植物細(xì)胞膜和細(xì)胞質(zhì)。在棉花根、莖和葉中都有表達(dá),但在根中的表達(dá)量最高。的ORF上游序列()中包括響應(yīng)乙烯(ethylene)、SA、生長(zhǎng)素(auxin)和脫落酸(abscisic acid)等4種激素信號(hào)的順式作用元件。另外,還包括一些與傷害、防御、脅迫、病菌、干旱和低溫等相關(guān)的順式作用元件。SA噴灑處理后,顯著上調(diào)表達(dá)。黃萎病菌脅迫后,在抗病品種ND601和感病品種中棉所8號(hào)(CCRI8)中均顯著上調(diào)表達(dá),但在感病品種中上調(diào)表達(dá)的發(fā)生時(shí)間明顯滯后。黃萎病菌處理20 d后,沉默組棉苗表現(xiàn)出比對(duì)照(CK)組更明顯的黃化、萎蔫和落葉等黃萎病病癥。進(jìn)一步統(tǒng)計(jì)分析顯示,沉默組病指顯著高于CK組,表明沉默顯著降低了棉苗對(duì)黃萎病菌的抗性。沉默后,棉苗中SA含量顯著降低;(isochorismate synthase 1)、(enhanced disease susceptibility 1)、(phytoalexin deficient 4)、(nonexpresser of PR gene 1)和(pathogenesis-related protein 1)等與SA積累和信號(hào)調(diào)控相關(guān)的標(biāo)志基因均發(fā)生顯著下調(diào)表達(dá)。CRVW定位于細(xì)胞質(zhì)和細(xì)胞膜,主要在棉花根部表達(dá),可能通過(guò)SA信號(hào)通道參與棉花抗黃萎病反應(yīng)過(guò)程。
棉花;黃萎??;CRVW;克?。徊《菊T導(dǎo)的基因沉默;抗性
【研究意義】棉花是重要的纖維作物和油料作物,也是關(guān)系國(guó)計(jì)民生的重要戰(zhàn)略物資。在生產(chǎn)上,黃萎?。╒erticillium wilt)對(duì)棉花產(chǎn)量和品質(zhì)危害嚴(yán)重,藥劑難于防治。實(shí)踐表明,培育和種植抗病品種是防治該病的有效途徑[1]。因此,篩選和鑒定抗病基因,不僅有利于棉花抗黃萎病機(jī)制的解析,還能為棉花分子育種提供候選基因?!厩叭搜芯窟M(jìn)展】黃萎病是由大麗輪枝菌()引起的土傳真菌維管束病害[2]。組織結(jié)構(gòu)抗性和生理生化抗性被認(rèn)為在棉花抗黃萎病過(guò)程中發(fā)揮重要作用[3-5]。隨著分子生物學(xué)的發(fā)展,越來(lái)越多的抗性基因獲得鑒定,使得在分子水平解析棉花黃萎病抗性機(jī)制有了長(zhǎng)足的發(fā)展。在組織結(jié)構(gòu)抗性方面,棉花主要通過(guò)提高木質(zhì)素積累和改變細(xì)胞壁組成增強(qiáng)對(duì)黃萎病菌的抗性,其中一些重要參與基因包括:與果膠代謝相關(guān)的(pectin methylesterase inhibitor)[6]、與木質(zhì)素合成相關(guān)的(laccase)[7]和[8]、與細(xì)胞壁組成相關(guān)的(hybrid proline-rich protein)[9]等。在生理生化抗性方面,棉花能夠通過(guò)(polyamine oxidase)調(diào)控對(duì)黃萎病菌具有抑制活性的精胺(spermine)和植保素(camalexin)的積累[10],依賴(lài)(enhanced disease susceptibility 1)調(diào)控水楊酸(salicylic acid,SA)信號(hào)通路、引發(fā)活性氧爆發(fā)(reactive oxygen species,ROS)和酚類(lèi)物質(zhì)積累等[11]。由南京農(nóng)業(yè)大學(xué)等單位完成的陸地棉()TM-1基因組scaffold總長(zhǎng)度為2.4 Gb,包含70 478個(gè)編碼蛋白基因,通過(guò)與其他植物基因組進(jìn)行比對(duì),其中66 434個(gè)基因獲得了注釋[12]。相對(duì)于其他已測(cè)序植物,棉花基因組較大,基因多倍化明顯,并且生長(zhǎng)周期長(zhǎng),以至于通過(guò)棉花遺傳轉(zhuǎn)化大規(guī)模分析基因功能明顯滯后于擬南芥、煙草、水稻等植物[12]。病毒誘導(dǎo)的基因沉默(virus-induced gene silencing,VIGS)技術(shù)避免植物轉(zhuǎn)化,能夠在侵染植物當(dāng)代對(duì)目標(biāo)基因進(jìn)行功能分析[13]。因此,VIGS技術(shù)一經(jīng)建立,即成為植物基因功能分析的強(qiáng)有力工具,得到了廣泛的應(yīng)用[14]。目前,該技術(shù)已經(jīng)成功應(yīng)用于棉花生長(zhǎng)發(fā)育、抗病反應(yīng)、代謝調(diào)控等功能基因研究[15-17]。棉花基因組研究已進(jìn)入功能基因組時(shí)代,快速鑒定目標(biāo)基因功能已成為未來(lái)重要的研究?jī)?nèi)容之一?!颈狙芯壳腥朦c(diǎn)】河北農(nóng)業(yè)大學(xué)棉花品種創(chuàng)新與產(chǎn)業(yè)化團(tuán)隊(duì)前期利用RNA-Seq技術(shù)構(gòu)建了黃萎病菌侵染處理的海島棉()和陸地棉表達(dá)譜[11, 18],發(fā)現(xiàn)其中一個(gè)無(wú)功能注釋的基因表達(dá)受黃萎病菌顯著誘導(dǎo),可能參與棉花抗黃萎病菌反應(yīng)過(guò)程,故將其命名為(cotton resistance to Verticillium Wilt)。【擬解決的關(guān)鍵問(wèn)題】本研究通過(guò)對(duì)進(jìn)行克隆、生物信息學(xué)分析、亞細(xì)胞定位、組織表達(dá)特異性分析、SA誘導(dǎo)和黃萎病菌脅迫處理后的表達(dá)模式分析、以及抗病功能鑒定等方面的研究,為進(jìn)一步揭示其抗病機(jī)制奠定基礎(chǔ)。
試驗(yàn)于2017—2019年在河北農(nóng)業(yè)大學(xué)教育部華北作物種質(zhì)資源研究與利用重點(diǎn)實(shí)驗(yàn)室進(jìn)行。
陸地棉抗病品種農(nóng)大601(ND601)和感病品種中棉所8號(hào)(CCRI8)由河北農(nóng)業(yè)大學(xué)棉花品種創(chuàng)新與產(chǎn)業(yè)化團(tuán)隊(duì)提供,種植于光照周期16 h(光照)/8 h(黑暗),溫度25℃,相對(duì)濕度60%—70%的植物生長(zhǎng)室中。
試驗(yàn)所用黃萎病菌為臨西2-1,由河北農(nóng)業(yè)大學(xué)棉花品種創(chuàng)新與產(chǎn)業(yè)化團(tuán)隊(duì)分離鑒定并繼代保存于PDA(potato dextrose agar)培養(yǎng)基[19]。
植物亞細(xì)胞定位載體pCamE由河北農(nóng)業(yè)大學(xué)棉花品種創(chuàng)新與產(chǎn)業(yè)化團(tuán)隊(duì)構(gòu)建并保存[20]。棉花VIGS載體pTRV1和pTRV2由清華大學(xué)劉玉樂(lè)教授饋贈(zèng)[13]。沉默對(duì)照載體pTRV2-CLA1(cloroplastos alterados 1 gene)和農(nóng)桿菌GV3101由河北農(nóng)業(yè)大學(xué)棉花品種創(chuàng)新與產(chǎn)業(yè)化團(tuán)隊(duì)保存。
EASYspin Plus植物RNA提取試劑盒購(gòu)自北京艾德萊生物科技有限公司;EasyScript?First-Strand cDNA Synthesis SuperMix購(gòu)自北京北京全式金生物技術(shù)有限公司;2×PhantaTMMaster Mix購(gòu)自南京諾唯贊生物科技有限公司;pGM-T載體、T4 DNA連接酶、2×Taq PCR Master Mix、大腸桿菌DH5α感受態(tài)細(xì)胞、瓊脂糖凝膠DNA回收試劑盒、質(zhì)粒小提試劑盒購(gòu)自天根生化科技有限公司;DNA Marker、PrimeScriptTMRT reagent Kit with gDNA Eraser和EraserSYBR?TM試劑盒購(gòu)自寶生物工程有限公司。
引物合成和測(cè)序工作由生工生物工程股份有限公司完成。
按照Z(yǔ)HANG等[18]的方法將ND601培養(yǎng)于MS培養(yǎng)基(murashige and skoog medium)上。取約14日齡的棉苗,按照EASYspin Plus植物RNA提取試劑盒說(shuō)明書(shū)進(jìn)行總RNA提取。依據(jù)EasyScript?First- Strand cDNA Synthesis SuperMix試劑盒說(shuō)明書(shū)合成cDNA。根據(jù)已測(cè)序陸地棉TM-1編號(hào)為Gh_A06G1566的基因上下游序列設(shè)計(jì)擴(kuò)增引物CRVW-F(5- GATTCTTTGATTTTCAAGAGGTG-3)和CRVW-R(5-CGATTAAAAGTAACAAATTATCGT-3)。目的基因PCR擴(kuò)增體系(20 μL)為1 μL cDNA、1 μL CRVW-F、1 μLCRVW-R、10 μL 2×PhantaTMMaster Mix和7 μL去離子水。擴(kuò)增程序?yàn)?4℃ 5 min;94℃ 30 s,56℃ 30 s,72℃ 1 min,35個(gè)循環(huán);72℃ 10 min。1%瓊脂糖凝膠電泳檢測(cè)后,按照瓊脂糖凝膠DNA回收試劑盒操作說(shuō)明對(duì)目的片段進(jìn)行回收,與pGM-T載體過(guò)夜連接(16℃)后,通過(guò)熱激法轉(zhuǎn)化大腸桿菌DH5α感受態(tài)細(xì)胞,菌落PCR篩選陽(yáng)性克隆并送測(cè)序。
基因序列處理軟件為BioEdit 7.0.4(http://www. mbio.ncsu.edu/bioedit/bioedit.html);陸地棉TM-1基因組序列信息和RNA-seq數(shù)據(jù)來(lái)源于CottonFGD網(wǎng)站(https://cottonfgd.org/);使用在線(xiàn)工具ProtParam(http://web.expasy.org/protparam)預(yù)測(cè)蛋白氨基酸組成、分子量、理論等電點(diǎn)、不穩(wěn)定指數(shù)和總平均親水性等性質(zhì);應(yīng)用PSIPRED v3.3(www.psipred.net)預(yù)測(cè)蛋白二級(jí)結(jié)構(gòu);應(yīng)用ProtComp v. 9.0(http://www. softberry.com/berry.phtml?topic=protcomppl&group=programs&subgroup=proloc)預(yù)測(cè)亞細(xì)胞定位;應(yīng)用PlantCARE在線(xiàn)軟件(http://bioinformatics.psb.ugent. be/webtools/plantcare/html/)預(yù)測(cè)分析順式作用元件。
利用引物CRVW-SF(5-ATGCAACAA ATCAAAGATTCATGG-3,下劃線(xiàn)處為Ⅰ酶切位點(diǎn))和CRVW-SR(5-TTTCCACCCTAAA ACCTTAAGC-3,下劃線(xiàn)處為Ⅰ酶切位點(diǎn))擴(kuò)增的ORF(去除終止密碼子),并插入植物表達(dá)載體pCamE多克隆位點(diǎn),由CaMV 35S啟動(dòng)子驅(qū)動(dòng),與編碼綠色熒光蛋白(green fluorescent protein,gfp)基因融合表達(dá)。洋蔥上皮細(xì)胞的制備、基因槍轉(zhuǎn)化和熒光觀(guān)察等操作參照YANG等[21]方法。
按照EASYspin Plus植物RNA提取試劑盒說(shuō)明書(shū)對(duì)棉苗組織進(jìn)行總RNA提取。根據(jù)PrimeScript? RT reagent Kit with gDNA Eraser試劑盒所提供方法合成cDNA。以棉花(catalytic subunit of protein phosphatase 2A)作為內(nèi)參(PP2A1-F:5-GATCCTTG TGGAGGAGTGGA-3;PP2A1-R:5-GCGAAACAGTT CGACGAGAT-3)[22]。表達(dá)檢測(cè)引物設(shè)計(jì)為qCRVW-F(5-TCCCGCTCCTCCTTCGATTT-3)和qCRVW-R(5-TGCATTTCAGCCTCTGGGATT-3)。棉花SA合成和信號(hào)通路標(biāo)志基因檢測(cè)引物按照SUN等[23]研究報(bào)道進(jìn)行合成。熒光定量PCR(real-time quantitative polymerase chain reaction,qRT-PCR)反應(yīng)體系為cDNA模版1.0mL、正反向引物各0.8mL(10 μmol·L-1)、2×SYBR mix 10 μL和7.4 μL滅菌雙蒸水。使用Bio-Rad CFX96 Real-Time PCR Detection System進(jìn)行熒光定量檢測(cè),具體程序?yàn)?5℃ 15 s;95℃ 10 s,58℃ 10 s,72℃ 15 s,40個(gè)循環(huán)。采用2-ΔCt法進(jìn)行相對(duì)定量分析。3次生物學(xué)重復(fù)檢測(cè)。
參照YANG等[9]的方法,配制100 μmol·L-1的SA溶液,用噴霧器均勻噴灑于7日齡棉苗子葉,并以透明罩覆蓋保濕。分別于處理后6、12、24和36 h后取子葉,-80℃保存?zhèn)溆?。以噴灑蒸餾水組作為對(duì)照。每個(gè)時(shí)間點(diǎn)取3株棉苗混樣,共重復(fù)3次。
按照YANG等[9]的方法制備濃度為1×107cfu/mL的黃萎病菌孢子懸浮液。采用“六棱塑料缽定量 接種法”對(duì)棉苗進(jìn)行接菌處理[24],接種菌液體積為缽體的1/10。按5級(jí)標(biāo)準(zhǔn)統(tǒng)計(jì)病情,并計(jì)算病情指數(shù)[9]。
設(shè)計(jì)引物CRVW-VF(5-TTCCCGCTCC TCCTTCGATT-3,下劃線(xiàn)處為RⅠ酶切位點(diǎn))和CRVW-VR(5-AACCTCCACAAACCCTTG CC-3,下劃線(xiàn)處為Ⅰ酶切位點(diǎn))。通過(guò)PCR擴(kuò)增400 bp的片段并插入pTRV2多克隆位點(diǎn)RⅠ和Ⅰ間。利用凍融法將構(gòu)建好的載體轉(zhuǎn)入農(nóng)桿菌GV3101[25]。農(nóng)桿菌介導(dǎo)的棉花VIGS操作按照GAO等[26]方法進(jìn)行。
通過(guò)對(duì)約15日齡的棉苗進(jìn)行接菌處理,在0、12和24 hpi(hours post inoculation)時(shí),收集3棵長(zhǎng)勢(shì)一致的棉苗第一片和第二片真葉進(jìn)行混樣,作為一個(gè)生物學(xué)重復(fù),每個(gè)處理共采集3個(gè)生物學(xué)重復(fù)。采集的組織于液氮中研磨,按照Verberne等[27]方法提取SA,應(yīng)用Agilent HPLC 1200 Series檢測(cè)SA(流動(dòng)相為甲醇﹕水﹕乙酸=80﹕19﹕1,流速為1 mL·min-1,上樣量為20 μL,檢測(cè)波長(zhǎng)302 nm)。根據(jù)標(biāo)準(zhǔn)曲線(xiàn)計(jì)算SA含量。
應(yīng)用Graphpad Prism?6.02軟件進(jìn)行統(tǒng)計(jì)分析并作圖?;蛟诓煌瑫r(shí)間和不同樣本內(nèi)的相對(duì)表達(dá)量進(jìn)行兩因素方差分析(Two-way ANOVA)和Sidak-test(<0.05)檢測(cè)。
提取陸地棉ND601總RNA(圖1),反轉(zhuǎn)錄后的cDNA作為模板,利用引物CRVW-F和CRVW-R進(jìn)行PCR擴(kuò)增,產(chǎn)物經(jīng)電泳檢測(cè)顯示約為800 bp(圖1)。PCR產(chǎn)物經(jīng)膠回收后與T載體連接,轉(zhuǎn)化大腸桿菌并提取質(zhì)粒。測(cè)序后,目的基因ORF全長(zhǎng)780 bp,與參考基因組TM-1編號(hào)為Gh_A06G1566的序列相似性100%,編碼蛋白含259個(gè)氨基酸殘基,尚無(wú)法預(yù)測(cè)明顯的功能域,為putative uncharacterizedprotein。后續(xù)研究表明該基因/蛋白與棉花黃萎病抗性相關(guān),故命名為CRVW(cotton resistance to Verticillium wilt)。
圖1 棉苗RNA提取與CRVW的PCR擴(kuò)增
經(jīng)預(yù)測(cè),CRVW分子量約為30.2 kD,理論等電點(diǎn)9.59,分子式C1332H2061N383O395S14;在組成蛋白的20種氨基酸中,絲氨酸(Ser)所占比例最高(12.0%),而組氨酸(His)所占的比例最低(0.8%);含32個(gè)負(fù)電荷氨基酸殘基,42個(gè)正電荷氨基酸殘基;不穩(wěn)定指數(shù)為61.41,屬于不穩(wěn)定蛋白;總平均親水性-0.975,屬于疏水蛋白。二級(jí)結(jié)構(gòu)預(yù)測(cè)顯示CRVW含有69.50%不規(guī)則卷曲、17.76% α螺旋、11.20%延伸鏈和1.54% β-折疊。
ProtComp v. 9.0在線(xiàn)工具預(yù)測(cè)顯示,CRVW最有可能位于細(xì)胞膜(基于Neural Nets算法)和細(xì)胞質(zhì)(基于Pentamers算法)。為進(jìn)一步確定CRVW在細(xì)胞中的位置,將其與GFP蛋白進(jìn)行融合表達(dá)。熒光顯微觀(guān)察顯示,單獨(dú)表達(dá)GFP時(shí),熒光信號(hào)存在于在細(xì)胞核、細(xì)胞質(zhì)和細(xì)胞膜中;而對(duì)于CRVW與GFP融合表達(dá)的細(xì)胞,熒光主要出現(xiàn)在細(xì)胞膜和細(xì)胞質(zhì)(圖2)。綜合生物信息學(xué)預(yù)測(cè)和熒光顯微觀(guān)察結(jié)果,表明CRVW主要存在于植物細(xì)胞膜和細(xì)胞質(zhì)。
已有RNA-seq數(shù)據(jù)顯示,在棉花根、莖和葉中均有表達(dá),且葉中最高。為進(jìn)一步明確的組織表達(dá)情況,利用qPCR技術(shù)對(duì)該基因在陸地棉ND601根、莖和葉中的表達(dá)進(jìn)行了檢測(cè)。結(jié)果顯示,在以上3種組織中均有表達(dá),但在根中的表達(dá)量最高,大約是莖中的10倍和葉中的4倍(圖3)。RNA-seq和qPCR檢測(cè)結(jié)果均確認(rèn)在棉花根、莖和葉中都有表達(dá),但存在組織表達(dá)差異。
從已測(cè)序棉花TM-1基因組調(diào)取ORF上游2 000 bp序列(染色體A06:100117602—100119601)作為潛在的啟動(dòng)子,命名為。預(yù)測(cè)分析顯示,含有響應(yīng)4種激素信號(hào)的順式作用元件,包括乙烯(ethylene,ET)、SA、生長(zhǎng)素(auxin)和脫落酸(abscisic acid,ABA)。另外,還包括一些與傷害、防御、脅迫、病菌、干旱和低溫等相關(guān)的作用元件(表1)。根據(jù)TM-1上游序列設(shè)計(jì)引物,對(duì)抗病品種ND601和感病品種CCRI8中上游序列進(jìn)行同源克隆,并未發(fā)現(xiàn)抗感品種在所含順式作用元件的位置和數(shù)量上存在差異(結(jié)果未顯示)。
圖2 CRVW在洋蔥表皮細(xì)胞中的亞細(xì)胞定位
圖3 棉花不同組織中CRVW的表達(dá)分析
進(jìn)一步對(duì)棉苗進(jìn)行SA誘導(dǎo)處理,結(jié)果顯示,與對(duì)照相比,在所有4個(gè)時(shí)間點(diǎn)的表達(dá)量均發(fā)生顯著上調(diào)(圖4),表明受SA信號(hào)通路調(diào)控。
CK:對(duì)照組;SA:水楊酸處理組;***表示差異在P<0.001水平上具有顯著性。下同
表1 CRVW-P中的順式作用元件預(yù)測(cè)
以抗病品種ND601和感病品種CCRI8根組織為分析對(duì)象,利用qPCR檢測(cè)在黃萎病菌脅迫下的表達(dá)模式。黃萎病菌脅迫后,在抗病品種中顯著上調(diào)表達(dá)(與同時(shí)間水處理對(duì)照相比)(圖5)。而對(duì)于感病品種CCRI8,在黃萎病菌脅迫后的6和12 hpi,的表達(dá)水平未發(fā)生顯著變化,直到24 hpi其表達(dá)才發(fā)生顯著上調(diào)(圖6)。由此可見(jiàn),黃萎病菌脅迫處理后,不管是抗病品種還是感病品種,均發(fā)生顯著上調(diào)表達(dá),但其在抗病品種中發(fā)生響應(yīng)的時(shí)間早于感病品種。
VD:大麗輪枝菌處理組;CK:對(duì)照組;*表示差異在P<0.05水平上具有顯著性;**表示差異在P<0.01水平上具有顯著性。下同
VD:大麗輪枝菌處理組;CK:對(duì)照組
對(duì)尚未長(zhǎng)出真葉的棉苗進(jìn)行VIGS處理,以沉默(cloroplastos alterados 1)作為技術(shù)對(duì)照。在VIGS操作7 d后,發(fā)生沉默并表現(xiàn)為新生真葉白化(圖7-A),表明技術(shù)體系成功建立。同時(shí)對(duì)沉默情況通過(guò)qRT-PCR確認(rèn),并進(jìn)行黃萎病菌脅迫處理。在接菌處理20 d后,野生(wild type,WT)組(既無(wú)VIGS處理也未接菌)生長(zhǎng)正常;CK組(VIGS處理中注射pTRV2空載體,同時(shí)接菌處理)表現(xiàn)為葉片黃化和植株萎蔫;沉默組(注射攜帶序列片段的pTRV2載體,同時(shí)接菌處理)表現(xiàn)出比CK組更明顯的黃化、萎蔫和落葉等黃萎病病癥(圖7-B)。病指統(tǒng)計(jì)分析顯示,沉默組病指顯著高于CK組(圖7-C),進(jìn)一步表明沉默顯著降低了棉苗對(duì)黃萎病菌的抗性。
在黃萎病菌侵染后的12和24 hpi,對(duì)照棉苗中SA含量顯著增加(與0 hpi對(duì)照相比)。而對(duì)于被沉默的棉苗,其體內(nèi)SA含量?jī)H在12 hpi顯著增加(與0 hpi沉默棉苗相比)。與對(duì)照相比,在0、12和24 hpi 3個(gè)時(shí)間點(diǎn),沉默棉苗中SA含量均出現(xiàn)顯著降低(圖8),約為對(duì)照的1/2。為進(jìn)一步確認(rèn)是否參與SA信號(hào)通路,對(duì)與SA合成和信號(hào)通路相關(guān)的5個(gè)標(biāo)志基因進(jìn)行表達(dá)檢測(cè)。結(jié)果顯示,(isochorismate synthase 1)、(enhanced disease susceptibility 1)(phytoalexin deficient 4)(nonexpresser of PR gene 1)和(pathogenesis-related protein 1)在沉默組中的表達(dá)均顯著降低,特別是在12 hpi,這些基因在沉默組中的表達(dá)比對(duì)照降低得最為明顯(圖9)。以上結(jié)果表明的沉默能夠顯著影響SA的積累,降低SA信號(hào)通路相關(guān)基因的表達(dá)。
高通量轉(zhuǎn)錄組測(cè)序(RNA-seq)技術(shù)為棉花抗病基因挖掘提供了新的平臺(tái)。應(yīng)用該技術(shù),大量潛在的與黃萎病菌脅迫相關(guān)的棉花基因被發(fā)現(xiàn)[11,18,28]。棉花基因組測(cè)序的完成更是為克隆這些基因提供了極大地便利[12],使得鑒定這些基因功能成為科研工作者重要的研究?jī)?nèi)容。最初,河北農(nóng)業(yè)大學(xué)棉花品種創(chuàng)新與產(chǎn)業(yè)化團(tuán)隊(duì)從棉花受黃萎病菌脅迫處理后的RNA-aeq數(shù)據(jù)中發(fā)現(xiàn),為一個(gè)差異表達(dá)基因,但無(wú)功能注釋[11,18]。本研究通過(guò)qRT-PCR對(duì)該基因的表達(dá)進(jìn)行了分析,確認(rèn)受黃萎病菌誘導(dǎo)后顯著上調(diào)表達(dá),且其在抗病品種中表達(dá)變化早于感病品種(圖5和圖6),表明參與棉花和黃萎病菌間的互作。通過(guò)VIGS技術(shù)對(duì)進(jìn)行沉默,發(fā)現(xiàn)棉花對(duì)黃萎病的抗性顯著降低(圖7),進(jìn)一步證明參與棉花對(duì)黃萎病菌的抗病過(guò)程。本研究雖然成功克隆了(圖1),但其編碼蛋白無(wú)明顯的功能域。因此,目前還無(wú)法通過(guò)生物信息學(xué)對(duì)其進(jìn)行注釋。亞細(xì)胞定位和組織表達(dá)特異性分析明確了CRVW在棉花組織中的分布(圖2和圖3),為進(jìn)一步注釋其生理生化功能提供了依據(jù)。
圖8 黃萎病菌侵染后棉苗體內(nèi)水楊酸的積累
圖9 黃萎病菌脅迫后SA合成和信號(hào)通路相關(guān)基因在對(duì)照和CRVW沉默棉苗中的表達(dá)分析
植物抵御病原菌侵染是一個(gè)復(fù)雜的免疫過(guò)程,激素是調(diào)控該過(guò)程的重要信號(hào)分子[29]。在已知的植物激素中,SA、茉莉酸(jasmonic acid,JA)和ET是參與免疫反應(yīng)最為核心的成員[29]。在中存在與ET、SA、auxin和ABA等激素信號(hào)響應(yīng)相關(guān)的的順式作用元件(表1),表明可能通過(guò)以上4種激素信號(hào)通路參與棉花的生長(zhǎng)發(fā)育和抗逆反應(yīng)。棉花被黃萎病菌侵染后,體內(nèi)SA會(huì)發(fā)生顯著積累[11]。SA信號(hào)通路上的標(biāo)志性基因發(fā)生沉默后,棉花對(duì)黃萎病的抗性也會(huì)顯著降低[11],表明SA在棉花抗黃萎病過(guò)程中發(fā)揮重要的調(diào)控功能。病原菌誘導(dǎo)的SA合成主要經(jīng)異分支酸合酶(isochorismate synthase,ICS)途徑,發(fā)生在葉綠體中[30]。另外,與SA積累相關(guān)的重要標(biāo)志基因有和[31]。是SA信號(hào)通路的重要調(diào)節(jié)基因。NPR1接收到SA信號(hào)后會(huì)由多聚體(oligomer)變?yōu)閱误w(monomer),從胞質(zhì)進(jìn)入細(xì)胞核,與TGA(TGACG motif-binding factor)互作,進(jìn)而調(diào)節(jié)相關(guān)抗病基因的表達(dá),特別是病程相關(guān)蛋白PR1的積累[32]。本研究檢測(cè)了SA誘導(dǎo)后的表達(dá)情況,發(fā)現(xiàn)SA能夠誘導(dǎo)顯著上調(diào)表達(dá)(圖4)。沉默后,棉苗體內(nèi)SA含量顯著降低(圖8),、、、和等5個(gè)與SA積累和信號(hào)調(diào)控相關(guān)的標(biāo)志基因均發(fā)生了顯著下調(diào)表達(dá)(圖9)。據(jù)此,推測(cè)可能通過(guò)SA信號(hào)通路參與棉花對(duì)黃萎病菌的抗性。
目前,在蛋白家族數(shù)據(jù)庫(kù)(Pfam)中未知功能結(jié)構(gòu)域蛋白家族約占26.5%[33],意味著在植物界存在數(shù)量巨大的未知功能基因。大量組學(xué)數(shù)據(jù)分析都表明,這些未知功能基因在植物生長(zhǎng)發(fā)育和逆境脅迫過(guò)程中發(fā)揮重要作用。因此,對(duì)這些基因功能的研究將有助于在全新層面上透徹地了解生物體復(fù)雜的生命活動(dòng)機(jī)制[34]。本文對(duì)進(jìn)行了表達(dá)模式分析,并證明其參與了棉花對(duì)黃萎病脅迫的響應(yīng),但其具體的調(diào)控機(jī)制還需深入研究。為進(jìn)一步完善的功能注釋?zhuān)馕鯟RVW蛋白三維構(gòu)象、尋找其互作蛋白、明確其參與的信號(hào)通路等都將是未來(lái)重要的研究?jī)?nèi)容。
棉花CRVW無(wú)明顯結(jié)構(gòu)域,且無(wú)生理生化功能注釋。CRVW定位于細(xì)胞質(zhì)和細(xì)胞膜,主要在棉花根部表達(dá);可能通過(guò)SA信號(hào)通路參與棉花抗黃萎病,是一個(gè)潛在重要的抗病基因。
[1] 馬存, 簡(jiǎn)桂良, 鄭傳臨. 中國(guó)棉花抗枯、黃萎病育種50年. 中國(guó)農(nóng)業(yè)科學(xué), 2002, 35(5): 508-513.
MA C, JIAN G L, ZHENG C L. The advances in cotton breeding resistance to fusarium and Verticillium wilts in China during past fifty years., 2002, 35(5): 508-513. (in Chinese)
[2] KLOSTERMAN S J, ATALLAH Z K, VALLAD G E, SUBBARAO K V. Diversity, pathogenicity, and management of Verticillium species., 2009, 47: 39-62.
[3] XU L, ZHU L F, TU L L, LIU L L, YUAN D J, JIN L, LONG L, ZHANG X L. Lignin metabolism has a central role in the resistance of cotton to the wilt fungusas revealed by RNA-Seq-dependent transcriptional analysis and histochemistry., 2011, 62(15): 5607-5621.
[4] FRADIN E F, THOMMA B P. Physiology and molecular aspects of Verticillium wilt diseases caused byand., 2006, 7(2): 71-86.
[5] 潘家駒, 張?zhí)煺? 蒯本科, 郭小平, 王謚. 棉花黃萎病抗性遺傳研究. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 1994, 17(3): 8-18.
PAN J J, ZHANG T Z, JING B K, GUO X P, WANG S. Studies on the inheritance of resistance toin cotton., 1994, 17(3): 8-18. (in Chinese)
[6] LIU N N, SUN Y, PEI Y K, ZHANG X Y, WANG P, LI X C, LI F G, HOU Y X. A pectin methylesterase inhibitor enhances resistance to Verticillium wilt., 2018, 176(3): 2202-2220.
[7] HU Q, MIN L, YANG X Y, JIN S X, ZHANG L, LI Y Y, MA Y Z, QI X W, LI D Q, LIU H B, LINDSEY K, ZHU L F, ZHANG X L. Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acid synthesis., 2018, 176(2): 1808-1823.
[8] ZHANG Y, WU L Z, WANG X F, CHEN B, ZHAO J, CHEN J, LI Z K, YANG J, WU L Q, WU J H, ZHANG G Y, MA Z Y. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants., 2019, 20(3), 309-322.
[9] YANG J, ZHANG Y, WANG X F, WANG W Q, LI Z K, WU J H, WANG G N, WU L Q, ZHANG G Y, MA Z Y. HyPRP1 performs a role in negatively regulating cotton resistance tovia the thickening of cell walls and ROS accumulation., 2018, 18(1): 339.
[10] MO H J, WANG X F, ZHANG Y, ZHANG G Y, ZHANG J F, MA Z Y. Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to., 2015, 83(6): 962-975.
[11] ZHANG Y, WANG X F, RONG W, YANG J, LI Z K, WU L Q, ZHANG G Y, MA Z Y. Histochemical analyses reveal that stronger intrinsic defenses inthan inare associated with resistance to., 2017, 30(12): 984-996.
[12] ZHANG T Z, HU Y, JIANG W K, FANG L, GUAN X Y, CHEN J D, ZHANG J B, SASKI C A, SCHEFFLER B E, STELLY D M, HULSE-KEMP A M, WAN Q, LIU B L, LIU C X, WANG S, PAN M Q, WANG Y K, WANG D W, YE W X, CHANG L J, ZHANG W P, SONG Q X, KIRKBRIDE R C, CHEN X Y, DENNIS E, LLEWELLYN D J, PETERSON D G, THAXTON P, JONES D C, WANG Q, XU X Y, ZHANG H, WU H T, ZHOU L, MEI G F, CHEN S Q, TIAN Y, XIANG D, LI X H, DING J, ZUO Q Y, TAO L N, LIU Y C, LI J, LIN Y, HUI Y Y, CAO Z S, CAI C P, ZHU X F, JIANG Z, ZHOU B L, GUO W Z, LI R Q, CHEN Z J. Sequencing of allotetraploid cotton (L. acc. TM-1) provides a resource for fiber improvement., 2015, 33(5): 531-537.
[13] LIU Y, SCHIFF M, MARATHE R, DINESH-KUMAR S P. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus., 2002, 30(4): 415-429.
[14] 姚丹青, 張微微, 原麗華, 潘俊松, 何歡樂(lè), 蔡潤(rùn). VIGS: 植物功能基因組學(xué)研究的革命. 分子植物育種, 2009, 7(1): 155-161.
YAO D Q, ZHANG W W, YUAN L H, PAN J S, HE H L, CAI R. VIGS: the revolution of plant function genomics research., 2009, 7(1): 155-161. (in Chinese)
[15] GAO X Q, WHEELER T, LI Z, KENERLEY C M, HE P, SHAN L B. Silencingandcompromises cotton resistance to Verticillium wilt., 2011, 66(2): 293-305.
[16] GAO W, LONG L, ZHU L F, XU L, GAO W H, SUN L Q, LIU L L, ZHANG X L. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to., 2013, 12(12): 3690-3703.
[17] MA Z Y, HE S P, WANG X F, SUN J, ZHANG Y, ZHANG G, WU L, LI Z, LIU Z, SUN G, YAN Y, JIA Y, YANG J, PAN Z, GU Q, LI X, SUN Z, DAI P, LIU Z, GONG W, WU J, WANG M, LIU H, FENG K, KE H, WANG J, LAN H, WANG G, PENG J, WANG N, WANG L, PANG B, PENG Z, LI R, TIAN S, DU X. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield., 2018, 50(6): 803-813.
[18] ZHANG Y, WANG X F, DING Z G, MA Q, ZHANG G R, ZHANG S L, LI Z K, WU L Q, ZHANG G Y, MA Z Y. Transcriptome profiling ofinoculated withprovides a resource for cotton improvement., 2013, 14: 637.
[19] 王國(guó)寧, 趙貴元, 岳曉偉, 李志坤, 張艷, 張桂寅, 吳立強(qiáng), 王省芬, 馬峙英. 河北省棉花黃萎病菌致病性與ISSR遺傳分化. 棉花學(xué)報(bào), 2012, 24(4): 348-357.
WANG G N, ZHAO G Y, YUE X W, LI Z K, ZHANG Y, ZHANG G Y, WU L Q, WANG X F, MA Z Y. Pathogenicity and ISSR genetic differentiation ofisolates from cotton growing areas of Hebei province. Cotton Science, 2012, 24(4): 348-357. (in Chinese)
[20] 吳立柱, 王省芬, 李喜煥, 馬峙英. 通用型植物表達(dá)載體pCamE的構(gòu)建及功能驗(yàn)證. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2014, 22(6): 661-671.
WU L Z, WANG X F, LI X H, MA Z Y. Construction and function identification of universal plant expression vector pCamE., 2014, 22(6): 661-671. (in Chinese)
[21] YANG J, JI L L, WANG X F, ZHANG Y, WU L Q, YANG Y, MA Z Y. Overexpression of 3-deoxy-7-phosphoheptulonate synthase gene fromenhancesresistance to Verticillium wilt., 2015, 34(8): 1429-1441.
[22] ARTICO S, NARDELI S M, BRILHANTE O, GROSSI-DE-SA M F, ALVES-FERREIRA M. Identification and evaluation of new reference genes infor accurate normalization of real-time quantitative RT-PCR data., 2010, 10: 49.
[23] SUN L Q, ZHU L F, XU L, YUAN D J, MIN L, ZHANG X L. Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway., 2014, 5: 5372.
[24] 馬峙英, 王省芬, 張桂寅, 李興紅, 劉叔倩, 吳立強(qiáng), 劉占國(guó), 孫濟(jì)中, 劉金蘭. 河北省棉花黃萎病菌致病性的研究. 棉花學(xué)報(bào), 1997, 9(1): 15-20.
MA Z y, Wang X f, Zhang G y, LI X H, LIU S J, WU L Q, LIU Z G, SUN J Z, LIU J L. Study on pathogenicity ofin Hebei Province., 1997, 9(1): 15-20. (in Chinese)
[25] CHEN H, NELSON R S, SHERWOOD J L. Enhanced recovery of transformants ofafter freeze-thaw transformation and drug selection., 1994, 16(4): 664-668, 670.
[26] GAO X Q, BRITT R J, SHAN L B, HE P.-mediated virus-induced gene silencing assay in cotton., 2011(54): e2938.
[27] VERBERNE M C, BROUWER N, DELBIANCO F, LINTHORST H J M, BOL J F, VERPOORTE R. Method for the extraction of the volatile compound salicylic acid from tobacco leaf material., 2002, 13: 45-50.
[28] SUN Q, JIANG H Z, ZHU X Y, WANG W N, HE X H, SHI Y Z, YUAN Y L, DU X M, CAI Y F. Analysis of sea-island cotton and upland cotton in response toinfection by RNA sequencing., 2013, 14: 852.
[29] PIETERSE C M J, LEON-REYES A, VAN DER ENT S, VAN WEES S C M. Networking by small-molecule hormones in plant immunity., 2009, 5(5): 308-316.
[30] WILDERMUTH M C, DEWDNEY J, WU G, AUSUBEL F M. Isochorismate synthase is required to synthesize salicylic acid for plant defence., 2001, 414(6863): 562-565.
[31] ZHENG X Y, ZHOU M, YOO H, PRUNEDAPAZ J L, SPIVEY N W, KAY S A, DONG X. Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid., 2015, 112(30): 9166-9173.
[32] YASUOMI T D, STEVEN H S, KAROLINA P M, ZHONG L M, SONG J Q, WANG C, ZUO J R, DONG X N. Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. 2008, 321(5891): 952-956.
[33] PUNTA M, COGGILL P C, EBERHARDT R Y, MISTRY J, TATE J, BOURSNELL C, PANG N, FORSLUND K, CERIC G, CLEMENTS J, HEGER A, HOLM L, SONNHAMMER E L, EDDY S R, BATEMAN A, FINN R D. The Pfam protein families database., 2012, 40(Database issue): D290- D301.
[34] 羅成科, 肖國(guó)舉, 李明. 不同未知功能結(jié)構(gòu)域蛋白家族(DUFs)基因在植物中的生物學(xué)功能. 植物生理學(xué)報(bào), 2015, 51(2): 153-158.
LUO C K, XIAO G J, LI M. Biological functions of different domains of unknown function protein families (DUFs) genes in plants., 2015, 51(2): 153-158. (in Chinese)
Cloning and Functional Characterization of GeneInvolved in Cotton Resistance to Verticillium Wilt
WANG QiuYing, WANG WeiQiao, ZHANG Yan, WANG GuoNing, WU LiQiang, ZHANG GuiYin, MA ZhiYing, YANG Jun, WANG XingFen
(College of Agronomy, Hebei Agricultural University/North China Key Laboratory for Crop Germplasm Resources, Ministry of Education, Baoding 071001, Hebei)
【】Verticillium wilt is an important disease in cotton production, and it seriously affects the yield and quality of cotton. Genome sequences ofprovide valuable information resources for searching for resistance genes. In this study, an uncharacterized gene, designed as(cotton resistance to Verticillium wilt), was cloned and identified for disease resistance. The results will lay a foundation for upgrading cotton genomic information, further studying the resistance mechanism and molecular breeding. 【】 The open reading frame (ORF) ofwas cloned from upland cotton cultivar ND601 using the primers, which were designed according to the reference genome sequence. The online software ProtParam was used to predict protein properties, including amino acid composition, molecular weight, the theoretic isoelectric point, instability index and grand average of hydropathicity. PSIPRED v3.3 was used to predict the protein secondary structure. The prediction of protein subcellular localization and-acting elements in the promoter was performed using ProtComp v. 9.0 and PlantCARE, respectively. To elucidate the subcellular localization of the CRVW protein, the CRVW-GFP fusion construct was transformed into onion epidermal cells by particle bombardment. qRT-PCR was performed using normal cotton tissues and tissues that were treated with exogenous application of salicylic acid (SA) andstress. The function ofinvolving in cotton resistance towas further verified by the technology of virus-induced gene silencing (VIGS). To preliminarily analyze the disease resistance pathway mediated by, the expression of some marker genes related to plant disease resistance was assayed in-silenced plants.【】A 780 bp ORF ofwas successfully cloned fromND601.encodes a putative protein of 259 amino acids with a molecular mass of 30.2 kD and an isoelectric point of 9.59. The protein secondary structure of CRVW contains 69.50% random coil, 17.76% α-helical, 11.20% extension and 1.54% β-sheet. By bioinformatics prediction and fluorescence observation, we found that CRVW was mainly located in the cell membrane and cytoplasm.was expressed in the roots, stems and leaves of cotton, but the highest expression occurred in the roots. The upstream sequence ofORF () contains-acting elements in response to four kinds of hormones, including ethylene, SA, auxin and abscisic acid. Additionally,includes a few other elements relating to injury, defense, stress, disease, drought and low temperature. The expression ofwas significantly upregulated in the leaves sprayed with SA. After inoculated with,was dramatically upregulated both in resistant cultivar ND601 and susceptible cultivar CCRI8, but the upregulated expression in susceptible cultivar lagged behind in the resistant cultivar. After 20 days inoculated with,silenced cotton seedlings showed more clearly chlorosis, wilting and defoliating comparing to CK. Further statistical analysis showed thatsilenced cotton seedlings had higher disease index than the CK, suggesting that the silence ofsignificantly reduced the resistance of cotton seedling to. Endogenous SA content insilenced cotton seedlings was significantly lower than in CK. The expression of marker genes related to SA accumulation and signal regulation, including(isochorismate synthase 1),(enhanced disease susceptibility 1),(phytoalexin deficient 4)(nonexpresser of PR gene 1) and(pathogenesis- related protein 1), were significantly down-regulated after silencing.【】CRVW is located in the cytoplasm and the cell membrane, mainly expressed in cotton roots, and involved in the process of cotton resistance to Verticillium wilt, perhaps through SA-mediated defense pathway.
cotton; Verticillium wilt; CRVW; clone; virus-induced gene silencing; resistance
10.3864/j.issn.0578-1752.2019.11.002
2019-01-08;
2019-03-22
河北省自然科學(xué)基金(C2016204098)、河北省科技支撐計(jì)劃(16226307D)
王秋瑩,Tel:0312-7528415;E-mail:wangqiuying9308@163.com。通信作者楊君,Tel:0312-7528401;E-mail:yang22181@163.com。通信作者王省芬,Tel:0312-7528401;E-mail:cotton@mail.hebau.edu.cn
(責(zé)任編輯 李莉)