殷琨,黃崇湘,王艷飛,王明賽,黃愛(ài)輝
?
工業(yè)純鋁攪拌摩擦焊質(zhì)量與力學(xué)性能
殷琨,黃崇湘,王艷飛,王明賽,黃愛(ài)輝
(四川大學(xué) 空天科學(xué)與工程學(xué)院,四川 成都,610065)
采用不同旋轉(zhuǎn)速度/進(jìn)給速度(/),研究其對(duì)AA1050攪拌摩擦焊焊縫的表面形貌、硬度分布、應(yīng)力?應(yīng)變曲線和顯微組織的影響。研究結(jié)果表明:當(dāng)/分別為800/100,1 000/200和1 400/300時(shí),焊縫區(qū)表面質(zhì)量較好;焊核區(qū)硬度高于母材硬度,焊核區(qū)平均維氏硬度最高為42.9;焊核區(qū)拉伸強(qiáng)度高于母材拉伸強(qiáng)度,極限拉伸強(qiáng)度最高為105 MPa,與母材的拉伸強(qiáng)度相比提升了64%;當(dāng)旋轉(zhuǎn)速度固定時(shí),隨進(jìn)給速度增加,極限拉伸強(qiáng)度增加,塑性降低;當(dāng)/為1 400/300時(shí),焊縫具有較好的力學(xué)性能和較強(qiáng)加工硬化能力,高焊縫質(zhì)量對(duì)應(yīng)的點(diǎn)分布在熱輸入量與焊核區(qū)屈服強(qiáng)度的關(guān)系曲線凹處周圍。
1050工業(yè)純鋁;攪拌摩擦焊;焊縫質(zhì)量;力學(xué)性能
攪拌摩擦焊(friction stir welding,簡(jiǎn)稱FSW)是新型固相連接方法[1]。該技術(shù)通過(guò)攪拌頭軸肩與材料的高壓摩擦以及焊針的高速旋轉(zhuǎn)攪拌使待連接區(qū)域材料的晶粒發(fā)生劇烈塑性變形、再結(jié)晶、退火長(zhǎng)大,從而實(shí)現(xiàn)金屬固相連接。與傳統(tǒng)熔焊類方法相比,攪拌摩擦焊因耗能低、焊接變形小、焊縫強(qiáng)度高、缺陷少、無(wú)污染等優(yōu)點(diǎn)而被廣泛應(yīng)用于鋁、鎂、銅合金等材料的焊接[2?7]。對(duì)于各系鋁合金,經(jīng)過(guò)攪拌摩擦焊后,焊縫強(qiáng)度與母材的相近,甚至比母材的高[8?9]。攪拌摩擦焊工藝所涉及的主要參數(shù)包括攪拌頭的旋轉(zhuǎn)速度和進(jìn)給速度、攪拌針直徑、軸肩直徑、軸肩壓力、冷卻條件等。選擇不同參數(shù)對(duì)焊縫的質(zhì)量和性能有不同程度的影響。有研究表明,改變攪拌頭的旋轉(zhuǎn)速度和進(jìn)給速度會(huì)明顯影響焊核區(qū)的微觀結(jié)構(gòu)和力學(xué)性能[10],水冷能夠提升焊核區(qū)的抗拉強(qiáng)度[11],因此,選取合適的旋轉(zhuǎn)速度和進(jìn)給速度可有效提高焊縫質(zhì)量。本研究采用具有不同旋轉(zhuǎn)速度和進(jìn)給速度的9組參數(shù)(/)對(duì)AA1050鋁板進(jìn)行單道次攪拌摩擦焊加工,從表面宏觀形貌、微觀結(jié)構(gòu)、硬度分布、拉伸力學(xué)性能的角度對(duì)焊縫質(zhì)量進(jìn)行對(duì)比分析,得到優(yōu)選的工藝參數(shù),并基于焊接參數(shù)與焊縫質(zhì)量的關(guān)系提出可用于指導(dǎo)焊接工藝參數(shù)選取的理論模型。
本文所選用母材為經(jīng)過(guò)600 ℃退火12 h的AA1050鋁板,其室溫力學(xué)性能如表1所示。
鋁板長(zhǎng)×寬×厚為300 mm×60 mm×5 mm。攪拌頭軸肩直徑為15 mm,攪拌針直徑為2 mm,長(zhǎng)度為2 mm。選取具有不同旋轉(zhuǎn)速度(,單位為r/min)和進(jìn)給速度(,單位為mm/min)的9組工藝,/分別為800/100,800/200,800/300,1 000/100,1 000/200, 1 000/300,1 400/100,1 400/200,1 400/300。所有焊接過(guò)程保持相同的軸肩壓力和冷卻條件,其中冷卻方式采用循環(huán)水冷。
表1 AA1050 鋁板室溫力學(xué)性能
Table 1 Mechanical properties of annealed AA1050 base metal at room temperature
焊接接頭橫截面的金相試樣經(jīng)Keller試劑((HF):(HCl):(HNO3):(H2O)=2:3:5:95,為體積分?jǐn)?shù))腐蝕后在NIKON MA100光學(xué)顯微鏡下觀察。硬度測(cè)試采用DHV?1000Z顯微維氏硬度計(jì),硬度測(cè)試沿試樣橫截面焊核區(qū)上表面向下0.5 mm的水平方向進(jìn)行,相鄰壓痕間隔為 0.2 mm。為了測(cè)得拉伸曲線,沿平行焊縫方向從核焊區(qū)中心截取標(biāo)距段長(zhǎng)×寬×厚為 14 mm×3 mm×2 mm的狗骨型板狀拉伸試樣。拉伸測(cè)試采用島津AG?100kN電子萬(wàn)能試驗(yàn)機(jī),拉伸應(yīng)變速率為3.0×10?4s?1。分別在/為800/300和1 400/300時(shí)得到的焊核區(qū)取樣,用水磨砂紙將試樣表面磨至平整光滑,用質(zhì)量分?jǐn)?shù)為86% HClO4-CH3OH(體積比為3:40)溶液電解拋光,電壓為20 V,電流為0.8 A,時(shí)間約為1 min。然后,在LEO1530場(chǎng)發(fā)射掃描電鏡中用電子背反射(EBSD)探頭觀察試樣形貌,并通過(guò)配套軟件系統(tǒng)測(cè)量對(duì)應(yīng)區(qū)域的晶體取向。
焊縫表面形貌是衡量焊接質(zhì)量的重要標(biāo)準(zhǔn)。圖1所示為采用不同參數(shù)組所得焊縫區(qū)宏觀形貌。由圖1可知:9組/下焊縫的宏觀形貌表現(xiàn)出明顯的差別。表面焊接缺陷主要包括孔洞、剝落類缺陷(見(jiàn)圖1(a))和不均勻分布的起鱗缺陷(見(jiàn)圖1(c))。質(zhì)量較好的焊縫表面表現(xiàn)為細(xì)密圓環(huán)紋理,表面平滑干凈無(wú)飛邊。起鱗缺陷是由于攪拌頭軸肩與焊縫表層摩擦生熱過(guò)多,熱量累積于焊縫表層金屬,使其熔化并逐漸冷卻而形成;剝落缺陷是由于焊縫區(qū)金屬熱塑性流動(dòng)不充分,無(wú)法及時(shí)填充焊接過(guò)程中留下的瞬時(shí)空腔而形 成[12?13]。以焊縫區(qū)宏觀形貌中的缺陷數(shù)量作為評(píng)價(jià)標(biāo)準(zhǔn),當(dāng)/分別為800/100,1 000/200和1 400/300時(shí),焊縫區(qū)質(zhì)量較好。
旋轉(zhuǎn)速度/(r?min?1):(a) 800;(b) 1 000;(c) 1 400
圖2所示/為1 000/100時(shí)焊縫橫截面的金相圖。由圖2可見(jiàn):橫截面上焊核區(qū)(stir zone,簡(jiǎn)稱SZ)和母材(base metal,簡(jiǎn)稱BM)的明顯界線構(gòu)成碗狀輪廓,這說(shuō)明2個(gè)區(qū)域的微觀結(jié)構(gòu)存在明顯差異;焊核區(qū)內(nèi)部無(wú)缺陷,缺陷出現(xiàn)在焊縫區(qū)表面。圖2中左側(cè)為前進(jìn)側(cè)(advancing side,簡(jiǎn)稱為AS),即攪拌頭進(jìn)給方向和攪拌頭旋轉(zhuǎn)方向一致的一側(cè);右側(cè)為后退側(cè)(retreating side,簡(jiǎn)稱為RS),即攪拌頭進(jìn)給方向和攪拌頭旋轉(zhuǎn)方向相反的一側(cè)。從圖2可以明顯看出前進(jìn)側(cè)焊核區(qū)和母材之間的界面輪廓比后退側(cè)的界面輪廓更為明顯,表明后退側(cè)有較寬的熱機(jī)影響區(qū)域(thermal mechanically affected zone,簡(jiǎn)稱TMAZ)[14]。
圖3所示為不同/下焊縫橫截面的維氏硬度分布。圖3中黑色實(shí)線表示與焊核區(qū)對(duì)應(yīng)寬度范圍的母材的維氏硬度分布(平均值為29.9)。從圖3可以看出:焊核區(qū)的維氏硬度均明顯高于母材維氏硬度,當(dāng)/為800/200時(shí)焊核區(qū)平均維氏硬度最高,為42.9,比母材高13.0;當(dāng)/為1 400/300時(shí),焊核區(qū)平均維氏硬度最低,為35.0,比母材高5.1。由焊縫表面質(zhì)量觀察結(jié)果可知:當(dāng)/為800/200時(shí)焊核區(qū)平均維氏硬度最高,焊縫表面質(zhì)量較差;而當(dāng)/為1 400/300時(shí),焊核區(qū)平均維氏硬度最低,焊縫表面質(zhì)量較好。這是由于當(dāng)/為800/200時(shí)熱輸入量較少,導(dǎo)致攪拌加工過(guò)程中熱塑性流動(dòng)不充分,進(jìn)而造成焊核區(qū)形成孔洞缺陷和嚴(yán)重塑性變形態(tài)的微觀結(jié)構(gòu)[14?15]。
圖2 ω/v為1 000/100時(shí)焊縫橫截面的金相圖
ω/v:(a) 800/100;(b) 800/200;(c) 800/300;(d) 1 000/100;(e) 1 000/200;(f) 1 000/300;(g) 1 400/100;(h) 1 400/200;(i) 1400/300
圖3中各分圖虛線之間的區(qū)域?yàn)榍斑M(jìn)側(cè)母材區(qū)和焊核區(qū)之間維氏硬度過(guò)渡區(qū),也就是熱機(jī)影響區(qū)。對(duì)比圖3(d)和圖3(f)以及圖3(g)和圖3(i)可以看出:當(dāng)旋轉(zhuǎn)速度保持不變時(shí),隨著進(jìn)給速度增大,熱機(jī)影響區(qū)寬度逐漸減小。這是因?yàn)殡S著進(jìn)給速度增加,熱輸入量減少使得熱機(jī)影響區(qū)的寬度減小。對(duì)比圖3(b),(e)和(h)以及圖3(c),(f)和(i)可以看出:當(dāng)進(jìn)給速度保持不變時(shí),隨著旋轉(zhuǎn)速度增大,熱機(jī)影響區(qū)寬度逐漸減小。這是因?yàn)殡S著旋轉(zhuǎn)速度增大,熱輸入增加,材料的塑性變形程度增加,攪拌區(qū)與非攪拌區(qū)的摩擦力減小,熱機(jī)影響區(qū)變窄[16]。
焊縫區(qū)的強(qiáng)度和韌性是衡量焊縫質(zhì)量的重要標(biāo)準(zhǔn)。圖4(a),(b)和(c)所示為不同/下焊核區(qū)的單軸拉伸應(yīng)力?應(yīng)變曲線,其中BM為母材的拉伸曲線。從圖4(a),(b)和(c)可以看出:雖然焊核區(qū)的塑性較母材有所降低,但其拉伸強(qiáng)度均高于母材拉伸強(qiáng)度。其中,/為800/300時(shí)焊核區(qū)的極限拉伸強(qiáng)度最高,為105 MPa,相應(yīng)的屈服強(qiáng)度為94 MPa,其極限拉伸強(qiáng)度相比于母材提升64%。這種由于在FSW過(guò)程中產(chǎn)生嚴(yán)重的塑性變形和大量摩擦熱,使周圍金屬塑化,位錯(cuò)密度不斷增加,焊縫溫度達(dá)到再結(jié)晶溫度后發(fā)生再結(jié)晶,從而使晶粒細(xì)化。這種再結(jié)晶過(guò)程是塑性材料在焊接熱循環(huán)作用下發(fā)生動(dòng)態(tài)再結(jié)晶的過(guò)程,形成的晶粒來(lái)不及長(zhǎng)大就在攪拌的作用下被打碎,從而形成細(xì)小的晶粒[17?19]。根據(jù)Hall?Petch關(guān)系[20?21],材料的拉伸強(qiáng)度隨晶粒直徑減小而增加,因此焊核區(qū)的拉伸強(qiáng)度提高。
從圖4(a),(b)和(c)還可以看出:在相同旋轉(zhuǎn)速度下,隨著進(jìn)給速度增加,焊核區(qū)的拉伸強(qiáng)度逐漸增加,塑性逐漸降低。增加進(jìn)給速度將同時(shí)減少累積塑性應(yīng)變量和熱輸入量。一方面,過(guò)低的累積塑性應(yīng)變量不足以使晶粒細(xì)化,從而阻礙或者延遲再結(jié)晶過(guò)程。另一方面,熱輸入量減小能夠抑制再結(jié)晶晶粒的熱退火長(zhǎng)大程度,從而減小再結(jié)晶晶粒直徑。其中,熱輸入量是影響焊核區(qū)晶粒直徑的重要因素,焊核區(qū)再結(jié)晶晶粒直徑隨著進(jìn)給速度增加而減小,因此,焊核的強(qiáng)度逐漸增加而塑性逐漸降低[22?24]。
(a),(b),(c) 應(yīng)力?應(yīng)變曲線;(d),(e),(f) 加工硬化率曲線
圖4(d),(e)和(f)所示為不同/下材料拉伸應(yīng)力?應(yīng)變曲線對(duì)應(yīng)的加工硬化率曲線。加工硬化率是反映材料均勻塑性變形能力的重要指標(biāo),取決于材料變形過(guò)程中對(duì)位錯(cuò)等晶格缺陷的儲(chǔ)存能力[25]。對(duì)于粗晶,材料位錯(cuò)儲(chǔ)存能力較強(qiáng),加工硬化能力較強(qiáng)。對(duì)于細(xì)晶,材料位錯(cuò)儲(chǔ)存能力降低,加工硬化能力較低。因此,晶粒直徑降低是焊核區(qū)加工硬化率低于母材加工硬化率的主要原因。經(jīng)比較,焊核區(qū)加工硬化率隨轉(zhuǎn)速增加而增加,其中為1 400 r/min時(shí)所得焊核區(qū)的加工硬化能力與母材的最接近。這是因?yàn)檗D(zhuǎn)速增大造成熱輸入量增加,進(jìn)而促進(jìn)焊核區(qū)晶粒退火長(zhǎng)大。
綜合焊核區(qū)的強(qiáng)度、塑性及加工硬化能力可知:當(dāng)/為1 400/300時(shí)焊核區(qū)質(zhì)量最高,所得焊縫區(qū)的質(zhì)量也較好。
在忽略攪拌針周圍金屬塑性變形熱的條件下,攪拌摩擦焊接熱輸入量可表示為[26]
式中:為摩擦因數(shù);為攪拌頭軸肩的壓力;0為軸肩半徑;1為攪拌針的半徑;為常數(shù)項(xiàng)。此外,也有相關(guān)研究將熱輸入量公式簡(jiǎn)化為[27]
式中:1為常數(shù)項(xiàng)。
由于9組工藝中和1固定,分別用/和2/來(lái)表示不同工藝的攪拌摩擦焊熱輸入量。圖5所示為焊核區(qū)拉伸及屈服強(qiáng)度與熱輸入量的關(guān)系。其中,實(shí)線為指數(shù)衰減擬合曲線。由圖5可知:極限拉伸強(qiáng)度和屈服強(qiáng)度均隨著熱輸入量增加而降低,降低速度先快后慢。與圖5(a)相比,圖5(b)中各數(shù)據(jù)點(diǎn)均勻分布在擬合曲線兩側(cè),擬合誤差較小,因此,用2/來(lái)表征攪拌摩擦焊熱輸入量更為合適。從圖5(b)可見(jiàn):質(zhì)量較高的焊縫所對(duì)應(yīng)的參數(shù)組(/為800/100, 1 000/200,1 400/300)均分布在屈服強(qiáng)度與熱輸入量關(guān)系曲線凹處周圍,即圖5(b)中虛線框處。由此推測(cè):最高質(zhì)量的焊縫所對(duì)應(yīng)的熱輸入應(yīng)該位于曲線拐彎處,即2/≈6 066處。據(jù)此,可以設(shè)計(jì)更多能得到高質(zhì)量焊縫的工藝參數(shù),例如/分別為700/80,950/150,1 200/250等。
選取焊縫區(qū)質(zhì)量最差和最好的核焊區(qū)試樣,即/為800/300和1 400/300時(shí)所得試樣,進(jìn)行EBSD微觀結(jié)構(gòu)分析。圖6(a)所示為/為800/300時(shí)焊核區(qū)的EBSD反極圖。從圖6(a)可以看出:晶粒取向分布不均勻,且晶粒呈非等軸狀。圖6(b)所示為/為1 400/ 300時(shí)焊核區(qū)的EBSD反極圖。從圖6(b)可以看出:晶粒取向分布均勻,且晶粒為等軸晶。圖6(c)為2種/下晶粒直徑分布的統(tǒng)計(jì)圖。由圖6(c)可知:/為800/300時(shí)所得平均晶粒直徑(3.7 μm)小于/為 1 400/300時(shí)所得平均晶粒直徑(6 μm)。這是因?yàn)榍罢邿彷斎肓康陀诤笳邿彷斎肓?,這也與/為800/300時(shí)焊核區(qū)強(qiáng)度高于/為1 400/300時(shí)焊核區(qū)強(qiáng)度這一結(jié)果相符合。圖6(d)所示為2個(gè)焊核區(qū)的晶粒直徑晶粒取向差。由圖6(d)可知:當(dāng)/為800/300時(shí),高角晶界(>15°)所占比例為33.4%,遠(yuǎn)低于當(dāng)/為 1 400/300時(shí)高角晶界所占比例(60.5%),說(shuō)明當(dāng)/為1 400/300時(shí)焊核區(qū)發(fā)生了更充分的動(dòng)態(tài)再結(jié)晶。
(a) ω/v;(b) ω2/v
(a) EBSD反極圖,ω/v為800/300;(b) EBSD反極圖,ω/v為1 400/300;(c) 晶粒直徑分布圖;(d) 晶界角分布圖
1) 在循環(huán)水冷條件下,當(dāng)旋轉(zhuǎn)速度/進(jìn)給速度(/)為800/100,1 000/200,1 400/300時(shí),AA1050工業(yè)純鋁攪拌摩擦焊能使焊縫的表面質(zhì)量較高。
2) 焊核區(qū)維氏硬度均高于母材維氏硬度,其中/為800/200時(shí)焊核區(qū)平均維氏硬度最高,為42.9,比母材高13.0。
3) 焊核區(qū)拉伸強(qiáng)度均高于母材拉伸強(qiáng)度,其中最高極限拉伸強(qiáng)度為105 MPa,與母材拉伸強(qiáng)度相比提高了64%;固定旋轉(zhuǎn)速度時(shí),隨著進(jìn)給速度增加,焊核區(qū)極限拉伸強(qiáng)度增加,塑性下降,這是由于晶粒直徑減小造成的;綜合考慮力學(xué)性能和加工硬化能力,當(dāng)/為1 400/300時(shí)可得到質(zhì)量較高的焊縫。
4) 焊核區(qū)拉伸及屈服強(qiáng)度隨熱輸入量增加而逐漸降低;質(zhì)量較好的焊縫所對(duì)應(yīng)的工藝參數(shù)(/)集中在屈服強(qiáng)度與熱輸入量關(guān)系曲線凹處周圍,可為焊接工藝參數(shù)的選取提供參考。
[1] THOMAS W M, NICHOLAS E D, NEEDHAM J C, et al. Friction stir welding: PCT/GB 92/02203 [P]. 1991?10?06.
[2] FULLER C B, MAHONEY M W, CALABRESE M, et al. Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds[J]. Materials Science & Engineering A, 2010, 527: 223?2240.
[3] SQUILLACE A, FENZO A D E, GIORLEO G, et al. A comparison between FSW and TIG welding techniques: modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints[J]. Journal of Materials Processing Technology, 2004, 152: 97?105.
[4] VENKATESWARAN P, REYNOLDS A P. Factors affecting the properties of friction stir welds between aluminum and magnesium alloys[J]. Materials Science & Engineering A, 2012, 545: 26?37.
[5] NAIK B S, CAO X, WANJARA P. Residual stresses and tensile properties of friction stir welded AZ31B-H24 magnesium alloy in lap configuration[J]. Metallurgical and Materials Transactions B, 2015, 46(4): 1626?1637.
[6] TAN Caiwang, JIANG Zhenguo, LI Liqun, et al. Microstructural evolution and mechanical properties of dissimilar Al-Cu joints produced by friction stir welding[J]. Materials & Design, 2013, 51(5): 466?473.
[7] CHEN Binxi, CHEN Ke, HAO Wei, et al. Friction stir welding of small-dimension Al3003 and pure Cu pipes[J]. Journal of Materials Processing Technology, 2015, 223: 48?57.
[8] MISHRA R S, MA Z Y. Friction stir welding and processing[J]. Materials Science & Engineering R, 2005, 50(1/2): 1?78.
[9] CHEN Yu, DING Hua, LI Jizhong, et al. Influence of multi-pass friction stir processing on the microstructure and mechanical properties of Al-5083 alloy[J]. Materials Science & Engineering A, 2016, 650(5): 281?289.
[10] KHODAVERDIZADEH H, MAHMOUDI A, HEIDARZADEH A, et al. Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints[J]. Materials & Design, 2012, 35(11): 330?334.
[11] HEIRANI F, ABBASI A, ARDESTANI M. Effects of processing parameters on microstructure and mechanical behaviors of underwater friction stir welding of Al5083 alloy[J]. Journal of Manufacturing Processes, 2017, 25: 77?84.
[12] LEE W B, YEON Y M, JUNG S B. The joint properties of dissimilar formed Al alloys by friction stir welding according to the fixed location of materials[J]. Scripta Materialia, 2003, 49(5): 423?428.
[13] KIM Y G, FUJII H, TSUMURA T, et al. Three defect types in friction stir welding of aluminum die casting alloy[J]. Materials Science & Engineering A, 2006, 415(1/2): 250?254.
[14] GAN Wenying, ZHOU Zheng, ZHANG Hang, et al. Evolution of microstructure and hardness of aluminum after friction stir processing[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(4): 975?981.
[15] SATO M Y S, KOKAWA H, KURIHARA M S. Systematic examination of precipitation phenomena associated with hardness and corrosion properties in friction stir welded aluminium alloy 2024[J]. Welding in the World, 2011, 55(11/12): 39?47.
[16] ABNAR B, KAZEMINEZHAD M, KOKABI A H. Effects of heat input in friction stir welding on microstructure and mechanical properties of AA3003-H18 plates[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(7): 2147?2155.
[17] LIPI?SKA M, OLEJNIK L, PIETRAS A, et al. Microstructure and mechanical properties of friction stir welded joints made from ultrafine grained aluminium 1050[J]. Materials & Design, 2015, 88: 22?31.
[18] SAKTHIVEL T, SENGAR G S, MUKHOPADHYAY J. Effect of welding speed on microstructure and mechanical properties of friction-stir-welded aluminum[J]. International Journal of Advanced Manufacturing Technology, 2009, 43(5/6): 468?473.
[19] KHORRAMI M S, KAZEMINEZHAD M, KOKABI A H. Mechanical properties of severely plastic deformed aluminum sheets joined by friction stir welding[J]. Materials Science & Engineering A, 2012, 543: 243?248.
[20] PETCH N J. The cleavage strength of polycrystals[J].Journal of the Iron and Steel Institute,1953, 174(1): 25?28.
[21] HALL E O. The deformation and ageing of mild steel: ⅡCharacteristics of the Lüders deformation[J]. Proceedings of the Physical Society, 1951, 64(9): 742.
[22] AMIRI M, KAZEMINEZHAD M, KOKABI A H. Energy absorption of friction stir welded 1050 aluminum sheets through wedge tearing[J]. Materials & Design, 2016, 93: 216?223.
[23] Song K H, Fujii H, Nakata K. Effect of welding speed on microstructural and mechanical properties of friction stir welded Inconel 600[J]. Materials & Design, 2009, 30(10): 3972?3978.
[24] VALIEV R Z, ALEXANDROV I V, ZHU Y T, et al. Paradox of strength and ductility in metals processed by severe plastic deformation[J]. Journal of Materials Research, 2011, 17(1): 5?8.
[25] ZHU Yutian, LIAO Xiaozhou. Nanostructured metals: retaining ductility[J]. Nature Materials, 2004, 3(6): 351.
[26] HEURTIER P, JONES M J, DESRAYAUD C, et al. Mechanical and thermal modelling of friction stir welding[J]. Journal of Materials Processing Tech, 2006, 171(3): 348?357.
[27] JIN Z, Beaudoin A, Bieler T A, et al. Hot deformation of Al alloys III[M].New Jersey, USA: John Wiley & Sons Inc, 2003: 313?327.
(編輯 伍錦花)
Quality and mechanical property of aluminum joints after friction stir welding
YIN Kun, HUANG Chongxiang, WANG Yanfei, WANG Mingsai, HUANG Aihui
(School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China)
Friction stir welding (FSW) joints of AA1050 under various ratios of rotational speed to welding speed (/) were studied. The effects of/on surface appearance, hardness distribution, stress-strain curve and microstructures of the joints were investigated. The results show that fine surface appearance of welded joints can be obtained when/is 800/100, 1 000/200 and 1 400/300. Vickers hardness of stir zone (SZ) is higher than that of base metal (BM) and the highest average Vickers hardness is 42.9. The tensile strength of SZ is also higher than that of BM and the highest ultimate tensile strength (UTS) increase by 64%, up to 105 MPa. At a constant rotation speed, the tensile strength of SZ increases while its ductility decreases with the increase of the welding speed. The welded joint with both good mechanical property and high work-hardening capacity can be obtained when/is 1 400/300. The points corresponding to high welding quality distribute near the inflexion of the curve of yield strength versus heat input.
AA1050; friction stir welding; weld quality; mechanical property
10.11817/j.issn.1672-7207.2018.11.006
TG453
A
1672?7207(2018)11?2677?07
2017?12?11;
2018?02?20
國(guó)家自然科學(xué)基金資助項(xiàng)目(11672195);四川省青年科技基金資助項(xiàng)目(2016JQ0047) (Project(11672195) supported by the National Natural Science Foundation of China; Project(2016JQ0047) supported by the Science and Technology Foundation for Youths of Sichuan Province)
黃崇湘,博士,教授,從事先進(jìn)材料力學(xué)行為研究;E-mail: chxhuang@scu.edu.cn