李春黎 李文豪 余君 孫敬國(guó) 王昌軍 陳守文 楊勇
摘 ?要:為提高煙草秸稈中木質(zhì)素和纖維素降解效率,縮短煙草秸稈腐熟時(shí)間,通過(guò)平板篩選和酶活測(cè)定試驗(yàn)篩選出具有木質(zhì)素和纖維素降解能力的菌株,并探討了不同菌株組合對(duì)煙草秸稈的降解程度。結(jié)果表明,所篩選獲得的梭形芽胞桿菌(Lysinibacillus fusiformis,N019a)、毛栓菌(Trametes hirsuta,MA)、米根霉(Rhizopus oryzae,imp)分別能高效降解煙草秸稈中的木質(zhì)素,半纖維素和纖維素;N019a,MA和imp組成的復(fù)合菌群I用于煙稈粉末固態(tài)發(fā)酵25 d,半纖維素、纖維素和木質(zhì)素降解率分別為67.23±0.73%,61.17±0.45%和60.12±0.48%;B. tequilensis(B4),B. subtilis(B26)和A. niger(M90)組成的復(fù)合菌群II降解半纖維素、纖維素和木質(zhì)素降解率分別為72.15±0.35%,65.68±0.55%與38.15±0.76%,6個(gè)菌株組合成的復(fù)合菌群III降解半纖維素、纖維素和木質(zhì)素降解率分別為83.32±0.45%,75.21±0.71%與66.13±0.53%。不同的降解菌降解木質(zhì)纖維中不同成分具有一定的特異性,多功能菌株組合能顯著提高煙草秸稈生物質(zhì)降解效果。研究結(jié)果為開(kāi)發(fā)煙草秸稈高效降解復(fù)合菌劑提供了依據(jù)。
關(guān)鍵詞:煙草秸稈;復(fù)合菌群;木質(zhì)素;纖維素
中圖分類(lèi)號(hào):S572.01 ?????????文章編號(hào):1007-5119(2019)06-0026-07 ?????DOI:10.13496/j.issn.1007-5119.2019.06.004
Screening, Identification and Combination of High Efficiency Degrading Bacteria for Tobacco Stem
LI Chunli1, LI Wenhao1, YU Jun2*, SUN Jingguo2, WANG Changjun2, CHEN Shouwen1, YANG Yong1*
(1.College of Life Sciences, Hubei University, Wuhan 430062, China; 2. Tobacco Research Institute of Hubei Province, Wuhan 430030, China)
Abstract:In order to improve the degradation efficiency of lignin and cellulose in tobacco straw and shorten the decomposing?time of tobacco straw, the strains with the ability to degrade lignin and cellulose were screened out by plate screening and enzyme activity determination experiments. The effects of different strain combinations on tobacco straw degradation were discussed. The results showed that the obtainedLysinibacillus fusiformis(N019a),Trametes hirsuta(MA), andRhizopus oryzae(imp) were effective in degrading lignin,?hemicellulose, and?cellulose in tobacco straw. The composite flora I composed of N019a, MA and imp was used for solid fermentation of tobacco stalk powder for 25 d. The degradation rates of hemicellulose, cellulose and lignin were 67.23±0.73%, 61.17±0.45% and 60.12±0.48%, respectively.B.tequilensis(B4),B.subtilis (B26) andA.niger (M90) composed a complex flora II with degradation rates of hemicellulose, cellulose and lignin?being?72.15±0.35%, 65.68±0.55%, and 38.15±0.76%.?The degradation rates?of hemicellulose, cellulose and lignin by compound flora III composed of 6 strains was were 83.32±0.45%, 75.21±0.71% and 66.13±0.53%. Different degrading bacteria degrade different components in wood fiber with certain specificity, and the combination of multifunctional strains can significantly improve the biomass degradation effect of tobacco straw. The research results provide a basis for the development of a highly effective compound bacterial agent for tobacco straw degradation.
Keywords:tobacco straw; composite flora; lignin; cellulose
煙草(Nicotiana tabacumL.)是我國(guó)重要的經(jīng)濟(jì)作物,種植面積和產(chǎn)量均居世界首位,我國(guó)每年產(chǎn)生幾百萬(wàn)噸煙草秸稈,鮮煙稈難以降解,含有大量病原菌和煙堿,直接還田會(huì)提高煙草病毒病的發(fā)生率,影響烤煙的品質(zhì)和經(jīng)濟(jì)效益;同時(shí)煙堿等會(huì)污染土壤及水體,進(jìn)而污染煙田環(huán)境;且煙草秸稈利用面臨原料分散,收儲(chǔ)困難,預(yù)處理耗能等問(wèn)題,因此我國(guó)的煙草秸稈無(wú)法得到有效的利用[1-4]。
煙草秸稈中木質(zhì)纖維是以大量的半纖維素和三維網(wǎng)狀結(jié)構(gòu)的木質(zhì)素高分子聚合物包含著纖維素晶體形成的致密網(wǎng)狀結(jié)構(gòu),難以被微生物分解利用。真菌的胞外纖維素酶活較強(qiáng),特別是木霉屬(Trichoderma sp.)與黑曲霉(Aspergillusniger),能產(chǎn)生3類(lèi)纖維素酶并分泌到胞外,并且它們的菌絲具有機(jī)械穿插能力,能由內(nèi)而外降解纖維素,在堆肥中起重要作用[5]。再如白腐菌是一種高效木質(zhì)素降解功能微生物,能將木質(zhì)素降解為CO2和H2O,側(cè)耳菌(Pleurotus)和粗毛栓菌(Trametes gallica)產(chǎn)木質(zhì)素降解酶能力強(qiáng),且產(chǎn)酶較快。
目前已有不少關(guān)于高效菌株篩選的研究報(bào)道[6-7],KARMAKAR等[6]的研究表明,單一的細(xì)菌、真菌、放線菌,盡管活性較高,但在加速堆肥化進(jìn)程中的效果卻不如復(fù)合微生物菌群的共同作用。因而眾多研究逐漸將熱點(diǎn)轉(zhuǎn)向復(fù)合菌系[8-10],以達(dá)到快速降解木質(zhì)纖維的目的。復(fù)合菌在繁殖代謝和生物降解中具有優(yōu)勢(shì),原因可能為其酶系的協(xié)同作用和營(yíng)養(yǎng)需求的互補(bǔ)[11]。事實(shí)上,木質(zhì)纖維是由纖維素,半纖維素,木質(zhì)素和果膠等物質(zhì)構(gòu)成的復(fù)合體[12],然而多數(shù)研究構(gòu)建的復(fù)合菌群主要是針對(duì)木質(zhì)纖維中的單一成分進(jìn)行降解[13-16],功能單一。
本研究主要通過(guò)篩選高效降解木質(zhì)纖維中不同成分的功能菌,并將不同的功能菌進(jìn)行組合,旨在研制出一種高效的煙稈復(fù)合降解菌群應(yīng)用于煙稈堆肥中,以提高土壤的肥力以及減少水土污染,實(shí)現(xiàn)廢棄資源的合理利用和資源可持續(xù)發(fā)展。
1 ?材料與方法
1.1 ?試驗(yàn)材料
1.1.1 ?試驗(yàn)樣品??煙草秸稈收集自湖北省恩施州望城坡村,80 ℃烘干,粉碎過(guò)40目篩網(wǎng)備用。
菌種篩選樣品:從海南三亞、江西廬山、湖北恩施和利川的煙田、煙稈自然堆體、木材加工廠、鋸末堆場(chǎng)等采取煙稈、葡萄枝、朽木、白蟻腸道、腐爛木樁等56個(gè)樣品,樣品編號(hào)后放置4?℃冰箱保存。
1.1.2 ?試驗(yàn)菌株??龍舌蘭芽胞桿菌(B. tequilensis,B4),枯草芽胞桿菌(B. subtilis,B26)和黑曲霉(A. niger,M90)為本研究團(tuán)隊(duì)保藏[24]。其余菌株由1.2.1方法分離篩選得到。
1.1.3??培養(yǎng)基??固態(tài)(富集)培養(yǎng)基:過(guò)40目篩煙梗粉?50?g,無(wú)機(jī)營(yíng)養(yǎng)液(NH4Cl 2.0?g,MgSO4·7H2O 0.5 g,KH2PO41.0 g,Na2HPO40.2 g,MnSO40.035 g,CuSO4·5H2O ?0.007 g,F(xiàn)eSO4·7H2O ?0.007 g,加蒸餾水定容至1000 mL)50 mL,pH 7.0。
PDA培養(yǎng)基:馬鈴薯200.0?g,蔗糖20.0 g,加蒸餾水定容至1000?mL,調(diào)節(jié)pH至7.0。
PDA-GU培養(yǎng)基:PDA培養(yǎng)基中加入愈創(chuàng)木酚(0.1%)。
PDA-AzureB培養(yǎng)基:PDA培養(yǎng)基中加入苯胺藍(lán)(0.1%)。
剛果紅纖維素培養(yǎng)基:微晶纖維素粉1.88 g,剛果紅0.2 g,KH2PO40.5 g,MgSO4?7H2O 0.25 g,(NH4)2SO4 ?2.0 g,明膠2.0 g,加蒸餾水定容至1000 mL,調(diào)節(jié)pH至7.0。
孟加拉紅培養(yǎng)基:蛋白胨5.0 g,葡萄糖?10.0 g,KH2PO4·3H2O 1.0 g,MgSO4·7H2O 0.5 g,0.1%孟加拉紅溶液0.33?mL,鏈霉素溶液(10 000 μ/mL)0.33?mL,用蒸餾水定容至1000?mL。
1.2 ?研究方法
1.2.1 ?煙草秸稈降解菌的分離和篩選??纖維素降解菌和木質(zhì)素降解菌的篩選方法分別參照石娜娜[17]和尹靜等[18]的方法。
1.2.2 ?木質(zhì)纖維降解相關(guān)酶活的測(cè)定??按照4塊菌絲團(tuán)(直徑7 mm)/100 g培養(yǎng)基,或孢子懸浮液4 mL/100 g培養(yǎng)基的接種量將降解菌接種于PDA培養(yǎng)基,并在30 ℃靜態(tài)培養(yǎng)16 d。每?jī)商觳蓸?次,分別參照石娜娜等[17]方法測(cè)定纖維素降解酶?CMC和FP活力,參照MARTINA[19]的方法測(cè)定木質(zhì)素降解酶Lip,MnP和Lac活力。
1.2.3??煙草秸稈降解菌分子鑒定??木質(zhì)纖維降解菌中細(xì)菌采用菌落PCR,挑選單菌落在100 μL EP管里攪勻,沸水浴10 min裂解菌,8000 r/min離心,
取上清液為模板。采用通用引物27F和1492R,對(duì)目的菌株的16S rDNA進(jìn)行PCR擴(kuò)增。真菌采用ITS(Internal ?Transcribed Spacer)DNA序列分析法進(jìn)行鑒定,ITS1 和ITS4作為擴(kuò)增和測(cè)序引物。所測(cè)序列利用?DNAstar軟件對(duì)序列進(jìn)行拼接,應(yīng)用NCBI Genbank ?Blast 程序進(jìn)行序列相似性比對(duì)分析,通過(guò)?MEGA(v 7.0.26)軟件進(jìn)行系統(tǒng)發(fā)育分析,用鄰接法?(Neighbor-Joining) 構(gòu)建系統(tǒng)發(fā)育樹(shù)。
1.2.4 ?煙草秸稈降解菌株間拮抗試驗(yàn)??采用平板拮抗法[20]進(jìn)行菌株間的拮抗試驗(yàn)。
1.2.5 ?煙草秸稈降解菌配伍及降解能力測(cè)定??在配伍研究中,將菌株N019a、MA和imp按1:1:1混合(組合I);菌株B4、B26和M90按1:1:1混合(組合II);將組合I和組合II按1:1混合(組合III)。
將菌株組合接入煙秸稈固態(tài)培養(yǎng)基中,發(fā)酵25 d后檢測(cè)木質(zhì)纖維降解率,每個(gè)菌液組合設(shè)置3個(gè)重復(fù),接種孢子液總共3 mL,菌塞3塊,真菌接種量為1%,即100 g煙稈粉接種1 g真菌發(fā)酵菌塞,細(xì)菌(1.0×109)則按照10 mL/g。
木質(zhì)纖維含量的測(cè)定是參照文獻(xiàn)[21]。
1.3??試驗(yàn)時(shí)間、地點(diǎn)
試驗(yàn)于2018年1月開(kāi)始在湖北大學(xué)微生物工程實(shí)驗(yàn)室進(jìn)行。
2 ?結(jié) ?果
2.1 ?煙草秸稈降解菌的篩選
2.1.1 ?降解菌的初篩??篩選獲得使PDA-AzureB產(chǎn)生褪色透明圈的菌株9個(gè),其中菌株N019a在12?h 內(nèi)開(kāi)始產(chǎn)生褪色透明圈,48 h內(nèi)平板全褪色;在 PDA-Gu平板上獲得產(chǎn)生褪色圈的菌株8個(gè),菌株MA產(chǎn)生褪色圈最快;菌株imp在48~72?h內(nèi)剛果紅纖維素培養(yǎng)基完全褪色(表1)。上述菌株經(jīng)3次分離純化后,將性狀穩(wěn)定菌株保存?zhèn)溆谩?/p>
2.1.2 ?木質(zhì)纖維降解菌復(fù)篩??在進(jìn)一步分離純化后,通過(guò)比較單菌株在24?h內(nèi)顯色圈與褪色圈變化速度,發(fā)現(xiàn)菌株MA在PDA-Gu平板接種4 h后發(fā)生顯色反應(yīng),但顯色較慢(圖1A);菌株N019a接種后12?h內(nèi)苯胺藍(lán)全部褪色(圖1B);菌株imp接種后,24?h內(nèi)剛果紅全部退色(圖1C)。
從底物平板狀態(tài)觀察發(fā)現(xiàn),菌株MA為白腐菌,生長(zhǎng)速度較慢,但其顯色反應(yīng)快;菌株N019a與imp生長(zhǎng)快,褪色反應(yīng)快。因此,將菌株N019a、imp和MA作為后續(xù)研究木質(zhì)纖維降解的主要菌株。
酶活性測(cè)定結(jié)果表明(表2),菌株N019a的LiP和MnP酶活性分別為76.12±1.34 U/g和15.16±1.45 U/g,但未檢測(cè)到Lacc,CMCase和FPase
酶活性;菌株MA的LiP、MnP和Lacc酶活性分別為465.24 U/g、264.15 U/g和1818.23 U/g,未檢測(cè)到CMCase和FPase酶活性;菌株imp的CMCase和FPase酶活性分別為750.12±3.92 U/g和328.18± 1.67 U/g,未檢測(cè)到LiP、MnP和Lacc酶活性。
利用菌株MA,N019a和imp分別對(duì)煙草秸稈進(jìn)行固態(tài)發(fā)酵25 d,測(cè)定不同菌株發(fā)酵后木質(zhì)纖維中半纖維素,纖維素和木質(zhì)素降解率(表3),結(jié)果表明,菌株N019a,MA和imp發(fā)酵25?d后煙草秸稈中半纖維素降解率分別為19.92±1.25%,57.17±5.35%和43.52±4.32%;纖維素降解率分別為18.55±2.39%,26.23±2.55%和63.33±4.81%;木質(zhì)素降解率分為48.20±4.13%,35.65±4.11%和34.13± 0.53%。不同菌株對(duì)木質(zhì)纖維中不同成分的降解率存在顯著差異。
2.2??菌株分子鑒定結(jié)果
在NCBI的Genbank上對(duì)菌株N019a, MA和imp進(jìn)行同源性比對(duì)并構(gòu)建了系統(tǒng)發(fā)育樹(shù)(圖2)。菌株N019a 與梭形芽胞桿菌Lysinibacillus fusiformisstrain NFS-STR-1 (MF079349.1)相似性達(dá)到99% (GenBank:MH327493.1) (圖2A);菌株MA與毛栓菌屬Trametes hirsutastrain IFM62792 (LC317799.1) 相似性達(dá)到99.51% (GenBank:MK357894.1) (圖2B);菌株imp與米根霉菌Rhizopus oryzaeR604 (JQ683246.1)相似性達(dá)到99% (GenBank: MK358185.1) (圖2C)。
2.3??菌株間的拮抗性試驗(yàn)
平板對(duì)峙實(shí)驗(yàn)結(jié)果表明,菌株N019a,MA和imp之間沒(méi)有拮抗作用(圖3),且與本實(shí)驗(yàn)室保存的其他纖維素降解菌之間均不存在拮抗作用。
2.4??不同菌株組合的降解性能
從表4可以看出,組合I與組合II相比,組合Ⅱ?qū)Π肜w維素的降解率顯著優(yōu)于組合Ⅰ,組合Ⅰ對(duì)木質(zhì)素的降解率顯著優(yōu)于組合Ⅱ,而對(duì)于纖維素的降解,組合I與組合II無(wú)明顯差異。組合III(組合Ⅰ+組合Ⅱ)對(duì)半纖維素、纖維素及木質(zhì)素的降解率均顯著高于組合Ⅰ和組合Ⅱ,降解效率明顯提高。
3 ?討 ?論
微生物降解法是一種安全、低能耗和高效的秸稈處理方式[22]。目前已有不少關(guān)于降解菌篩選的研究報(bào)道,孫玲等[23]從腐爛秸稈中篩選獲得一株纖維素降解菌,發(fā)酵10 d對(duì)玉米秸稈纖維素的降解率可達(dá)24.14%;王洪媛等[24]篩選獲得3株高效秸稈纖維素降解真菌,10 d內(nèi)對(duì)小麥秸稈纖維素、半纖維素和木質(zhì)素的分解率分別為59.06%、78.75%和33.79%。梁軍鋒等[25]篩選到鳳尾菇菌株Tf1,其對(duì)小麥和玉米木質(zhì)素的降解率分別達(dá)38.4%和47.7%。劉慶玉等[26]篩選出木質(zhì)素降解菌X2,在培養(yǎng)第35天時(shí)其對(duì)木質(zhì)素的降解率達(dá)到43.31%。本試驗(yàn)中菌株N019a能高效降解煙草秸稈中的木質(zhì)素,降解率為48.20%;半纖維素高效降解菌MA降解率高達(dá)57.17%;菌株imp能高效降解煙草秸稈中的纖維素降解率為54.33%,與以前研究報(bào)道的結(jié)果基本一致[27-28]。所有結(jié)果表明,雖然單一菌株能產(chǎn)生降解木纖維不同成分的酶,但是仍然無(wú)法解決秸稈結(jié)構(gòu)的復(fù)雜性及其內(nèi)部木質(zhì)纖維類(lèi)型的多樣性[29]。
隨著對(duì)木質(zhì)纖維降解研究的不斷深入,發(fā)現(xiàn)不同菌群之間的協(xié)同作用能促進(jìn)木質(zhì)纖維降解效果。李靜等[30]從川西高原貢嘎山區(qū)土壤中分離篩選菌株,構(gòu)建了5組纖維素降解復(fù)合菌群;青格爾等[31]篩選獲得一組高效產(chǎn)纖維素酶且在低溫環(huán)境下穩(wěn)定降解秸稈的復(fù)合菌群;宋云皓等[32]從內(nèi)蒙古東部地區(qū)采集樣品,分離篩選可降解纖維素的菌株,構(gòu)建5個(gè)玉米秸稈降解復(fù)合菌群,復(fù)合菌群的酶活力值比單菌提高1.1倍以上。本實(shí)驗(yàn)將篩選獲得的3株降解菌組合成復(fù)合菌群I(N019a∶MA∶imp=1∶1∶1),結(jié)果表明,組合I中木質(zhì)素,半纖維素和纖維素的降解率與各自對(duì)應(yīng)菌株N019a,MA和imp所降解的成分比較,分別提高了24.89%,17.59%和12.58%。將實(shí)驗(yàn)室保存的3株纖維素降解菌株組合成復(fù)合菌群II(B4∶B26∶M90=1∶1∶1),其對(duì)半纖維素、纖維素和木質(zhì)素的降解率分別為72.15±0.35%,65.68±0.55%與38.15±0.76%。本實(shí)驗(yàn)將篩選獲得的3株降解菌及實(shí)驗(yàn)室保存的3株纖維素降解菌株進(jìn)行復(fù)配組合(復(fù)合菌群Ⅲ)。結(jié)果顯示,復(fù)合菌群Ⅲ半纖維素、纖維素和木質(zhì)素的降解 率分別為83.32±0.45%,75.21±0.71%和66.13±0.53%,明顯高于本研究中的單菌,復(fù)合菌群I和II,也顯明高于以前的其他研究結(jié)果。以上結(jié)果說(shuō)明,復(fù)合菌群降解木質(zhì)纖維的效果優(yōu)于單一菌。
綜上所述,本研究通過(guò)構(gòu)建多功能復(fù)合菌群,顯著提高了煙草秸稈木質(zhì)纖維的降解效果,為農(nóng)業(yè)秸桿廢棄的資源化利用提供了新的思路。
參考文獻(xiàn)
[1]?伍良偉. 降解煙堿微生物的篩選及在煙稈腐熟發(fā)酵中的應(yīng)用[D]. 武漢:華中農(nóng)業(yè)大學(xué),2013.
WU L W. Isolation of nicotine degradation microbe and its application in the tobacco stalks composting fermentation [D]. Wuhan: Huazhong Agricultural University, 2013.
[2]?閆寧,郭東鋒,姚忠達(dá),等. 煙稈還田對(duì)煙草生長(zhǎng)、產(chǎn)量、質(zhì)量及病毒病發(fā)生的影響[J]. 江西農(nóng)業(yè)學(xué)報(bào),2016,28(7):68-72.
YAN N, GUO D F, YAO Z D, et al. Effects of tobacco stalk returning on growth, yield, quality and virus disease occurrence of tobacco[J]. Acta Agriculturae Jiangxi, 2016, 28(7): 68-72.
[3]?王敏. 廢次煙草中有效成分的綜合利用[J]. 中國(guó)資源綜合利用,2003(2):16-18.
WANG M. Comprehensive utilization of active ingredients in waste tobacco[J]. Comprehensive Utilization of Resources in China, 2003(2): 16-18.
[4]?韓非,王瑞. 煙草秸稈生物有機(jī)肥產(chǎn)業(yè)化綠色發(fā)展的現(xiàn)狀與策略[J]. 中國(guó)煙草學(xué)報(bào),2016,22(3):126-132.
HAN F, WANG R. Status quo and development strategy of green development of tobacco stalks organic fertilizer industrialization[J]. Acta Tabacaria Sinica, 2016, 22(3); 126-132.
[5]?陳躍輝. 細(xì)菌 Novosphingobium sp B-7 和 Comamonas sp?B-9 降解木質(zhì)素及其降解基因研究[D]. 長(zhǎng)沙:中南大學(xué),2013.
CHEN Y H. Study on the lignin degradation and related genes of Novosphingobium?sp. B-7 and Comamonas?sp. B-9[D]. Changsha: Central South University, 2013.
[6]?KARMAKAR S, GREENE H L. Oxidative destruction of chlorofuorocar- bonsby zeolite catalysts [J]. J Catal, 1992, l38: 364.
[7]?陳辰,朱潤(rùn)琪,倪新程,等. 一株新的尼古丁降解菌的分離鑒定及降解特性[J]. 中國(guó)煙草科學(xué),2019,40(1):89-97.
CHEN C, ZHU R, NI X C, et al. Isolation, identification and characteristics of a new nicotine degrading strain[J]. Chinese Tobacco Science, 2019, 40(1): 89-97.
[8]?GUTIERREZ-CORREA M, PORTAL L, MORENO P, et al. Mixed culturesolid substrate fermentation of Trichoderma reesei with Aspergillusniger on sugar cane bagass[J] Bioresour Tcchnol, 1999, 68 (2): 173-178.
[9]?AWAFO V A, CHAHAL D S, SIMPSON B K. Evaluation of combinationtreatments of sodium hydroxide and steam explosion for the production of cellulose-systems by two T. reesei?mutants under solid-statefermentation conditions[J]. Bioresour Technol, 2000, 73 (2): 235-245.
[10]?鄒芳. 煙草秸稈降解菌YC-2的分離鑒定、發(fā)酵參數(shù)、產(chǎn)酶條件及酶學(xué)特性研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2015.
ZOU F. Isolation, Identification, Fermentation Conditions, Enzyme Production Conditions and Enzymatic Properties of The Tobacco Straw Degradation Strain Bacteria YC-2[D]. Nanjing: Nanjing Agricultural University, 2015.
[11]?梁朝寧,薛燕芬,馬延和. 微生物降解利用木質(zhì)纖維的協(xié)同作用[J]. 生物工程學(xué)報(bào),2010,26(10):1327-1332.
LIANG C N, XUE Y F, MA Y H. Microbial degradation utilizes the synergistic effect of lignocellulose [J]. Chinese Journal of Biotechnology, 2010, 26(10): 1327-1332.
[12]?趙德清,戴亞,馮廣林,等. 煙稈的化學(xué)成分, 纖維形態(tài)與生物結(jié)構(gòu)[J]. 煙草科技,2016,49(4):80-86.
ZHAO D Q, DAI Y, FENG G L, et al. Chemical composition, fiber morphology and biological structure of tobacco stalks[J]. Tobacco Science & Technology, 2016, 49(4): 80-86.
[13]?ZHANG D, WANG Y, ZHENG D, et al. New combination of xylanolytic bacteria isolated from the lignocellulose degradation microbial consortium XDC-2 with enhanced xylanase activity[J]. Bioresource Technology, 2016, 221: 686-690.
[14]?PUENTES-T?LLEZ P E, SALLES J F. Construction of effective minimal active microbial consortia for lignocellulose degradation[J]. Microbial Ecology, 2018, 76(2): 419-429.
[15]?BAI Y, M?LLER D B, SRINIVAS G, et al. Functional overlap of the Arabidopsis leaf and root microbiota[J]. Nature, 2015, 528(7582): 364.
[16]?M?LLER D B, SCHUBERT O T, R?ST H, et al. Systems-level proteomics of two ubiquitous leaf commensals reveals complementary adaptive traits for phyllosphere colonization[J]. Molecular & Cellular Proteomics, 2016, 15(10): 3256-3269.
[17]?石娜娜. 煙稈纖維素降解菌的篩選及在煙稈堆肥上的應(yīng)用[D]. 武漢:華中農(nóng)業(yè)大學(xué),2012.
SHI N N. Screening of cellulose degrading bacteria from tobacco straw and their application in tobacco straw composting[D]. Wuhan: Huazhong Agricultural University, 2012.
[18]?尹靜,劉悅秋,于峰,等.一株木質(zhì)素降解菌的篩選鑒定及其在堆肥中的應(yīng)用[J]. 中國(guó)土壤與肥料,2019(3):
179-185.
YIN J, LIU Y Q, Y U F, et al. Screening and identification of a lignin-degrading bacterium and its application in composting[J]. Chinese Soil and Fertilizer, 2019(3): 179-185.
[19]?MARTINA V, STANISLAVA V, VRATISLAV L. et al. Induction of laccase, lignin peroxidase and manganese peroxidase activities in white-rot fungi using copper complexes[J]. Molecules, 2016, 21(11):1553.
[20]?柳煥章,劉建釵,周敬霄. 微生物間拮抗的研究方法與農(nóng)業(yè)應(yīng)用[J]. 安徽農(nóng)業(yè)科學(xué),2011,39(3):1310-1314.
LIU H Z, LIU J H, ZHOU J X. Research methods and agricultural application of microbial antagonism[J]. Anhui Agricultural Science, 2011, 39 (3): 1310-1314.
[21]?SLUITER A, HAMES B, RUIZ R, et al. Determination of structural carbohydrates and lignin in biomass[J]. Laboratory Analytical Procedure, 2008, 1617: 1-16.
[22]?李慧君. 秸稈纖維素降解菌的篩選及其利用研究[D]. 咸陽(yáng):西北農(nóng)林科技大學(xué),2010.
LI H J. Screening and utilization of straw cellulose degrading bacteria[D]. Xianyang: Northwest A & F University, 2010.
[23]?孫玲,吳景貴,李建明,等. 纖維素降解細(xì)菌對(duì)玉米秸稈的降解效果[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,41(4):402-407.
SUN L, WU J G, LI J M, et al. Degradation effect of cellulose degrading bacteria on corn stalk [J]. Journal of Jilin Agricultural University, 2019, 41(4): 402-407.
[24]?王洪媛, 范丙全. 三株高效秸稈纖維素降解真菌的篩選及其降解效果[J]. 微生物學(xué)報(bào),2010,50(7):870-875.
WANG H Y, FAN B Q. Screening of three high-efficiency straw cellulose degrading fungi and their degradation effects [J]. Acta Microbiologica Sinica, 2010, 50 (7): 870-875.
[25]?梁軍鋒,張洪生,張克強(qiáng),等. 木質(zhì)素降解菌的篩選及對(duì)秸稈的降解研究[J]. 華北農(nóng)學(xué)報(bào),2009,24(5):206-209.
LIANG J F, ZHANG H S, ZHANG K Q, et al. Screening of lignin degrading bacteria and degradation of straw[J]. Journal of North China Agricultural, 2009, 24 (5): 206-209.
[26]?劉慶玉,陳志麗,張敏. 木質(zhì)素降解菌的篩選[J]. 太陽(yáng)能學(xué)報(bào),2010,31(2):269-272.
LIU Q Y, CHEN Z L, ZHANG M. Screening of lignin-degrading bacteria [J]. Journal of Solar Energy, 2010, 31 (2): 269-272.
[27]?SHAHID S, TAJWAR R, AKHTAR M W. A novel trifunctional, family GH10 enzyme from Acidothermus cellulolyticus 11B, exhibiting endo-xylanase, arabinofuranosidase and acetyl xylan esterase activities[J]. Extremophiles, 2018, 22(1): 109-119.
[28]?27RASTOGI G, BHALLA A, ADHIKARI A, et al. Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains[J]. Bioresource Technology, 2010, 101(22): 8798-8806.
[29]?HADAR Y, KEREM Z, GORODECKI B. Biodegradation of lignocellulosic agricultural wastes by Pleurotus ostreatus[J]. Journal of Biotechnology, 1993, 30(1): 133-139.
[30]?李靜, 張瀚能, 趙翀, 等. 高效纖維素降解菌分離篩選, 復(fù)合菌群構(gòu)建及秸稈降解效果分析[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2016, 22(4): 689-696.
LI J, ZHANG H N, ZHAO Y, et al. Isolation and screening of high-efficiency cellulose-degrading bacteria, construction of composite strains and analysis of straw degradation effect [J]. Journal of Applied and Environmental Biology, 2016, 22 (4): 689-696.
[31]?青格爾, 高聚林, 于曉芳, 等. 玉米秸稈低溫高效降解復(fù)合菌群 GF-20 的菌種組成及降解穩(wěn)定性研究[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(3): 443-454.
QING G E, GAO J L, YU X F, et al. Study on the strain composition and degradation stability of corn stalk at low temperature and high efficiency to degrade the composite strain GF-20 [J]. Chinese Agricultural Science, 2016, 49 (3): 443-454 .
[32]?宋云皓, 滿都拉, 郜晉楠, 等. 玉米秸稈纖維素降解菌的篩選及復(fù)合菌群的構(gòu)建[J]. 飼料工業(yè), 2017, 38(19): 33-37.
SONG Y H, MAN D L, TONG J N, et al. Screening of corn straw cellulose degrading bacteria and construction of complex strains [J]. Feed Industry, 2017, 38 (19): 33-37.