楊依林 倪海鍵
摘 要 青少年特發(fā)性脊柱側(cè)凸(adolescent idiopathic scoliosis,AIS)是一種原因不明的發(fā)生于青春期的結(jié)構(gòu)性脊柱側(cè)凸,病因涉及遺傳、激素、生物力學、神經(jīng)內(nèi)分泌等,其中褪黑素與AIS的相關(guān)性研究一直受到廣泛關(guān)注。近年來,多項研究表明AIS發(fā)生、發(fā)展可能并非由于單純的褪黑素水平降低所致,而是有可能存在褪黑素下游信號通路缺陷。隨著分子生物學技術(shù)的發(fā)展,這一相關(guān)性的研究已經(jīng)深入到分子水平。全文綜述褪黑素及其信號傳導通路在AIS發(fā)病機制中作用的研究進展,為進一步研究AIS的發(fā)病機制提供參考。
關(guān)鍵詞 脊柱側(cè)凸;褪黑素;信號傳導通路;發(fā)病機制
中圖分類號:R682.3 文獻標志碼:A 文章編號:1006-1533(2019)02-0003-04
Research progress in the correlation between melatonin and its signal transduction pathway and adolescent idiopathic scoliosis
YANG Yilin1, NI Haijian2
(1.Spine Surgery of Changhai Hospital Affiliated to Naval Medical University, Shanghai 200433, China; 2. Spine Surgery of the Tenth Peoples Hospital Affiliated to Tongji University, Shanghai 200072, China)
ABSTRACT Adolescent idiopathic scoliosis(AIS) is an unexplained structural scoliosis in adolescence. The etiology involves heredity, hormone, biomechanicals, neuroendocrine and other aspects. The relationship between melatonin and AIS has been widely concerned. In recent years, many studies have shown that the occurrence and development of AIS may not be simply due to the decrease of melatonin levels, but to the defects in the downstream signaling pathway of melatonin. With the development of molecular biology techniques, the correlation studies have penetrated to the molecular level. This article reviews the research progress of melatonin and its signal transduction pathway in the pathogenesis of AIS for providing a reference for further study on the pathogenesis of AIS.
KEY WORDS scoliosis; melatonin; signal transduction pathway; pathogenesis
青少年特發(fā)性脊柱側(cè)凸(adolescent idiopathic scoliosis,AIS)是一種復雜的脊柱三維畸形,最常見于10~16歲的青少年,女性居多,發(fā)病率為2.0%~13.6%[1],其病因尚未完全明晰。有諸多因素可能與AIS的發(fā)病相關(guān),包括遺傳、激素、生物力學、神經(jīng)內(nèi)分泌等。其中褪黑素與AIS的相關(guān)性研究一直受到廣泛關(guān)注,尤其是近年來隨著分子生物學技術(shù)的發(fā)展,這一相關(guān)性研究已經(jīng)深入到分子水平?,F(xiàn)將褪黑素及其信號傳導通路與AIS相關(guān)性研究進展作一綜述。
1 褪黑素與褪黑素受體
褪黑素在人體內(nèi)主要由松果體和部分視網(wǎng)膜合成,化學成分為N-乙酰-5-甲氧色胺。晝夜光線的轉(zhuǎn)換通過視網(wǎng)膜感受器經(jīng)下丘腦視上核及交感神經(jīng)系統(tǒng)上傳至松果體調(diào)控褪黑素的合成和分泌[2],由此形成了褪黑素分泌的生物節(jié)律,即黑夜時分泌增加,凌晨2~4時達高峰后逐漸下降[3-4]。在不同年齡人群中,褪黑素的血清濃度也存在差異,嬰兒3月齡前褪黑素分泌極少,1~3歲時達夜間分泌高峰,以后每10年峰值減少10%~15%[5-6]。褪黑素除參與調(diào)節(jié)生物節(jié)律外,還廣泛參與胚胎發(fā)育、生殖、免疫及骨骼的生長發(fā)育等過程。
褪黑素具有特異性的膜結(jié)合蛋白,即褪黑素特異性膜受體,屬于G蛋白偶聯(lián)受體超家族,通過與Gi/Gs蛋白偶聯(lián)介導褪黑素的生物學功能。人的褪黑素受體主要分布于中樞神經(jīng)系統(tǒng)、腸道、卵巢、血液和骨骼系統(tǒng)。根據(jù)與褪黑素親和力的不同可分為ML1(高親和力)受體和ML2(低親和力)受體[7-8]。ML1受體在人下丘腦視上核分布密度最高,與褪黑素結(jié)合后作為生物節(jié)律起搏器周期性地抑制神經(jīng)活動而產(chǎn)生生物鐘效應(yīng)[9];而ML2受體是一種醌還原酶,對其的針對性研究較少,與褪黑素結(jié)合后的生物效應(yīng)尚不清楚[10]。隨著PCR技術(shù)的應(yīng)用,高親和力的ML1受體的兩種亞型MT1和MT2受體的DNA序列先后被克隆[10-11],其中MT1受體主要分布于中樞神經(jīng)系統(tǒng),能夠激活蛋白激酶C,而MT2受體則主要分布于周圍組織,可以在抑制可溶性鳥苷酸環(huán)化酶通路的同時促進蛋白激酶C的活性。褪黑素的主要生物學效應(yīng)均由褪黑素與MT1或MT2受體的特異性結(jié)合并通過其下游信號傳導通路介導。此外,有研究發(fā)現(xiàn)褪黑素還可以與細胞內(nèi)的鈣調(diào)蛋白結(jié)合,通過腺苷酸環(huán)化酶或其他結(jié)構(gòu)蛋白調(diào)節(jié)鈣調(diào)蛋白信號通路,從而參與包括鈣離子轉(zhuǎn)運在內(nèi)的多種功能[12]。
2 褪黑素與AIS
褪黑素與AIS的相關(guān)性研究一直是AIS病因?qū)W研究的熱點。1983年,Dubousset等[13]通過實驗證實,切除雛雞的松果體可以導致脊柱側(cè)凸的發(fā)生。后續(xù)研究證實,這一方法所產(chǎn)生的側(cè)凸形狀、頂椎旋轉(zhuǎn)、肋骨突起以及體感誘發(fā)電位(SEPs)的模式都與人的AIS極為相似[14-15]。由于褪黑素是松果體分泌的最主要激素,因此研究人員認為側(cè)凸的發(fā)生與血清褪黑素水平的降低有關(guān)。Machida等[16]進一步將孵化3 d的90只雛雞切除松果體后隨機分為三組,分別給予腹腔內(nèi)注射褪黑素、5-羥色胺(褪黑素前體)和空白處置,3周后空白組100%發(fā)生脊柱側(cè)凸,5-羥色胺組和褪黑素組的發(fā)生率則分別為 73%和20%,且褪黑素組發(fā)生側(cè)凸的6只雛雞的側(cè)凸角度明顯小于其他兩組。此外,這一側(cè)凸模型還在切除松果體的鮭魚[17]、雙足大鼠[18]以及有褪黑素合成缺陷的C57BL/6J雙足小鼠[19]中成功復制。Machida等[20]還對AIS臨床患者進行研究,發(fā)現(xiàn)進展型的AIS患者血清褪黑素水平比穩(wěn)定型患者及正常對照者低,進一步推測血清褪黑素水平降低與AIS的發(fā)病相關(guān)。后續(xù)研究對這一推論存在一定的爭議:①不同于Machida等[16]的研究結(jié)果,在其他復制切除松果體雞側(cè)凸模型的實驗中,側(cè)凸的發(fā)生率存在較大差異[21-22];②補充外源性褪黑素似乎并不一定能阻止側(cè)凸發(fā)生[23-24];③多數(shù)研究報道AIS患者血清褪黑素水平與正常對照者無明顯差異[14,25],提示褪黑素參與AIS的發(fā)病并非簡單地源于褪黑素水平的降低,而是有可能存在更為復雜的機制。
3 褪黑素信號通路在AIS發(fā)病機制中的作用
近年來,眾多研究者將褪黑素與AIS發(fā)病相關(guān)性的研究目標從褪黑素本身轉(zhuǎn)向了特異性受體介導的褪黑素信號傳導通路。在正常細胞中,福斯可林(forskolin)能刺激G蛋白進而活化腺苷酸環(huán)化酶,導致細胞內(nèi)環(huán)磷酸腺苷(cAMP)濃度增加,而外源性褪黑素刺激則會抑制這一反應(yīng)性cAMP濃度增加[26]?,F(xiàn)有研究表明,褪黑素及其信號通路在骨代謝調(diào)控方面發(fā)揮重要作用,能夠促進成骨細胞分化和基質(zhì)礦化,并且在一定濃度范圍內(nèi)可顯著提高人類骨細胞及成骨細胞系增殖(分別提高215%和193%)[27-28]。Moreau等[29]的研究首先發(fā)現(xiàn),在體外培養(yǎng)的AIS患者的成骨細胞中,褪黑素并不能抑制福斯可林誘導的細胞內(nèi)cAMP的增加,提示AIS患者存在褪黑素信號傳導通路異常。Azeddine等[30]的進一步研究發(fā)現(xiàn),在體外培養(yǎng)的AIS患者的成骨細胞中,與褪黑素特異性膜受體偶聯(lián)的G抑制蛋白(Gi)存在絲氨酸殘基的異常磷酸化,推測這一異常有可能導致了下游信號傳導通路異常,進而引起最終的褪黑素效應(yīng)異常。Akoume等[31]通過更為快速、精確的細胞介電譜學分析AIS患者外周血單核細胞內(nèi)的G蛋白功能,發(fā)現(xiàn)同樣存在類似AIS成骨細胞內(nèi)的褪黑素受體G蛋白偶聯(lián)及cAMP的效應(yīng)異常。由于外周血易于獲得、檢測方便,因此,筆者認為這一方法可以用于AIS患者的早期篩查,當然,其敏感性和精確性還有待高等級循證醫(yī)學研究進一步證實。
除此之外,有諸多研究提示AIS患者褪黑素信號通路異常有可能源于褪黑素受體的表達缺陷。Qiu等[32-33]通過大樣本的病例對照分析研究AIS患者褪黑素受體的基因多態(tài)性,發(fā)現(xiàn)編碼MT2受體的MTNR1B基因啟動子區(qū)域的基因多態(tài)性與AIS易感性顯著相關(guān),而編碼MT1受體的MTNR1A基因多態(tài)性與AIS易感性無顯著相關(guān)。隨后,Man等[34]將AIS患者和正常對照者的成骨細胞進行體外培養(yǎng),在給予相同濃度的褪黑素刺激后,發(fā)現(xiàn)AIS患者成骨細胞的增值率明顯低于對照組;在對照組中加入MT2受體特異性拮抗劑4-P-PDOT后,對照組的細胞增殖效應(yīng)被抑制,提示褪黑素對成骨細胞的增殖效應(yīng)是由MT2受體介導,而AIS患者的成骨細胞有可能存在MT2受體或其下游信號通路缺陷,從而影響了成骨細胞的增殖分化。Man等[35]和Yin等[36]進一步對成骨細胞的MT1、MT2受體進行mRNA和蛋白表達檢測,發(fā)現(xiàn)AIS患者成骨細胞MT2受體的mRNA和蛋白表達顯著低于對照組。而Wang等[37]發(fā)現(xiàn)在AIS患者生長板軟骨細胞中,同樣存在MT2受體的表達缺陷,并出現(xiàn)褪黑素誘導的細胞增殖和膠原及堿性磷酸酶的表達降低。Chen等[38]將AIS患者及正常對照者的骨髓間充質(zhì)干細胞(hMSCs)進行體外培養(yǎng),發(fā)現(xiàn)AIS患者的hMSCs也存在MT2受體的低表達,并且在成骨及成軟骨培養(yǎng)環(huán)境中對褪黑素的刺激不敏感。上述研究提示,MT2受體的表達缺陷有可能導致AIS患者成骨細胞和軟骨細胞中褪黑素信號傳導通路缺陷,進而導致AIS患者的骨骼發(fā)育異常,并最終參與了AIS的發(fā)病。進一步對AIS患者成骨細胞和軟骨細胞中褪黑素MT2受體-cAMP介導的信號傳導通路進行深入研究,將有助于揭示褪黑素及其信號通路異常參與AIS發(fā)病的機制。
4 展望
新的分子生物學技術(shù)如基因芯片、蛋白質(zhì)芯片等的發(fā)展,將能更準確地對褪黑素信號傳導通路中的蛋白進行功能定位,從而有助于進一步分析AIS患者褪黑素信號傳導通路的下游效應(yīng)蛋白的變化,使AIS的分子診斷及精確靶點治療成為可能。同時,“神經(jīng)-骨代謝學”這一新的交叉學科的興起[39],將有助于進一步揭示神經(jīng)系統(tǒng)及神經(jīng)內(nèi)分泌系統(tǒng)通過中樞及外周等不同途徑對骨與軟骨代謝的調(diào)控機制,從而有望更全面、更系統(tǒng)地描繪出褪黑素及其信號傳導通路參與AIS發(fā)病機制的全景圖。
參考文獻
[1] Blank RD, Raggio CL, Giampietro PF, et al. A genomic approach to scoliosis pathogenesis[J]. Lupus, 1999, 8(5): 356-360.
[2] Karasek M, Winczyk K. Melatonin in humans[J]. J Physiol Pharmacol, 2006, 57(Suppl 5): 19-39.
[3] Arendt J. Melatonin in humans: Its about time[J]. J neuroendocrinol, 2005, 17(8): 537-538.
[4] Lewy AJ, Emens J, Jackman A, et al. Circadian uses of melatonin in humans[J]. Chronobiol Int, 2006, 23(1-2): 403-412.
[5] Lynch HJ, Wurtman RJ, Moskowitz M A, et al. Daily rhythm in human urinary melatonin[J]. Science, 1975, 187(4172): 169-171.
[6] Waldhauser F, Weiszenbacher G, Frisch H, et al. Fall in nocturnal serum melatonin during prepuberty and pubescence[J]. Lancet, 1984, 1(8373): 362-365.
[7] Dubocovich ML. Melatonin receptors: Are there multiple subtypes?[J]. Trends Pharmacol Sci, 1995, 16(2): 50-56.
[8] Reppert SM, Weaver DR, Ebisawa T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses[J]. Neuron, 1994, 13(5): 1177-1185.
[9] Ebisawa T, Karne S, Lerner MR, et al. Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores[J]. Proc Natl Acad Sci USA, 1994, 91(13): 6133-6137.
[10] Reppert SM, Godson C, Mahle CD, et al. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor[J]. Proc Natl Acad Sci USA, 1995, 92(19): 8734-8738.
[11] Reppert SM, Weaver DR, Ebisawa T. Cloning and characterization of a mammalian melatonin recepton that mediates reproductive and circadian responses[J]. Neuron, 1994, 13(5): 1177-1185.
[12] Lowe TG, Edgar M, Margulies JY, et al. Etiology of idiopathic scoliosis: current trends in research[J]. J Bone Joint Surg Am, 2000, 82-A(8): 1157-1168.
[13] Dubousset J, Queneau P, Thillard MJ. Experimental scoliosis induced by pineal and diencephalic lesions in young chickens: Its relation with clinical findings[J]. Orthop Trans, 1983, 7: 7-10.
[14] Hilibrand AS, Blakemore LC, Loder RT, et al. The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis[J]. Spine(Phila Pa 1976), 1996, 21(10): 1140-1146.
[15] Turgut M, Kaplan S, Turgut AT, et al. Morphological, stereological and radiological changes in pinealectomized chicken cervical vertebrae[J]. J Pineal Res, 2005, 39(4): 392-399.
[16] Machida M, Dubousset J, Imamura Y, et al. Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens[J]. J Bone Joint Surg Br, 1995, 77(1): 134-138.
[17] Fjelldal PG, Grotmol S, Kryvi H, et al. Pinealectomy induces malformation of the spine and reduces the mechanical strength of the vertebrae in Atlantic salmon, Salmo salar[J]. J Pineal Res, 2004, 36(2): 132-139.
[18] Machida M, Saito M, Dubousset J, et al. Pathological mechanism of idiopathic scoliosis: experimental scoliosis in pinealectomized rats[J]. Eur Spine J, 2005, 14(9): 843-848.
[19] Machida M, Dubousset J, Yamada T, et al. Experimental scoliosis in melatonin-deficient C57BL/6J mice without pinealectomy[J]. J Pineal Res, 2006, 41(1) :1-7.
[20] Machida M, Dubousset J, Imamura Y, et al. A possible role in pathogenesis of adolescent idiopathic scoliosis[J]. Spine(Phila Pa 1976), 1996, 21(10): 1147-1152.
[21] Cheung KM, Wang T, Hu YG, et al. Primary thoracolumbar scoliosis in pinealectomized chickens[J]. Spine(Phila Pa 1976), 2003, 28(22): 2499-2504.
[22] Turgut M, Yenisey C, Uysal A, et al. The effects of pineal gland transplantation on the production of spinal deformity and serum melatonin level following pinealectomy in the chicken[J]. Eur Spine J, 2003, 12(5): 487-494.
[23] Bagnall KM, Beuerlein M, Johnson P, et al. Pineal transplantation after pinealectomy in young chickens has no effect on the development of scoliosis[J]. Spine(Phila Pa 1976), 2001, 26(9): 1022-1027.
[24] Bagnall K, Raso VJ, Moreau M, et al. The effects of melatonin therapy on the development of scoliosis after pinealectomy in the chicken[J]. J Bone Joint Surg Am, 1999, 81(2):191-199.
[25] Brodner W, Krepler P, Nicolakis M, et al. Melatonin and adolescent idiopathic scoliosis[J]. J Bone Joint Surg Br, 2000, 82(3): 399-403.
[26] von Gall C, Stehle JH, Weaver DR. Mammalian melatonin receptors: molecular biology and signal transduction[J]. Cell Tissue Res, 2002, 309(1): 151-162.
[27] Roth JA, Kim BG, Lin WL, et al. Melatonin promotes osteoblast differentiation and bone formation[J]. J Biol Chem, 1999, 274(31): 22041-22047.
[28] Nakade O, Koyama H, Ariji H, et al. Melatonin stimulates proliferation and type I collagen synthesis in human bone cells in vitro[J]. J Pineal Res, 1999, 27(2): 106-110.
[29] Moreau A, Wang DS, Forget S, et al. Melatonin signaling dysfunction in adolescent idiopathic scoliosis[J]. Spine(Phila Pa 1976), 2004, 29(16): 1772-1781.
[30] Azeddine B, Letellier K, Wang DS, et al. Molecular determinants of melatonin signaling dysfunction in adolescent idiopathic scoliosis[J]. Clin Orthop Relat Res, 2007, 462: 45-52.
[31] Akoume M, Azeddine B, Turgeon I, et al. Cell-based screening test for idiopathic scoliosis using cellular dielectric spectroscopy[J]. Spine(Phila Pa 1976), 2010, 35(13): E601-608.
[32] Qiu XU, Tang NLS, Yeung HY, et al. Melatonin receptor 1B(MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis[J]. Spine(Phila Pa 1976), 2007, 32(16): 1748-1753.
[33] Qiu XU, Tang NLS, Yeung HY, et al. Lack of association between the promoter polymorphism of the MTNR1A gene and adolescent idiopathic scoliosis[J]. Spine(Phila Pa 1976), 2008, 33(20): 2204-2207.
[34] Man GC, Wang WW, Yeung BH, et al. Abnormal proliferation and differentiation of osteoblasts from girls with adolescent idiopathic scoliosis to melatonin[J]. J Pineal Res, 2010, 49(1): 69-77.
[35] Man GC, Wong JH, Wang WW, et al. Abnormal melatonin receptor 1B expression in osteoblasts from girls with adolescent idiopathic scoliosis[J]. J Pineal Res, 2011, 50(4): 395-402.
[36] Yim AP, Yeung H, Sun G, et al. Abnormal skeletal growth in adolescent idiopathic scoliosis is associated with abnormal quantitative expression of melatonin receptor, MT2[J]. Int J Mol Sci, 2013, 14(3): 6345-6358.
[37] Wang WJ, Man CW, Wong JH, et al. Abnormal response of the proliferation and differentiation of growth plate chondrocytes to melatonin in adolescent idiopathic scoliosis[J]. Int J Mol Sci, 2014, 15(9): 17100-17114.
[38] Chen C, Xu C, Zhou T, et al. Abnormal osteogenic and chondrogenic differentiation of human mesenchymal stem cells from patients with adolescent idiopathic scoliosis in response to melatonin[J]. Mol Med Rep, 2016, 14(2): 1201-1209.
[39] Patel MS, Elefteriou F. The new field of neuroskeletal biology[J]. Calcif Tissue Int, 2007, 80(5): 337-347.