邱瀾,曹建國,周建輝,江軍,王曉玲,繆存孝,3
?
機(jī)器人柔彈性仿生電子皮膚研究進(jìn)展
邱瀾1,2,3,曹建國1,2,3,周建輝1,2,4,江軍1,2,3,王曉玲1,繆存孝1,3
(1. 北京科技大學(xué) 機(jī)械工程學(xué)院,北京,100083;2. 北京科技大學(xué) 智能機(jī)器人創(chuàng)新研究院,北京,100083;3. 北京科技大學(xué) 人工智能研究院,北京,100083;4. 華北理工大學(xué) 遷安學(xué)院,河北 唐山,064400)
仿生電子皮膚觸覺傳感器是實(shí)現(xiàn)機(jī)器人智能化發(fā)展的先決條件,機(jī)器人等復(fù)雜的三維載體表面或活動(dòng)關(guān)節(jié)部位接觸壓力感知的可延展的柔彈性電子皮膚高柔性、高彈性和靈活可調(diào)等適形性要求高且具有廣闊的應(yīng)用前景。由于常用的無機(jī)半導(dǎo)體材料和金屬材料及其化合物斷裂極限應(yīng)變較低,難以滿足可延展的柔彈性電子皮膚的要求,因此,具有可延展性的二維納米膜、納米帶或一維納米線等電極或互聯(lián)導(dǎo)體得到廣泛應(yīng)用;基于力學(xué)屈曲的薄膜?基板結(jié)構(gòu)和納米級(jí)導(dǎo)電元件的結(jié)構(gòu)設(shè)計(jì)可有效改善無機(jī)材料的受力情況,明顯提高材料整體的可拉伸性;采用納米制造等新型技術(shù)制備的新型材料和結(jié)構(gòu)一體化使得可延展的柔性電子皮膚的柔彈性顯著提高。高柔彈性仿生電子皮膚觸覺傳感器可提高機(jī)器人的環(huán)境適應(yīng)性,有利于機(jī)器人與人類之間建立起一種新型的人機(jī)共融 模式。
機(jī)器人;壓力感知;電子皮膚;柔性;柔彈性
人類通過視覺、聽覺、觸覺、嗅覺和味覺等感知外界環(huán)境。針對(duì)機(jī)器人的研究,利用電子技術(shù)對(duì)人類的各種感知進(jìn)行模擬,是實(shí)現(xiàn)人機(jī)無縫銜接、人工智能和仿生機(jī)器人發(fā)展的關(guān)鍵[1?5]。相對(duì)于視覺、聽覺而言,觸覺的模仿十分困難,尤其是壓力感知的電子皮膚觸覺傳感器最具挑戰(zhàn)性且應(yīng)用潛力最大,具有高柔彈性的電子皮膚觸覺傳感器可助力于下一代機(jī)器人、軟體機(jī)器人等載體的智能化、無人化和多功能化[3?4],具有廣闊的發(fā)展前景,是當(dāng)今國際學(xué)術(shù)研究的熱點(diǎn)問題之一[5?7]。觸覺本身有很強(qiáng)的敏感性,可直接測(cè)量對(duì)象和環(huán)境的多種特征。電子皮膚觸覺傳感器(tactile sensors for e-skin),又稱人工皮膚(artificial skin)、敏感皮膚(sensitive skin)、智能皮膚(smart skin)、仿生皮膚(bionic skin)等[6?8],是一種能夠通過接觸表征出被測(cè)物體的性質(zhì)(表面形貌、質(zhì)量等)或數(shù)值化接觸參量(力、溫度等)的設(shè)備或系統(tǒng),可覆蓋于復(fù)雜的三維載體表面,并準(zhǔn)確感知周圍環(huán)境的各種信息,是機(jī)械、電子、儀器和醫(yī)學(xué)等領(lǐng)域的研究熱點(diǎn)之一[7-10]。為了覆蓋機(jī)器人復(fù)雜的三維表面和活動(dòng)的關(guān)節(jié)部位,電子皮膚陣列觸覺傳感器在保證其精度、靈敏度等指標(biāo)的同時(shí),通常還必須具有高柔性和高彈性等,其研究受到人們的高度重視[10?15]。近年來,我國和美國、日本等國家均投入了巨大的人力與物力,對(duì)壓力感 知的高柔彈性電子皮膚的重點(diǎn)與難點(diǎn)問題進(jìn)行研究[16?18]。
電子皮膚觸覺傳感器在機(jī)器人觸覺感知方面有不可替代的作用,在機(jī)器人體表或表層集成電子皮膚可使其更加“類人(humanoid)”和智能化;具有高柔彈性的電子皮膚觸覺傳感器陣列能夠覆蓋于機(jī)器人的多部位,可以模仿甚至超越人類皮膚的感覺功能,有效地實(shí)現(xiàn)機(jī)器人的觸覺感知[6?7]。自然狀態(tài)下的人類皮膚不僅具有高柔性,而且具有高彈性。人類手腕處皮膚拉伸如圖1所示。CODY等[19?20]的研究結(jié)果表明:人體體表中手腕部位的皮膚柔彈性最高,彎曲時(shí)的最大拉伸率可達(dá)到20.4%,可貼合于三維復(fù)雜靜/動(dòng)態(tài)表面同時(shí)完成觸覺感知,卸載后皮膚的高彈性使其可恢復(fù)原來的形狀。
數(shù)據(jù)單位:mm
近年來,美國、日本、英國和我國等對(duì)用于機(jī)器人觸覺感知的電子皮膚的研究均予以高度重視,如美國國家自然基金會(huì)NSF和國防高級(jí)研究計(jì)劃局DARPA整合了來自學(xué)術(shù)機(jī)構(gòu)、工業(yè)界和政府部門等的研究人員,專門成立了電子皮膚研究會(huì)。觸覺是實(shí)現(xiàn)感知最重要的感官,不同于視覺和聽覺,其信息是雙向流動(dòng)的[21],通過觸覺感知和調(diào)節(jié)交互作用力的大小和方向,能夠極大地克服依靠力矩、距離等感知帶來的不足,提高系統(tǒng)的穩(wěn)定性和準(zhǔn)確性,可配合其他類型傳感器輔助靈巧手完成精細(xì)操作[22]。觸覺感知輔助的機(jī)械臂如圖2所示。
美國麻省理工學(xué)院(MIT)研制的“電子皮膚”先期應(yīng)用于美國國家宇航局NASA的Robonaut航天機(jī)器人的前臂、肩部和軀干進(jìn)行觸覺感知,不僅能感知到物體的地點(diǎn)和方位,而且能獲得物體的硬度等信息,將來有望使機(jī)器人具有與人類更相似的觸覺并增強(qiáng)其與人類的互動(dòng)能力[23?24]。IWATA等[25]使用柔性電子皮膚觸覺傳感器覆蓋WENDY機(jī)器人的全身,其肩和臂部空間分辨率為20 mm,可識(shí)別人機(jī)交互的觸覺信息。日本本田株式會(huì)社2011年發(fā)布的“ASIMO2011”機(jī)器人綜合了視覺和觸覺的物體識(shí)別技術(shù),可進(jìn)行細(xì)致作業(yè)。日本福島核電站發(fā)生大地震后,日本政府委托本田公司著力為他們已有的ASIMO機(jī)器人研制電子皮膚觸覺傳感器,以使其能夠更好地感知輻射嚴(yán)重區(qū)域的周圍環(huán)境。
圖2 觸覺感知輔助的機(jī)械臂
電子皮膚可用于機(jī)器人全身包括肩部、肘關(guān)節(jié)、膝關(guān)節(jié)等部位,由于這些關(guān)節(jié)部位的表面形狀和尺寸在機(jī)器人工作過程中易發(fā)生變形,故要求覆蓋在其表面的電子皮膚需要具有高的柔性和彈性以適形并保證正常工作。近些年,有關(guān)柔彈性的電子皮膚觸覺傳感器的研究取得了較大進(jìn)展。在柔性化方面,郭曉輝 等[26]利用聚酰亞胺為柔性基體,以質(zhì)量分?jǐn)?shù)為8%的炭黑填充硅橡膠作為傳感器的彈性電介質(zhì),以有機(jī)硅導(dǎo)電銀膠和金屬膜作為上、下柔性極板,設(shè)計(jì)了一種可用于機(jī)器人敏感皮膚的全柔性電容式觸覺傳感器陣列,可以實(shí)現(xiàn)真正意義上的全觸覺、大面積觸覺感知;CHENG等[27]利用光刻和模具固化成型制作工藝制備了一種以聚二甲基硅氧烷(PDMS)為主要結(jié)構(gòu)材料、導(dǎo)電聚合物作為傳感單元、可以高度扭轉(zhuǎn)的觸覺傳感器陣列,其扭轉(zhuǎn)角度可達(dá)到70°而不破壞整體結(jié)構(gòu)。在彈性化方面,應(yīng)變式觸覺傳感器拉伸率可達(dá)1 000%[28?29]甚至更高。相比之下,壓力測(cè)量的電子皮膚的彈性化更具挑戰(zhàn)性。雖然在平面狀態(tài)或拉伸率不變條件下,可延展柔性電子皮膚彈性化研究已取得一定進(jìn)展,拉伸性能可達(dá)到100%[30]甚至更高,但仍難以實(shí)現(xiàn)三維表面下的高拉伸性能。CODY等[19]發(fā)現(xiàn)作為人體體表最富柔彈性的手腕部位的皮膚能夠在手腕彎曲時(shí)經(jīng)受最大20.4%的拉伸率,機(jī)器人及醫(yī)療器械對(duì)于電子皮膚拉伸率的要求一般達(dá)到20%;要想實(shí)現(xiàn)人類手腕部位的拉伸,電子皮膚彈性范圍內(nèi)可承受最大拉伸率應(yīng)該在30%左右。目前有關(guān)能夠貼合于三維靜/動(dòng)態(tài)表面同時(shí)完成壓力感知的高柔彈性電子皮膚的研究報(bào)道較少。
電子皮膚觸覺傳感器作為電子元器件的一種,通常采用以下2種材料[31]:1) 無機(jī)半導(dǎo)體材料,如硅(Si),III-V族和II-VI族化合物等,在拉伸、彎曲等變形條件下容易發(fā)生脆斷,斷裂極限應(yīng)變約為1%[32];2) 金屬材料及其化合物,如銀(Ag)、銅(Cu)、氧化銦錫(ITO)等。PASHLEY[33]的研究結(jié)果表明自由金屬薄膜在拉伸至約1%應(yīng)變時(shí)發(fā)生斷裂失效。銅鋁合金在不同溫度下的應(yīng)力?應(yīng)變曲線[34]如圖3所示。這些常用的電子元器件材料都不能直接整合于彈性基底上制備柔彈性設(shè)備,限制了電子器件整體的可拉伸性。
溫度/℃:1—23.8;2—100.0;3—200.0;4—300.0;5—350.0。
由于彎曲應(yīng)變隨著厚度呈線性減小,所以,任何材料在足夠薄的情況下都是柔性的,如納米級(jí)厚度的帶、導(dǎo)線或薄膜均具有柔性。ROGERS等[35]發(fā)現(xiàn)厚度為100 nm的帶材在彎曲到曲率半徑為1 cm時(shí)峰值應(yīng)變僅為5×10?6,即使安裝在厚度為20 mm的塑料板上,類似彎曲半徑處的應(yīng)變(約0.1%)仍遠(yuǎn)低于斷裂極限應(yīng)變(約1%)[32]。
相對(duì)于自由金屬薄膜的斷裂極限而言,附在柔性基板上的金屬薄膜的斷裂極限要高得多[36?37],這是因?yàn)槿嵝曰逡种屏私饘賹?dǎo)體的變形[38]。HOMMEL等[39?40]通過實(shí)驗(yàn)發(fā)現(xiàn)貼附在聚酰亞胺薄膜上的銅箔可承受2%的應(yīng)變;MACIONCZYK等[41]將220 nm厚的銅鋁薄膜附著在聚酰亞胺柔性基板上,發(fā)現(xiàn)銅鋁薄膜可承受5%以上的應(yīng)變,此時(shí)微裂紋開始在薄膜中形成,且隨著應(yīng)變?cè)龃蠖龃?,銅鋁薄膜可承受20%的應(yīng)變而不發(fā)生斷裂。不同平均粒徑的銅鋁薄膜附在柔性基板上的應(yīng)力?應(yīng)變曲線如圖4所示。
平均粒徑/μm:1—11;2—84;3—307;4—928。
XIANG等[42]發(fā)現(xiàn)金屬膜的斷裂應(yīng)變對(duì)它們與基底的黏附性具有敏感性。結(jié)合良好的銅薄膜拉伸至10%應(yīng)變和黏合不良的銅薄膜拉伸至6%應(yīng)變?nèi)鐖D5所示。XIANG等[42]將100 nm厚的銅薄膜結(jié)合到聚合物基材上,發(fā)現(xiàn)良好結(jié)合的銅薄膜可承受高達(dá)10%的應(yīng)變而不會(huì)出現(xiàn)明顯的裂紋(見圖5(a)),該類銅薄膜可承受高達(dá)30%的應(yīng)變而不出現(xiàn)連續(xù)微裂紋;而黏合不良的銅薄膜在約2%的應(yīng)變下形成通道裂紋(見圖5(b))。
圖5 銅薄膜拉伸至不同應(yīng)變水平
PARK等[32]分析了基于柔性基板的硅薄帶在彎曲應(yīng)變下的3種不同破壞模式即裂紋、滑移和層間分離,發(fā)現(xiàn)其與硅薄帶的厚度有關(guān)。硅薄帶裂紋失效模式的SEM圖像如圖6所示。
為提高電子皮膚的柔性和彈性,研究者除探索材料性能外,還利用基于力學(xué)的結(jié)構(gòu)設(shè)計(jì)來改變電子皮膚中無機(jī)材料的受力情況,從而提高整體的可延展性。KHANG等[43]制備了一種由微米級(jí)周期性波狀幾何結(jié)構(gòu)的次微米單晶分子組成的硅薄膜,通過將條帶狀硅薄膜轉(zhuǎn)移印刷到受預(yù)拉伸的PDMS(聚二甲基硅氧烷)彈性基底上,釋放基體所受的預(yù)拉伸變形,產(chǎn)生具有屈曲結(jié)構(gòu)的硅薄膜,該硅薄膜可承受拉伸和壓縮條件下的大應(yīng)變而不損壞,使器件的延展性提高到5%~10%。波狀硅薄膜制備過程如圖7所示。
彎曲比/%:(a) 35.6;(b) 45.8
FEI等[44]通過電子束蒸發(fā)將100 nm厚的金薄膜沉積在不同預(yù)拉伸應(yīng)變的PDMS彈性基底上,制備了多種不同非正弦形狀的金薄膜屈曲結(jié)構(gòu),可承受拉伸。預(yù)應(yīng)變對(duì)Au膜在PDMS上的屈曲分布的影響如圖8所示。FEI等[44]的研究表明屈曲結(jié)構(gòu)的形狀與薄膜厚度、預(yù)拉伸應(yīng)變程度和應(yīng)變釋放速率 有關(guān)。
KIM等[15]設(shè)計(jì)了一種具有納米級(jí)尺寸的非共面“島?橋”結(jié)構(gòu)的導(dǎo)電元件,在導(dǎo)電元件整體發(fā)生變形時(shí),可將應(yīng)變幾乎完全限制在島與島之間互聯(lián)的橋上,當(dāng)導(dǎo)電元件整體受20%應(yīng)變時(shí),“橋”中的應(yīng)變僅約為0.05%;而“島”的應(yīng)變與“島”和“橋”的厚度及彈性模量有關(guān),當(dāng)兩者的厚度和彈性模量相等時(shí),應(yīng)變也相等,當(dāng)“島”的厚度和彈性模量比“橋”的大時(shí),“島”上的應(yīng)變隨之減小。在此基礎(chǔ)上,KIM等[45]設(shè)計(jì)了非共面蛇形橋“島?橋”結(jié)構(gòu),對(duì)導(dǎo)電元件整體施加106%的應(yīng)變時(shí),蛇形橋中的最大應(yīng)變僅為0.35%。非共面“島?橋”結(jié)構(gòu)和非共面蛇形橋“島?橋”結(jié)構(gòu)如圖9所示。
YING等[46]的研究突出了納米幾何設(shè)計(jì)在實(shí)現(xiàn)機(jī)械性能方面需求的重要性,采用金屬、硅基材料等無機(jī)材料,通過基于力學(xué)的形狀和結(jié)構(gòu)設(shè)計(jì)制作了具有蛇形網(wǎng)狀結(jié)構(gòu)的柔、彈性導(dǎo)電元件,使得無機(jī)導(dǎo)電材料能夠隨著彈性基底的延展而伸長變形,但不會(huì)發(fā)生斷裂等破壞。網(wǎng)狀幾何結(jié)構(gòu)的電子皮膚陣列傳感器如圖10所示。這種設(shè)計(jì)可以將電子皮膚中的無機(jī)半導(dǎo)體材料結(jié)構(gòu)在拉伸條件下的應(yīng)變提升到10%~20%。
SOMEYA等[47]基于有機(jī)半導(dǎo)體開發(fā)了靈活適形且面積較大的熱傳感器和壓力傳感器網(wǎng)絡(luò),如圖11所示。通過將具有有機(jī)晶體管和壓敏橡膠的塑性薄膜機(jī)械加工成獨(dú)特的網(wǎng)狀結(jié)構(gòu),使得薄膜器件長度和寬度可延伸25%,同時(shí)用于三維表面測(cè)量接觸壓力,如可覆蓋于雞蛋表面獲得壓力圖像,但當(dāng)其附著在載體或活動(dòng)關(guān)節(jié)時(shí),薄膜器件的彈性將消失。
圖7 波狀硅薄膜制備過程
預(yù)應(yīng)變/%:(a) 5; (b) 10; (c) 20; (d) 30; (e) 40
圖9 “島?橋”結(jié)構(gòu)示意圖
圖10 網(wǎng)狀幾何結(jié)構(gòu)的電子皮膚陣列傳感器
圖11 一種適形的壓力傳感器網(wǎng)絡(luò)
LACOUR等[48]將彈性體基材上的可伸縮電子元件需要的易碎和脆弱的器件材料放置在剛性機(jī)械隔離的子電路島上,在室溫下通過脈沖激光燒蝕在硅襯底上沉積類鉆石碳(diamondlike carbon, DLC),并將該膜圖案看作是長×寬為200 μm×200 μm的17×17島陣列。圖12所示為受到25%拉伸應(yīng)變時(shí)的DLC島陣列。由可拉伸金屬化金互連的DLC島列可在機(jī)械循環(huán)期間保持端對(duì)端電導(dǎo)率,直至應(yīng)變?yōu)?0%為止,可在25%的應(yīng)變范圍內(nèi)正常工作,并保證島狀物與基材黏附,且島狀物變形僅約5%。
PARK等[49]受人類皮膚的表皮層與真皮層互鎖結(jié)構(gòu)的啟發(fā),利用帶有微型孔的硅模具對(duì)加入固化劑碳納米管、PDMS液態(tài)混合物進(jìn)行微成型,形成互相連鎖的微型拱形結(jié)構(gòu),如圖13所示。這種觸覺傳感器靈敏度高,可感知較小的壓力,但在拉伸情況下,接觸壓力的測(cè)量精度會(huì)受到影響。
圖12 受到25%拉伸應(yīng)變時(shí)的DLC島陳列
WANG等[50?51]采用新型銀納米線材料與新型結(jié)構(gòu)制備柔性電子皮膚壓阻式陣列觸覺傳感器,并提出利用基于銀納米線(AgNMs)和PDMS的復(fù)合材料制作壓阻式的壓力傳感器陣列導(dǎo)線和電極從而實(shí)現(xiàn)陣列柔彈性的新方法,并提出了一種基于“多孔PDMS”與AgNWs/PDMS電極的新型“三明治”式壓力傳感器陣列結(jié)構(gòu)[52],如圖14所示。該結(jié)構(gòu)突破了傳統(tǒng)“三明治”結(jié)構(gòu)缺乏柔彈性的限制,使陣列的彈性拉伸率達(dá)到30%,超越了人類皮膚的彈性拉伸率;0~180 kPa大范圍壓力感知的高柔彈性電子皮膚具有良好的可靠性和可擴(kuò)展性,能夠貼合載體三維復(fù)雜靜/動(dòng)態(tài)表面測(cè)量接觸壓力。同時(shí),孟軍輝[53]對(duì)基于銀納米線的彈性電極進(jìn)行研究,通過PSP預(yù)拉伸彈性電極可使其在30%大拉伸率條件下的導(dǎo)電特性穩(wěn)定性顯著提高,并應(yīng)用于制備新型電容式電子皮膚。該新型電子皮膚具有良好的可靠性和穩(wěn)定性,可承受彎曲、拉伸、扭轉(zhuǎn)、揉成團(tuán)等多種變形[54]。
CHENG等[55]將毯狀波結(jié)構(gòu)的銀納米線附在具有螺旋形微結(jié)構(gòu)預(yù)裂紋的纖維軸上作為彈性電極,形成點(diǎn)對(duì)點(diǎn)電容式矩陣,制備出一種柔性電子皮膚,如圖15所示。毯狀波結(jié)構(gòu)的銀納米線可吸收拉伸應(yīng)變,研究表明銀納米線在10%應(yīng)變內(nèi)不產(chǎn)生裂紋,該電子皮膚可在30%應(yīng)變范圍內(nèi)正常使用,用于平面和曲面壓力測(cè)繪,也可用于人體運(yùn)動(dòng)感知,如手掌和拇指彎曲。
圖13 微型拱形結(jié)構(gòu)電子皮膚觸覺傳感器
圖14 高柔彈性的仿生電子皮膚壓力傳感器陣列
圖15 彈性電極和電子皮膚性能
ZHAO等[56]設(shè)計(jì)制作了一種可在靜/動(dòng)態(tài)下快速響應(yīng)空間接觸/壓力/應(yīng)變分布的三明治結(jié)構(gòu)(PDMS/PET/Ag//Ecoflex//Ag/PET/PDMS)的電容式柔性傳感器陣列,檢測(cè)限為6 Pa。蛇形電極的三明治結(jié)構(gòu)傳感器陣列制備如圖16所示。由圖16可見:傳感器電極層由具有蛇形結(jié)構(gòu)的銀導(dǎo)線網(wǎng)、銅導(dǎo)線和PDMS基底組成,中間層為共聚酯介質(zhì)層,保證了良好的彈性,可在70%的拉伸率和微小壓力范圍內(nèi)正常 工作。
圖16 蛇形電極的三明治結(jié)構(gòu)傳感器陣列制備
1) 接觸壓力測(cè)量的電子皮膚觸覺傳感器陣列可用于機(jī)器人直接測(cè)量與對(duì)象或環(huán)境的接觸壓力的大小和方向,輔助完成環(huán)境感知、精細(xì)操作和人機(jī)交互。
2) 采用納米級(jí)的無機(jī)材料、基于力學(xué)屈曲的結(jié)構(gòu)設(shè)計(jì)和基于納米制造等先進(jìn)制備的技術(shù)新型材料與結(jié)構(gòu)一體化可顯著提高壓力感知的柔性仿生電子皮膚觸覺傳感器的延展性,可望逐步滿足機(jī)器人的三維復(fù)雜表面靜/動(dòng)態(tài)條件、活動(dòng)關(guān)節(jié)部位的傳感與感知對(duì)電子皮膚觸覺傳感器具備高柔性、高彈性和靈活可調(diào)的適形能力的要求,有利于實(shí)現(xiàn)機(jī)器人的智能化,便于在機(jī)器人與人類之間建立起一種新型的人機(jī)共融模式。
[1] 王國彪, 陳殿生, 陳科位, 等. 仿生機(jī)器人研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 機(jī)械工程學(xué)報(bào), 2015, 51(13): 27?44. WANG Guobiao, CHEN Diansheng, CHEN Kewei, et al, The current research status and development strategy on biomimetic robot[J]. Journal of Mechanical Engineering, 2015, 51(13): 27?44.
[2] 尹周平, 黃永安. 柔性電子制造: 材料、器件與工藝[M]. 北京: 科學(xué)出版社, 2016: 5?17. YIN Zhouping, HUANG Yongan. Micro nano manufacturing: materials, devices and processes[M]. Beijing: Science Press, 2016: 5?17.
[3] CHARALAMBIDES A, BERGBREITER S. Rapid manufacturing of mechanoreceptive skins for slip detection in robotic grasping[J]. Advanced Materials Technologies, 2017, 2(1): 1?10.
[4] LI Tao, ZOU Jingdian, XING Fei. From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design[J]. ACS nano, 2017, 2(11): 3950?3956.
[5] PEDRO S G, PEDRO M P R, OCTAVIAN P, et al. Tactile sensors for robotic applications[J]. Measurement, 2013, 46(3): 1257?1271.
[6] 曹建國, 周建輝, 繆存孝, 等. 電子皮膚觸覺傳感器研究進(jìn)展與發(fā)展趨勢(shì)[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào), 2017, 49(1): 1?13. CAO Jianguo, ZHOU Jianhui, MIAO Cunxiao, et al. Research progress and development strategy on tactile sensors for e-skin[J]. Journal of Harbin Institute of Technology, 2017, 49(1): 1?13.
[7] 黃振龍, 張尚杰, 潘泰松, 等. 基于碳納米材料的柔性薄膜器件研究[J]. 中國科學(xué): 物理學(xué), 力學(xué), 天文學(xué), 2016, 46(4): 044606?044615. HUANG Zhenlong, ZHANG Shangjie, PAN Taisong, et al. Flexible devices based on carbon nanotubes[J].Scientia Sinica: Physica, Mechanica & Astronomica, 2016, 46(4): 044606? 044615.
[8] 馮雪, 陸炳衛(wèi), 吳堅(jiān), 等. 可延展柔性無機(jī)微納電子器件原理與研究進(jìn)展[J]. 物理學(xué)報(bào), 2014, 63(1): 1?18. FENG Xue, LU Bingwei, WU Jian, et al. The principle and research progress of ductile flexible inorganic micro- nanoelectronic devices[J]. Acta Physica Sinica, 2014, 63(1): 1?18.
[9] MALLORY L, HAMMOCK A C, BENJAMIN C, et al. 25th anniversary article: the evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress[J]. Advanced Materials, 2013, 25(42): 5997?6038.
[10] 黃英, 陸偉, 趙小文, 等. 用于機(jī)器人皮膚的柔性多功能觸覺傳感器設(shè)計(jì)與實(shí)驗(yàn)[J]. 機(jī)器人, 2011, 33(3): 347?353, 359. HUANG Ying, LU Wei, ZHAO Xiaowen, et al. Design and experiment of flexible multi-functional tactile sensors for robot skin[J]. Robot, 2011, 33(3): 347?353, 359.
[11] CHO C, RYUH Y. Fabrication of flexible tactile force sensor using conductive ink and silicon elastomer[J]. Sensors and Actuators A: Physical, 2016, 237(1): 72?80.
[12] YU Kijun, YAN Zheng, HAN Mengdi, et al. Inorganic semiconducting materials for flexible and stretchable electronics[J]. NPJ Flexible Electronics, 2017, 4(1): 1?14.
[13] PU Xiong, LIU Mengmeng, CHEN Xiangyu, et al. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing[J]. Science Advances, 2017, 3(5): 1?10.
[14] NGUYEN T D, HAN H S, SHIN H Y, et al. Highly sensitive flexible proximity tactile array sensor by using carbon micro coils[J]. Sensors &Actuators A: Physical, 2017, 266: 166?177.
[15] KIM D H, SONG J, CHOI W M, et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations[J]. Proc Natl Acad Sci U S A, 2008, 105(48): 18675?18680.
[16] JANG K L, CHUNG H U, XU S, et al. Soft network composite materials with deterministic and bio-inspired designs[J]. Nature Communications, 2015, 6: 6566?6576.
[17] 黃銀, 李海成, 陳穎, 等. 可延展柔性光子/電子集成器件及轉(zhuǎn)印技術(shù)[J]. 中國科學(xué): 物理學(xué), 力學(xué), 天文學(xué), 2016, 46(4): 044607?044620. HUANG Yin, LI Haicheng, CHEN Yin, et al. Stretchable and flexible photonics/electronics devices and transfer printing[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2016, 46(4): 044607?044620.
[18] 黃英, 葛運(yùn)建. 可連續(xù)檢測(cè)三維力的人工皮膚簡(jiǎn)介[J]. 機(jī)器人技術(shù)與應(yīng)用, 2011, 2: 27?28. HUANG Ying, GE Yunjian. Introduction of artificial skin for continuous detection of three-dimensional force[J]. Robot Technique and Application, 2011, 2: 27?28.
[19] CODY F W J, IDREES R, SPILIOTI D X, et al. Tactile spatial acuity is reduced by skin stretch at the human wrist[J]. Neuroscience Letters, 2010, 484(1): 71?75.
[20] BHATTACHARJEE T, JAIN A, VAISH S, et al. Tactile sensing over articulated joints with stretchable sensors[C]// World Haptics Conference (WHC). Daejeon, South Korea: IEEE, 2013: 103?108.
[21] HAO Jianlong, XIE Xiaoliang, BIAN Guibin, et al. Development and evaluation of a 7-DOF haptic interface[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(1): 261?269.
[22] PAN Lijia, CHORTOS A, YU Guihua, et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film[J]. Nature Communications, 2014, 5(1): 3002.
[23] DIFTLER M A, CULBERT C J, AMBROSE R O, et al. Evolution of the NASA/DARPA Robonaut control system[C]// IEEE International Conference on Robotics and Automation. New York, USA: IEEE, 2003: 2543?2548.
[24] DIFTLER M A, MEHLING J S, ABDALLAH M E, et al. Robonaut 2 - the first humanoid robot in space[C]// IEEE International Conference on Robotics and Automation. New York, USA: IEEE, 2010: 2178?2183.
[25] IWATA H, SUGANO S. Human-robot-contact-state identification based on tactile recognition[J]. IEEE Transactions on Industrial Electronics, 2005, 52(6): 1468?1477.
[26] 郭小輝, 黃英, 騰珂, 等. 全柔性電容式觸覺傳感陣列設(shè)計(jì)與實(shí)驗(yàn)[J]. 電子測(cè)量與儀器學(xué)報(bào), 2015, 29(9): 1278?1285. GUO Xiaohui, HUANG Ying, TENG Ke, et al. Design and experiment of full-flexible capacitive tactile sensing array[J]. Journal of Electronic Measurement and Instrumentation, 2015, 29(9): 1278?1285.
[27] CHENG M Y, TSAO C M, LAI Y Z, et al. The development of a highly twistable tactile sensing array with stretchable helical electrodes[J]. Sensors and Actuators A: Physical, 2011, 166(2): 226?233.
[28] MUTH J T, VOGT D M, TRUBY R L, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers[J]. Advanced Materials, 2014, 26(36): 6307?6312.
[29] LIU Z F, FANG S, MOURA F A, et al. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles[J]. Science, 2015, 349(6246): 400?404.
[30] LIPOMI D J, VOSGUERITCHIAN M, TEE B C, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes[J]. Nature Nanotechnology, 2011, 6(12): 788?792.
[31] 汪浩鵬. 用于接觸壓力測(cè)量的新型高柔彈性電子皮膚研究[D]. 北京: 北京科技大學(xué)機(jī)械工程學(xué)院, 2015: 55?61. WANG Haopeng. Development of a skin-like pressure sensor array for e-skin application[D]. Beijing: University of Science & Technology Beijing. School of Mechanical Engineering, 2015: 55?61.
[32] PARK S, AHN J, FENG X, et al. Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates[J]. Advanced Functional Materials, 2010, 18(18): 2673?2684.
[33] PASHLEY D W. A study of the deformation and fracture of single-crystal gold films high strength inside an electron microscope[J]. Proceedings of the Royal Society of London, 1960, 255(1281): 218?231.
[34] BOYER H. Atlas of strain-stress curves[M]. 2nd ed. Cleveland, USA: ASM International, 2002: 519?520.
[35] ROGERS J A, SOMEYA T, HUANG Y G. Materials and mechanics for stretchable electronics[J]. Science, 2010, 327(5973): 1603?1607.
[36] KIM D H, LU N S, HUANG Y G, et al. Materials for stretchable electronics in bioinspired and biointegrated devices[J]. MRS Bulletin, 2012, 37(3): 226?235.
[37] HUANG Yin, CHEN Hang, WU Jian, et al. Controllable wrinkle configurations by soft micropatterns to enhance the stretchability of Si ribbons[J]. Soft Matter, 2014, 10: 2559?2566.
[38] 王曉玲, 李豪, 王國慶. 柔性基板的幾何參數(shù)對(duì)柔性電子系統(tǒng)延展性的影響[J]. 工程科學(xué)學(xué)報(bào), 2015, 37(S1): 24?28. WANG Xiaoling, LI Hao, WANG Guoqing. Effect of the geometric parameters of elastomer substrates on the flexibility of stretchable electronics[J]. Chinese Journal of Engineering, 2015, 37(S1): 24?28.
[39] HOMMEL M, KRAFT O. Deformation behavior of thin copper films on deformable substrates[J]. Acta Materialia, 2001, 49(19): 3935? 3947.
[40] KRAFT O, HOMMEL M, ARZT E. X-ray diffraction as a tool to study the mechanical behaviour of thin films[J]. Materials Science and Engineering A, 2000, 288(2): 209?216.
[41] MACIONCZYK F, BRUCKNER. Tensile testing of AlCu thin films on polyimide foils[J]. Journal of Applied Physics, 1999, 86(9): 4922?4929.
[42] XIANG Yong, LI Teng, SUO Zhigang, et al. High ductility of a metal film adherent on a polymer substrate[J]. Applied Physics Letters, 2005, 87(16): 1?4.
[43] KHANG D Y, JIANG H Q, HUANG Y, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates[J]. Science, 2006, 311(5758): 208?212.
[44] FEI Huiyang, JIANG Hanqing, KHANG D Y. Nonsinusoidal buckling of thin gold films on elastomeric substrates[J]. Journal of Vacuum Science & Technology A, 2009, 27(3): 9?12.
[45] KIM R H, BAE M H, KIM D G, et al. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates[J]. Nano Letters, 2011, 11(9): 3881?3886.
[46] YING Ming, BONIFAS A P, LU Nanshu, et al. Silicon nanomembranes for fingertip electronics[J]. Nanotechnology, 2016, 23(34): 344004-1?7.
[47] SOMEYA T, KATO Y, SEKITANI T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(35): 12321?12325.
[48] LACOUR S P, WAGER S, NARAYAN R J, et al. Stiff subcircuit islands of diamondlike carbon for stretchable electronics[J]. Journal of Applied Physics, 2006, 100(1): 014913?014919.
[49] PARK J, LEE Y, HONG J, et al. Tactile-direction-sensitive and stretchable electronic skins based on Human-Skin-Inspired interlocked microstructures[J]. ACS Nano, 2014, 8(12): 12020?12029.
[50] WANG Haopeng, ZHOU Debao, CAO Jianguo. Development of a stretchable conductor array with embedded metal nanowires[J]. IEEE Transactions on Nanotechnology, 2013, 12(4): 561?565.
[51] WANG Haopeng, ZHOU Debao, CAO Jianguo, et al. A skin-like pressure sensor array based on silver nanowires and conductive elastomer[C]// ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Snowbird, USA: ASME, 2013: 16?18.
[52] WANG Haopeng, ZHOU Debao, CAO Jianguo. Development of a skin-like tactile sensor array for curved surface[J]. IEEE Sensor Journal, 2014, 14(1): 55?61.
[53] 孟軍輝. 基于銀納米線的彈性電極研究[D]. 北京: 北京科技大學(xué)機(jī)械工程學(xué)院, 2016: 27?55. MENG Junhui. Stretchable conductor based on silver nanowires[D]. Beijing: University of Science and Technology Beijing. School of Mechanical Engineering, 2016: 27?55.
[54] 王禮勇. 基于AgNWs/PDMS 的新型電容式電子皮膚研究[D]. 北京: 北京科技大學(xué)機(jī)械工程學(xué)院, 2017: 45?50. WANG Liyong. Research on new-type capacitive e-skin based on AgNWs and PDMS[D]. Beijing: University of Science and Technology Beijing. School of Mechanical Engineering, 2017: 45?50.
[55] CHENG Yin, WANG Ranran, ZHAI Haitao, et al. Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain[J]. Nanoscale, 2017, 9(11): 3834?3842.
[56] ZHAO Xiaoli, HUA Qilin, YU Ruomeng, et al. Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping[J]. Advanced Electronic Materials, 2015, 1(7): 1?7.
Research progress of flexible and elastic bionic e-skin for robot
QIU Lan1,2,3, CAO Jianguo1,2,3, ZHOU Jianhui1,2,4, JIANG Jun1,2,3, WANG Xiaolin1, MIAO Cunxiao1,3
(1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. Innovation Institute for Intelligent Robot, University of Science and Technology Beijing, Beijing 100083, China; 3. Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing 100083, China; 4. Qian’an College, North China University of Science and Technology, Tangshan 064400, China)
Biomimetic e-skin(electronic skin) tactile sensor is the prerequisite for realization of intelligent robot, especially for the complex three-dimensional carrier surface such as robots or the movable joints, the pressure-sensing extensible flexible elastic e-skin, which requires high flexibility, elasticity and conformity, has wide application prospects. The fracture limit strains of commonly used inorganic semiconductor materials and metal materials and their compounds are so low that they hardly meet the requirements of the stretchable soft skin. Thus, the extensible two-dimensional nano-membrane, nano-belt or one-dimensional nanowire electrodes or interconnection conductors are internationally used. The thin film-substrate based on the mechanical buckling and the structural design of the conductive element in nanometer-scale can effectively improve the stress situation of inorganic material, and its overall stretchabilityincreases significantly. The integration of new materials and structures using new manufacturing technologies such as nano-manufacturing remarkably enhance the flexibility and elasticity of stretchable soft e-skin. Bionic e-skin tactile sensors with high flexibility and high elasticity can improve the environment adaptability of robot, and is beneficial for establishing a new type of coexisting-cooperative- cognitive mode between human and robot.
robot; pressure sensing; e-skin; flexibility; flexibility and elasticity
TP212
A
1672?7207(2019)05?1065?10
10.11817/j.issn.1672?7207.2019.05.008
2018?06?07;
2018?08?07
科技部創(chuàng)新方法工作專項(xiàng)(2016IM010300);國家自然科學(xué)基金資助項(xiàng)目(61603035);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(FRF-GF-17-A5)(Project(2016IM010300) supported by Innovation Method Fund of Ministry of Science and Technology of China; Project(61603035) supported by the National Natural Science Foundation of China; Project(FRF-GF-17-A5) supported by the Fundamental Research Funds for the Central Universities)
曹建國,博士,教授,博士生導(dǎo)師,從事基于大數(shù)據(jù)的智能制造建模與板形質(zhì)量控制、機(jī)器人仿生電子皮膚觸覺傳感與多模態(tài)感知、復(fù)雜機(jī)電系統(tǒng)檢測(cè)與控制等研究;E-mail:geocao@ustb.edu.cn
(編輯 伍錦花)