丁鴨鎖 尹春 高廣忠 魯峻 張勤 孫兵
[摘要] 目的 探討CYP2C19基因多態(tài)性與氯吡咯雷二磷酸腺苷(ADP)抑制率之間的關(guān)系。 方法 選取南通大學(xué)附屬泰州市人民醫(yī)院神經(jīng)外科2014年7月~2017年7月顱內(nèi)寬頸動(dòng)脈瘤并行支架輔助彈簧圈栓塞的患者63例,均行常規(guī)雙抗治療,為阿司匹林100 mg及氯吡格雷75 mg每天口服。利用專用試劑盒測(cè)定CYP2C19基因型。本試驗(yàn)中共檢測(cè)6種亞型(CYP2C19*1/*1(636GG,681GG),CYP2C19*1/*2(636GG,681GA),CYP2C19*2/*2(636GG,681AA),CYP2C19*1/*3(636GA,681GG),CYP2C19*2/*3(636GA,681GA),CYP2C19*3/*3(636AA,681GG)。將6種CYP2C19基因亞型分為快代謝組[CYP2C19*1/*1(636GG,681GG)]、中快代謝組[CYP2C19*1/*2(636GG,681GA),CYP2C19*1/*3(636GA,681GG)]和慢代謝組[CYP2C19*2/*2(636GG,681AA),CYP2C19*2/*3(636GA,681GA),CYP2C19*3/*3(636AA,681GG)]。利用雙抗血小板圖測(cè)定氯吡格雷對(duì)血小板的抑制率(ADP抑制率)。 結(jié)果 6種CYP2C19基因亞型中,CYP2C19*1/*1和CYP2C19*1/*2為主要基因型,占比分別為63.5%和19.0%。其中快代謝組有40例(63.5%),中快代謝組12例(19.0%)及慢代謝組11例(17.5%);將快代謝組與慢代謝組兩組ADP抑制率進(jìn)行比較,差異無統(tǒng)計(jì)學(xué)意義(P > 0.05)。 結(jié)論 通過檢測(cè)CYP2C19基因型來調(diào)整寬頸動(dòng)脈瘤支架術(shù)后的患者氯吡格雷的用量,意義不大,需要通過其他的指標(biāo)來監(jiān)測(cè)血小板的抑制情況。
[關(guān)鍵詞] CYP2C19基因;氯吡格雷;二磷酸腺苷抑制率
[中圖分類號(hào)] R541.4 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2018)09(b)-0018-04
[Abstract] Objective To explore the relationship between CYP2C19 Genetic Polymorphism and Clopidogrel in antiplatelet. Methods A total of 63 wide-necked intracranial aneurysm patients after stent-assist coiling embolization in the Neurosurgery Department of Jiangsu Taizhou People's Hospital of Nantong University were included in the study who took Clopidogrel (75 mg/d) and Aspirin (100 mg/d) orally. Gene chip kits were applied to test CYP2C19 gene types. In this research, six gene sub-types were tested(CYP2C19*1/*1 (636GG, 681GG), CYP2C19*1/*2 (636GG, 681GA), CYP2C19*2/*2 (636GG, 681AA), CYP2C19*1/*3 (636GA, 681GG), CYP2C19*2/*3 (636GA, 681GA), CYP2C19*3/*3 (636AA, 681GG). And they were divided into three subgroups based on the metabolic rate. CYP2C19*1/*1 (636GG, 681GG) was in the rapid subgroup. CYP2C19*1/*2 (636GG, 681GA) and CYP2C19*1/*3 (636GA, 681GG) were in the moderate subgroup. CYP2C19*2/*2 (636GG, 681AA), CYP2C19*2/*3 (636GA, 681GA) and CYP2C19*3/*3 (636AA, 681GG) were in the slow subgroup. Thrombelastograms were used to test the inhibition rate of platelet. Results CYP2C19*1/*1 and CYP2C19*1/*2 were the main gene sub-types, occupied 63.5% and 19.0% separately. There were 40 cases in rapid subgroup(63.5%), 12 cases in moderate subgroup (19.0%) and 11 cases in slow subgroup (17.5%). There was no statistical difference in the inhibition rate of ADP between rapid subgroup and slow subgroup (P > 0.05). Conclusion It is of little significance to adjust the amount of Clopidogrel in patients with wide-necked aneurysm stent after detecting genetype. Other indicators are needed to monitor the inhibition of plateles.
[Key words] CYP2C19 genetype; Clopidogrel; Inhibition of ADP
介入栓塞術(shù)已成為顱內(nèi)動(dòng)脈瘤的重要治療手段,對(duì)于寬頸動(dòng)脈瘤,除了使用彈簧圈栓塞外,往往需要支架輔助。目前常用的抗血小板方案是氯吡格雷加阿司匹林的雙抗療法。然而,氯吡格雷的抗血小板作用存在一定的個(gè)體差異,部分患者存在氯吡格雷抵抗現(xiàn)象,這部分人群會(huì)出現(xiàn)較高概率的血栓事件。發(fā)生氯吡格雷抵抗的原因有多種,基因多態(tài)性被認(rèn)為是重要因素。由于從基因型到最終的蛋白表達(dá),有多個(gè)調(diào)控環(huán)節(jié)參與其中,基因型是否和最終的血小板抵抗現(xiàn)象存在某種對(duì)應(yīng)關(guān)系目前尚無定論,本研究將針對(duì)這個(gè)問題進(jìn)行探討。
1 對(duì)象與方法
1.1 研究對(duì)象
選擇2014年7月~2017年7月在南通大學(xué)附屬泰州市人民醫(yī)院(以下簡稱“我院”)神經(jīng)外科診斷為顱內(nèi)寬頸動(dòng)脈瘤并行支架輔助彈簧圈栓塞的63例患者。所有患者均行常規(guī)雙抗治療。患者年齡29~81歲,平均(48.0±8.9)歲;女36例,男27例。本研究經(jīng)我院醫(yī)學(xué)倫理委員會(huì)的批準(zhǔn),所有患者或家屬均知情、同意,并簽署知情同意書。
1.2 納入及排除標(biāo)準(zhǔn)
納入標(biāo)準(zhǔn):①確診為顱內(nèi)寬頸動(dòng)脈瘤;②寬頸動(dòng)脈瘤為瘤頸≥4 mm,或瘤頸比≤1∶5;③血小板計(jì)數(shù)>70×109/L。排除標(biāo)準(zhǔn):①嚴(yán)重腎功能不全;②合并其他臟器近期出血,如眼底出血等。
1.3 研究方法
患者每天口服氯吡格雷75 mg(生產(chǎn)廠家:賽諾菲-安萬特股份有限公司;生產(chǎn)批號(hào):J20130083)及阿司匹林100 mg(企業(yè)名稱:拜耳醫(yī)藥保健有限公司;生產(chǎn)批號(hào):J20130078),第7天時(shí)抽取靜脈血,使用雙抗血小板圖檢測(cè)血小板二磷酸腺苷(adenosine diphosphate,ADP)抑制率,并抽取靜脈血1 mL進(jìn)行CYP2C19的基因檢測(cè)。
1.4 血小板抑制率的測(cè)定
使用血栓彈力圖(thromboelas-tography,TEG)YZ5000型(陜西裕澤毅醫(yī)療科技有限公司)。試劑包括高嶺土、氯化鈣、激活劑A和ADP(2 μmol/L),通過軟件計(jì)算出氯吡格雷對(duì)血小板ADP的抑制率。
1.5 CYP2C19基因檢測(cè)
使用蘇州曠遠(yuǎn)生物分子技術(shù)有限公司生產(chǎn)的人CYP2C19基因分型檢測(cè)試劑盒。根據(jù)說明書指示提取外周血中的脫氧核糖核酸(deoxyribonucleic acid,DNA),使用含有基因探針的基因芯片進(jìn)行特異性雜交,測(cè)定患者基因中的信息,確定基因型。本研究中檢測(cè)的基因型有CYP2C19*1/*1(636GG,681GG),CYP2C19*1/*2(636GG,681GA),CYP2C19*2/*2(636GG,681AA),CYP2C19*1/*3(636GA,681GG),CYP2C19*2/*3(636GA,681GA),CYP2C19*3/*3(636AA,681GG)。
1.6 分組方法
將6種CYP2C19基因亞型分為快代謝組[CYP2C19*1/*1(636GG,681GG)]、中快代謝組[CYP2C19*1/*2(636GG,681GA),CYP2C19*1/*3(636GA,681GG)]和慢代謝組[CYP2C19*2/*2(636GG,681AA),CYP2C19*2/*3(636GA,681GA),CYP2C19*3/*3(636AA,681GG)]。為了使比較結(jié)果更加明顯,本研究只比較快代謝組和慢代謝組基因型對(duì)血小板ADP的抑制率。
1.7 統(tǒng)計(jì)學(xué)方法
采用SPSS 18.0統(tǒng)計(jì)學(xué)軟件進(jìn)行數(shù)據(jù)分析,計(jì)量資料用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,兩組間比較采用t檢驗(yàn),以P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
本研究患者基因型以CYP2C19*1/*2,CYP2C19*1/*1為主,分別占21.2%和69.3%。見表1。CYP2C19基因型改變引起酶代謝活性的不同,使不同的患者對(duì)氯吡格雷代謝的反應(yīng)呈現(xiàn)3種情況:快代謝[CYP2C19*1/*1(636GG,681GG)]、中快代謝[CYP2C19*1/*2(636GG,681GA),CYP2C19*1/*3(636GA,681GG)]和慢代謝[CYP2C19*2/*2(636GG,681AA),CYP2C19*2/*3(636GA,681GA),CYP2C19*3/*3(636AA,681GG)]??齑x型有40例,占比63.5%;中代謝型有12例,占比19.0%;慢代謝型有11例,占比17.5%??齑x組和慢代謝組基因型對(duì)血小板ADP抑制率比較,差異無統(tǒng)計(jì)學(xué)意義(P > 0.05)。見表2。
3 討論
支架輔助技術(shù)在給患者帶來微創(chuàng)和快速康復(fù)的同時(shí),也給抗血小板治療提出了新的要求??寡“宀蛔銜?huì)導(dǎo)致血栓事件,甚至大面積腦梗死,造成嚴(yán)重后果;抗血小板過量會(huì)導(dǎo)致顱內(nèi)或內(nèi)臟出血,也會(huì)造成嚴(yán)重后果[1-2]。目前,抗血小板采取的是阿司匹林聯(lián)合氯吡格雷的統(tǒng)一方案,而個(gè)體差異的存在導(dǎo)致了患者對(duì)抗血小板藥物的敏感性存在差異,其原因被歸為“氯吡格雷抵抗”[3-4]。在臨床工作中,醫(yī)生希望能在治療前了解患者是否存在氯吡格雷抵抗,而不是服用藥物后再檢測(cè)血小板的功能。比如,支架植入手術(shù)則希望能在支架植入之前就知道結(jié)果,可以通過調(diào)整劑量和更換藥物的方式,防止術(shù)后出現(xiàn)因?yàn)檠“逡种撇蛔銓?dǎo)致的血栓事件。CYP2C19基因檢測(cè)被認(rèn)為是一種很好的方法[5]。
在氯吡格雷抵抗的各種機(jī)制中,遺傳因素被認(rèn)為是重要的一部分。細(xì)胞色素P450同工酶中的CYP2C19在氯吡咯雷的代謝中起了重要作用[6]。根據(jù)等位子的變異,可將CYP2C19的基因型分為六型CYP2C19*1/*1(636GG,681GG),CYP2C19*1/*2(636GG,681GA),CYP2C19*2/*2(636GG,681AA),CYP2C19*1/*3(636GA,681GG),CYP2C19*2/*3(636GA,681GA),CYP2C19*3/*3(636AA,681GG)[7]。其中CYP2C19*1/*1(636GG,681GG)被稱為快代謝型,CYP2C19*1/*2(636GG,681GA)、CYP2C19*1/*3(636GA,681GG)為中快代謝型,剩余的3種為慢代謝型[8]??齑x型能將氯吡格雷及時(shí)轉(zhuǎn)化為可以抑制血小板的中間產(chǎn)物,而慢代謝型則不能將氯吡格雷快速轉(zhuǎn)化,效果不佳。本研究中快代謝型40例,占比63.5%;中代謝型12例,占比19.0%;慢代謝型11例,占比17.5%,這與文獻(xiàn)報(bào)道結(jié)果類似[9]。
從基因型到最終的蛋白表達(dá),有多個(gè)調(diào)控環(huán)節(jié)參與其中[10]?;蛐褪欠窈妥罱K的血小板抵抗現(xiàn)象存在某種關(guān)系,對(duì)用藥是否存在指導(dǎo)價(jià)值,目前尚無定論[11]。本研究除了檢測(cè)樣本的CYP2C19的基因型之外,還通過血栓彈力圖測(cè)定氯吡格雷對(duì)血小板ADP的抑制率,探討氯吡格雷抵抗與CYP2C19基因多態(tài)性之間的關(guān)系。本研究發(fā)現(xiàn)此樣本中絕大多數(shù)患者對(duì)氯吡格雷呈現(xiàn)快代謝型,說明對(duì)氯吡格雷敏感,治療效果較好。以往研究發(fā)現(xiàn)亞洲人群中幾乎100%的弱代謝歸因于CYP2C19*2和CYP2C19*3所編碼功能缺陷等位基因[12]。這部分人群再發(fā)缺血事件比無此基因攜帶者再發(fā)缺血事件高3.58倍。氯吡格雷抵抗的患者CYP2C19*2、CYP2C19*3基因型更占優(yōu)勢(shì),在一定程度上使氯吡格雷的反應(yīng)性下降。Mohammad等[13]認(rèn)為CYP2C19可以作為心臟冠脈支架術(shù)后不良預(yù)后的獨(dú)立預(yù)測(cè)因素。Zhou等[3]發(fā)現(xiàn)中國人群中攜帶CYP2C19*2 or*3變異等位基因和患者氯吡格雷抵抗相關(guān),并且血栓風(fēng)險(xiǎn)增加。也有研究[14]不支持CYP2C19基因多態(tài)性與氯吡格雷抵抗有關(guān)這一結(jié)論。Fontana等[15-16]研究顯示,在心血管門診患者中發(fā)現(xiàn)CYP2C19*2等位基因與氯吡咯雷抵抗沒有相關(guān)性。Rodriguez等[17]認(rèn)為CYP2C19的基因型和對(duì)氯吡格雷的臨床反應(yīng)無關(guān)。在本研究中快代謝組和慢代謝組對(duì)血小板ADP的抑制率差異無統(tǒng)計(jì)學(xué)意義,但本研究樣本量較少,需要更大的樣本量來驗(yàn)證。因此,CYP2C19基因的多態(tài)性對(duì)動(dòng)脈瘤術(shù)后抗血小板效果的影響還需要進(jìn)一步更大樣本量的深入研究,而且也說明從基因到蛋白到最后的效應(yīng),中間調(diào)控的環(huán)節(jié)及參與的因子很多,讓整個(gè)過程變得異常復(fù)雜[18]。
從本研究可以看出,對(duì)于寬頸動(dòng)脈瘤支架術(shù)后的患者,通過檢測(cè)CYP2C19基因型來提前調(diào)整氯吡格雷用量的做法,作用有限。如何提前確定患者是否存在血小板抵抗,這仍然是個(gè)亟待解決的臨床問題,需要新的、敏感準(zhǔn)確的檢測(cè)指標(biāo),或者聯(lián)合使用基因或非基因指標(biāo)[19-20]。另外,血小板的抑制情況仍然需要監(jiān)測(cè),可以通過血栓彈力圖等來實(shí)現(xiàn)。
[參考文獻(xiàn)]
[1] Zhong X,Tong X,Ju Y,et al. Interpersonal factors in the pharmacokinetics and pharmacodynamics of voriconazole:are CYP2C19 genotypes enough for us to make a clinical decision? [J]. Curr Drug Metab,2017:56-59.
[2] Xi Z,F(xiàn)ang F,Wang J,et al. CYP2C19 genotype and adverse cardiovascular outcomes after stent implantation in clopidogrel-treated Asian populations:a systematic review and meta-analysis [J]. Platelets,2017(127):1-12.
[3] Zhuo ZL,Xian HP,Long Y,et al. Association between CYP2C19 and ABCB1 polymorphisms and clopidogrel resistance in clopidogrel-treated Chinese patients [J]. Anatol J Cardiol,2018,19(2):123-128.
[4] Guirgis M,Thompson P,Jansen S. Review of aspirin and clopidogrel resistance in peripheral arterial disease [J]. J Vasc Surg,2017,66(5):1576-1586.
[5] Zeb I,Krim N,Bella J. Role of CYP2C19 genotype testing in clinical use of clopidogrel:is it really useful ? [J]. Expert Rev Cardiovasc Ther,2018,16(5):369-377.
[6] Kim KA,Park PW,Hong SJ,et al. The effect of CYP2C19 polymorphism on the pharmacokinetics and pharmacodynamics of clopidogrel:a possible mechanism for clopidogrel resistance [J]. Clin Pharmacol Ther,2008,84(2):236-242.
[7] Wang XQ,Shen CL,Wang BN,et al. Genetic polymorphisms of CYP2C19 2 and ABCB1 C3435T affect the pharmacokinetic and pharmacodynamic responses to clopidogrel in 401 patients with acute coronary syndrome [J]. Gene,2015,558(2):200-207.
[8] Liu J,Nie XY,Zhang Y,et al. CYP2C19*2 and other allelic variants affecting platelet response to Clopidogrel tested by thrombelastography in patients with acute coronary syndrome [J]. Chin Med J (Engl),2015,128(16):2183-2188.
[9] Lin XB,Li ZW,Yan M,et al. Population pharmacokinetics of Voriconazole and CYP2C19 polymorphisms for optimizing dosing regimens in renal transplant recipients [J]. Br J Clin Pharmacol,2018,84(7):46-49.
[10] Hariharan S,Southworth MR,Madabushi R. Clopidogrel,CYP2C19 and proton pump inhibitors:what we know and what it means [J]. J Clin Pharmacol,2014,54(8):884-888.
[11] Tang XF,Han YL,Zhang JH,et al. CYP2C19 genotyping combined with on-clopidogrel platelet reactivity in predicting major adverse cardiovascular events in Chinese patients with percutaneous coronary intervention [J]. Thromb Res,2016,147(5):108-114.
[12] Xiao ZS,Goldstein JA,Xie HG,et al. Differences in the incidence of the CYP2C19 polymorphism affecting the S-mephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19 mutant allele [J]. J Pharmacol Exp Ther,1997,281(1):604-609.
[13] Mohammad Fic AM,Al-Allawi NA. CYP2C19 genotype is an independent predictor of adverse cardiovascular outcome in Iraqi patients on Clopidogrel post percutaneous coronary intervention [J]. J Cardiovasc Pharmacol,2018,37(7):139-143.
[14] Lee CR,Sriramoju VB,Cervantes A,et al. Clinical outcomes and sustainability of using CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention [J]. Circ Genom Precis Med,2018,11(4):e002069.
[15] Simon T,Verstuyft C,Mary-Krause M,et al. Genetic determinants of response to clopidogrel and cardiovascular events [J]. N Engl J Med,2009,360(4):363-375.
[16] Chen K,Zhang R,Liu H,et al. Impact of the CYP2C19 gene polymorphism on Clopidogrel personalized drug regimen and the clinical outcomes [J]. Clin Lab,2016,62(9):1773-1780.
[17] Rodriguez-Gonzalez F,Martinez-Quintana E,Saavedra P,et al. CYP2C19 or CYP3A5 genotyping does not predict clinical response to Clopidogrel [J]. J Clin Pharmacol,2018, 18(4):198-202.
[18] Tomek A,Mat'oska V,F(xiàn)rydmanova A,et al. Impact of CYP2C19 polymorphisms on clinical outcomes and antiplatelet potency of Clopidogrel in caucasian poststroke survivors [J]. Am J Ther,2018,25(2):e202-e212.
[19] Kiss AF,Vasko D,Deri MT,et al. Combination of CYP2C19 genotype with non-genetic factors evoking phenoconversion improves phenotype prediction [J]. Pharmacol Rep,2017,70(3):525-532.
[20] Wu Y,Zhou Y,Pan Y,et al. Impact of CYP2C19 polymorphism in prognosis of minor stroke or TIA patients with declined eGFR on dual antiplatelet therapy:CHANCE substudy [J]. Pharmacogenomics J,2018,11(2):45-49.
(收稿日期:2018-03-02 本文編輯:任 念)