楊岑 張博卿 王道平
摘要在消費者對低碳產(chǎn)品存在偏好的碳交易市場中,研究兩級閉環(huán)供應鏈中的減排與定價決策問題.對于制造商負責回收模式下的回收再制造過程,采用指數(shù)分布來刻畫廢舊產(chǎn)品質(zhì)量水平的不確定性.假設新產(chǎn)品和再制造品存在競爭關系,建立制造商和零售商間的Stackelberg博弈模型,給出制造商確定減排投資和回收參考價格以及零售商決定兩種產(chǎn)品的差別定價策略,通過算例分析回收產(chǎn)品的殘值和碳交易價格對最優(yōu)策略和供應鏈成員利潤的影響.研究表明,為了獲得利潤最大,當碳交易的市場價格升高時,制造商應加大減排投資,且零售商應采取提高產(chǎn)品零售價的策略.
關鍵詞運籌學;定價策略;博弈模型;碳交易;閉環(huán)供應鏈;質(zhì)量水平
中圖分類號F270 文獻標識碼A
Study on Carbon Reduction and Pricing of Closedloop
Supply Chain Based on Carbon Trading
Cen Yang 1,2, Boqing Zhang 2, Daoping Wang2
(1 Xinxing Ductile Iron Pipes Co., LTD., Beijing100020,China; 2 School of Economics and
Management, University of Science and Technology Beijing, Beijing100083,China)
AbstractIn the carbon trading market with consumers prefer low carbon products, the problem of carbon emission reduction and pricing in the two echelon closed-loop supply chain is studied. For the remanufacturing under the manufacturers responsibility for recycling, exponential distribution is adapted to describe the quality level of the waste products. Assums that there is competition between new products and remanufactured products, a Stackelberg game model between the manufacturer and the retailer is developed. The manufacturer decides the investment for carbon reduction and recovery price of reference, and the retailer decides discriminational price of the two products. A numerical example is given to formulate the optimal strategy ,and the impact of salvage and carbon trading price on the optimal strategy is analyzed. It show that, to maximize the profits, when the carbon trading price increases, the manufacturer should increase investment in emissions, and the retailer should raise the retail price of the product.
Key wordsoperations research; pricing strategy; game model; carbon trading; closedloop supply chain; quality level
1引言
早期的供應鏈往往以經(jīng)濟效益為中心,不僅消耗大量的資源,而且給環(huán)境帶來負面的影響.這些負面影響主要表現(xiàn)為廢棄物的隨意丟棄和溫室氣體的大量排放.在資源短缺、環(huán)境急劇惡化和法律法規(guī)的限制等多重壓力下,閉環(huán)供應鏈應運而生.歐盟在《廢舊電子電器設備指令》(WEEE指令)中,要求企業(yè)回收處理廢棄物.中國在廢棄物回收方面也制定了相關法律,如《固體廢棄物污染環(huán)境防治法》、《廢舊家電及電子產(chǎn)品回收處理管理條例》等.實施閉環(huán)供應鏈管理有助于達到經(jīng)濟增長和環(huán)境保護的綜合效益,但企業(yè)決策過程中的定價問題更加復雜.除了批發(fā)價和零售價之外,閉環(huán)供應鏈中還需考慮回收價的制定.
除廢棄物的回收之外,溫室氣體減排是供應鏈管理中另一個需要解決的問題.溫室氣體包括二氧化碳、甲烷和一氧化二氮等,其中二氧化碳約占75%.《京都議定書》約定二氧化碳排放權為一種可交易的商品,國家或企業(yè)之間可以進行碳排放權的交易.中國已經(jīng)在多個省市建立碳排放權交易所,如北京、上海、深圳和天津等,且碳交易市場保持了較穩(wěn)定的運行態(tài)勢.這種新的市場機制使得大型制造企業(yè)在進行管理決策時,不僅需要在廢棄物回收成本、生產(chǎn)成本和產(chǎn)品收入之間進行權衡,還需要考慮出售和購買碳排放權所帶來的收入與成本.廢棄物的回收再制造有利于減少碳排放量,企業(yè)可通過這條途徑來獲取收益.在碳交易背景下,減排策略和閉環(huán)供應鏈定價問題的研究不僅對企業(yè)提高利潤至關重要,而且有利于節(jié)能減排、環(huán)境保護和循環(huán)經(jīng)濟的實現(xiàn).
2文獻綜述
國內(nèi)外已有許多學者對閉環(huán)供應鏈的定價問題進行了研究.Thierry和Salomon等(1995)[1]通過舉例說明了全生命周期理念已經(jīng)成為處理廢舊產(chǎn)品的一種有效途徑.Savaskan和Bhattacharya等(2004)[2]在制造商回收、零售商回收和第三方回收三種回收模式下,分別建立了以制造商為主導的博弈模型,通過比較發(fā)現(xiàn),零售商回收模式下廢舊產(chǎn)品回收效率最高.Ferrer和Swaminathan(2006)[3]把生產(chǎn)分為兩階段,假定第一階段只生產(chǎn)新產(chǎn)品,研究了零售商有權只銷售再制造品情況下的決策問題.Yoo和Kim等(2015)[4]研究了供應商的議價能力高于零售商時,批發(fā)價契約、回購契約和數(shù)量折扣契約三種契約模式分別對零售商定價與退貨策略的影響.張克勇和周國華(2009)[5]在不確定需求的情況下,分別構建了集中決策和非合作分散決策下的定價模型,并通過定量分析得出兩種定價模型下,生產(chǎn)量和期望利潤均為新產(chǎn)品單位生產(chǎn)成本的遞減函數(shù).顏榮芳和程永宏等(2013)[6]考慮了新產(chǎn)品和再制造品的差異,建立了差別定價模型,分析了廢舊品回收價對最優(yōu)批發(fā)價和最優(yōu)零售價的影響,但其對兩種產(chǎn)品采用同一回收價格.霍艷芳和原泉等(2014)[7]在兩種產(chǎn)品批發(fā)價、零售價和回收價都存在差異的情況下,給出了最優(yōu)定價策略,引入了收益共享契約來協(xié)調(diào)閉環(huán)供應鏈.Galbreth和Blackburn(2010)[8]在閉環(huán)供應鏈的回收再制造過程中考慮了廢舊產(chǎn)品的質(zhì)量水平差異.Bulmus和Zhu等(2014)[9]給出了最優(yōu)回收價格等相關決策變量.陽成虎和劉海波等(2012)[10]給出了廢舊產(chǎn)品回收策略.
碳交易市場機制的形成使得企業(yè)的盈利模式發(fā)生了一定的變化.隨著碳交易市場中的參與者不斷增多,市場交易量逐漸增加,企業(yè)的碳減排問題成為了眾多學者關注的熱點.LUIS和NOEMI(2002)[11]研究了在消費者具有低污染偏好的雙寡頭市場中,減排策略對排放量和企業(yè)利潤的影響.Ravi和Sudheer等(2009)[12]通過三階段博弈,給出了碳排放約束和碳交易機制背景下,制造商的最優(yōu)減排投資、最優(yōu)產(chǎn)量和收益共享契約的設計方法.Liu和Anderson等(2012)[13]在多個制造商和多個零售商構成的競爭環(huán)境下,消費者環(huán)保意識的變化對制造商和零售商利潤的影響不同.熊中凱和張盼等(2014)[14]具體分析了消費者環(huán)保意識對于碳排放的影響.高舉紅和侯麗婷等(2014)[15]在閉環(huán)供應鏈的定價決策中考慮了碳排放的影響,在不同回收模式和市場主導力量情境下,對供應鏈總利潤和總排放進行了波動分析.王芹鵬和趙道致(2014)[16]針對供應鏈總利潤收益共享進行契約研究.
在閉環(huán)供應鏈的差異定價問題和考慮碳交易的最優(yōu)減排策略方面進行了深入的研究,取得了豐碩的成果,但少有文獻研究考慮碳交易的閉環(huán)供應鏈碳減排和定價問題,而考慮碳交易是更符合現(xiàn)實的.考慮新產(chǎn)品和再制造品的差異性,在廢舊產(chǎn)品質(zhì)量不確定的情況下,建立基于碳減排的閉環(huán)供應鏈定價模型,確定單位產(chǎn)品碳減排量、回收參考價格和零售價的最優(yōu)策略,并通過算例對模型中的主要參數(shù)進行靈敏度分析.
3數(shù)學模型
3.1問題描述與假設
考慮由一個制造商、一個零售商和消費者構成的閉環(huán)供應鏈.由于受使用情況和所處的生命周期階段等因素的影響,廢舊產(chǎn)品的質(zhì)量水平存在差異.當廢舊產(chǎn)品的質(zhì)量水平低于一定閾值時,制造商不予回收.再制造品和新產(chǎn)品在質(zhì)量和功能上存在差異.制造商負責產(chǎn)品的回收和生產(chǎn),其中廢舊產(chǎn)品的回收價格為ps,新產(chǎn)品的單位生產(chǎn)成本為c1,再制造品的單位生產(chǎn)成本為c2.回收活動結束后,對廢舊產(chǎn)品進行拆解.質(zhì)量較好的零部件用于再制造,再造率為η,而剩余(1-η)部分作為廢棄物處理,殘值為v.零售商以批發(fā)價w1和w2分別從制造商處購買新產(chǎn)品和再制造品,并以零售價p1和p2分別進行銷售.供應鏈整體的差別定價結構如圖1所示.
在供應鏈的運營過程中,有許多環(huán)節(jié)產(chǎn)生碳排放,僅考慮生產(chǎn)環(huán)節(jié)的碳排放.實施減排之前,單位新產(chǎn)品和再制造品的碳排放量分別為e1和e2.在政府壓力和碳交易機制的驅(qū)動下,制造商考慮投資減排,減排后碳排放的總量為Es.政府分配的免費碳排放權為Eg,當Es小于Eg時,制造商可出售剩余的碳排放權獲得收益;反之則需要購買額外的碳排放權.碳排放權的市場交易價格為pe,與市場環(huán)境有關的外生變量.另一方面,隨著消費者環(huán)保意識的逐漸形成,產(chǎn)品的低碳程度也逐漸地成為消費者判斷其價值的組成部分.即除了市場零售價之外,產(chǎn)品的低碳程度對其需求也有影響.制造商需要確定回收參考價格和減排投資,零售商需要確定零售價,兩者的目標都是自身利潤最大化.
模型中的基本假設如下:
(1)廢舊產(chǎn)品的質(zhì)量水平X服從參數(shù)為 λ 的指數(shù)分布,x∈[a, b],即回收產(chǎn)品的概率密度函數(shù)為f(x)=λe-λx,a≤x≤b0,其它.a為回收產(chǎn)品質(zhì)量水平的最低閾值,b為最高的質(zhì)量水平.理論上全新產(chǎn)品的質(zhì)量水平為回收產(chǎn)品的最高質(zhì)量水平,而實際上質(zhì)量水平接近全新(包括全新)的產(chǎn)品被回收的可能性很小,故假定回收產(chǎn)品最高的質(zhì)量水平為b.
(2)制造商為了占領市場,不允許缺貨.
3.2閉環(huán)供應鏈碳減排與差別定價博弈模型
在碳交易機制背景下,制造商希望通過減少碳排放量,將剩余的碳排放權進行出售來獲得收益.但采取減排措施,如改善產(chǎn)品工藝、采用凈化設備等需要制造商支付一定的減排費用,即減排投資.制造商的目標是利潤最大,所以需要在眾多成本項目和收入項目之間進行權衡.制造商的成本包括回收成本、生產(chǎn)成本和減排投資,收入包括殘值處理收入、銷售(批發(fā))收入和碳交易收入.
減排投資c(Δe)與單位產(chǎn)品的碳減排量Δe之間的關系可假定為c(Δe) = k(Δe)2 / 2.其中,k為減排成本系數(shù).實施減排后,碳總排放量可表示為Es = (e1-Δe)D1 + (e2-Δe)D2,從而制造商的碳交易收入可表示為:
pe(Eg-Es)=pe(Eg-(e1-Δe)D1-(e2-Δe)D2),(1)
其中,D1和D2分別表示新產(chǎn)品和再制造品的市場需求.產(chǎn)品的市場需求受零售價和單位產(chǎn)品碳減排量的雙重影響.由于零售商出售新產(chǎn)品和再制造品,兩者存在競爭關系,即兩種產(chǎn)品的零售價相互影響對方的市場需求.使用線性需求模型將新產(chǎn)品和再制造品的市場需求D1和D2分別定義為:
D1=Q1-α1p1+β1p2+γΔe,(2)
D2=Q2-α2p2+β2p1+γΔe,(3)
其中,Qi為市場上產(chǎn)品的潛在需求量,αi為產(chǎn)品的需求價格彈性,βi為本產(chǎn)品對其它產(chǎn)品的交叉價格彈性,αi > βi > 0,i = 1,2,分別表示新產(chǎn)品和再制造品,γ 為產(chǎn)品需求對碳減排量的敏感系數(shù).市場需求與兩種產(chǎn)品的零售價有關,但相比其它產(chǎn)品,本產(chǎn)品零售價的波動對需求的影響較大.
對于不同質(zhì)量水平的廢舊產(chǎn)品,其可再利用的程度不同,制造商提供的回收價格也存在差異.回收價格具有不確定性,通過固定的回收參考價格來反映,即將回收價格函數(shù)定義為ps = f1(x)pb.其中,f1(x)在x∈[a, b]上連續(xù)并二階可導,且f1'(x) > 0,f1''(x) > 0,0 < f1(x) < 1,f1(b) = 1,pb為回收參考價格,如圖2所示.x= b時,ps = pb,表示對于質(zhì)量水平最高的產(chǎn)品,制造商愿意提供的回收價格為pb.
只有當廢舊產(chǎn)品的質(zhì)量水平高于最低質(zhì)量水平a 時,廢舊產(chǎn)品才被制造商回收,則其平均回收價格可表示為:
s=∫+∞0pbf1(x)f(x)dx=
λpb∫bae-λxf1(x)dx.(4)
廢舊產(chǎn)品的回收量G可表示為G = w + hpb,w為消費者主動提供的回收品數(shù)量,h為價格彈性,w,h > 0.制造商的平均回收成本可表示為:
G*E(ps)=λ(w+hpb)pb∫bae-λxf1(x)dx.(5)
與回收價格類似,將再制造品的生產(chǎn)成本c2表示為c2 = f2(x)cb.其中,f2(x)在x∈[a, b]上連續(xù)并二階可導,且f2'(x) < 0,f2''(x) > 0,f2(x) > 1,f2(b) = 1,cb為基準生產(chǎn)成本.x = b時,c2 = cb,表示對于質(zhì)量水平最高的產(chǎn)品,制造商通過檢驗維護包裝等環(huán)節(jié)將產(chǎn)品再出售所耗費的生產(chǎn)成本為cb.隨著回收品質(zhì)量的逐漸變差,再制造品的生產(chǎn)成本越來越高,邊際生產(chǎn)成本遞增.制造商的平均生產(chǎn)成本c2可表示為:
c2=∫+
SymboleB@ 0λe-λxf2(x)cbdx=λcb∫bae-λxf2(x)dx.(6)
結合上述利潤構成,制造商和零售商的利潤可分別表示為:
Πm=(w1-c1)D1+(w2-c2)D2+pe(Eg-Es)+v(1-η)G-psG-c(Δe),(7)
Πr=(p1-w1)D1+(p2-w2)D2,(8)
其中,Πm為制造商的利潤,Πr為零售商的利潤.
4模型求解與分析
制造商和零售商的決策過程可看作以制造商為主導的Stackelberg博弈.首先求出零售商的定價決策,然后將其代入到制造商的決策中進行求解.
1)零售商的定價決策
零售商的決策變量為兩種產(chǎn)品的零售價p1和p2.由式(8)可求出利潤Πr (p1, p2)的Hessian矩陣為:
H=2Πrp212Πrp1p2
2Πrp2p12Πrp22=
-2α1β1+β2
β1+β2-2α2,(9)
-2α1β1+β2β1+β2-2α2=4α1α2-(β1+β2)2.(10)
由α1 > β1,α2 > β2可知4α1α2-(β1 + β2)2 > 0.因為-2α1 < 0,4α1α2-(β1 + β2)2 > 0,所以Πr的Hessian矩陣負定,即存在最優(yōu)的p1*和p2*使得Πr取最大值.令零售商的利潤Πr對新產(chǎn)品的零售價和再制造品的零售價的一階導數(shù)為0,可得:
p*1=2α2J1+(β1+β2)J24α1α2-(β1+β2)2,(11)
p*2=2α1J2+(β1+β2)J14α1α2-(β1+β2)2,(12)
其中J1 = Q1 + α1w1-β2w2+ γΔe,
J2 = Q2 + α2w2-β1w1 + γΔe.
2)制造商的最優(yōu)決策
制造商的決策變量包括回收參考價格pb和單位產(chǎn)品的碳減排量Δe.根據(jù)式(7)可求出制造商的利潤Πm對pb的一階偏導和二階偏導分別為:
Πmpb=vh(1-η)-2hMpb-wM,(13)
Πmp2b=-2hM,(14)
其中,M=λ∫bae-λxf1(x)dx.顯然2Πmp2b<0,因此令Πmpb=0可求出制造商的最優(yōu)回收參考價pb*為:
p*b=ν(1-η)2M-w2h.(15)
代入零售商的定價決策中求得制造商的最優(yōu)決策.
假設1相比新產(chǎn)品,再制造品的零售價對單位產(chǎn)品碳減排量的波動更敏感,即p*2Δe>p*1Δe.
證明由式(11)和式(12)化簡可以看出,單位產(chǎn)品碳減排量每增加一個單位,新產(chǎn)品的零售價增加2α2+β1+β24α1α2-(β1+β2)2γ,再制造品的零售價增加2α1+β1+β24α1α2-(β1+β2)2γ.實際上,新產(chǎn)品是具有一定忠誠客戶群的產(chǎn)品,即使價格上漲,其需求的變化不大.而再制造品屬于新興產(chǎn)品,只有環(huán)保意識相對較強的消費者才會購買,其需求彈性較大,即α2 > α1.所以可以得出
p*2Δe-p*1Δe=2(α2-α1)γ4α1α2-(β1-β2)2為正,即單位產(chǎn)品碳減排量的波動對新產(chǎn)品零售價的影響較大.證畢.
假設2對于給定的質(zhì)量水平最低閾值,當0 < vh(1-η)-wM < 2hc1M時,存在最優(yōu)的回收參考價格使得制造商的利潤最大化.
證明當vh(1-η)-wM > 0時,ΠMPB(p*b)=0,2Πmp2b(p*b)=0,說明pb*為最優(yōu)參考價格.另一方面,還需驗證pb*的合理性,即回收價格小于新產(chǎn)品的單位生產(chǎn)成本c1.當vh(1-η)-wM < 2hc1M時,可得pb* < c1,制造商回收產(chǎn)品是有利可圖的,符合現(xiàn)實.證畢.
同理,制造商的利潤Πm對Δe的一階偏導和二階偏導分別為:
ΠmΔe=2pe(u1+u2)-kΔe+(w1-c1-e1pe)u1+(w2-c2-e2pe)u2+peu3,(16)
2Πm(Δe)2=2pe(u1+u2)-k.(17)
其中
u1=γ2α1(α2+β1)-(α1+β2)(β1+β2)4α1α2-(β1+β2)2,(18)
u2=γ2α2(α1+β2)-(α2+β1)(β1+β2)4α1α2-(β1+β2)2,(19)
u3=Q1+Q2+(β1+β2)(β1-α2)+2α2(β2-α1)4α1α2-(β1+β2)
(Q1+α1w1-β2w2)+(β1+β2)(β2-α1)+2α1(β1-α2)4α1α2-(β1+β2)
(Q2+α2w2-β1w1).(20)
假設3當2pe(u1+u2)-k < 0時,存在最優(yōu)的單位產(chǎn)品碳減排量(Δe)*使得制造商的利潤取最大值,且最優(yōu)值(Δe)*為:
(Δe)*=
(w1-c1-e1pe)u1+(w2-2-e2pe)u2+peu32pe(u1+u2)-k.(21)
證明當2pe(u1+u2)-k < 0時,2Πm(Δe)2<0,即Δe在某點取值時Πm有最大值.令Πm對Δe的一階偏導為零可得,Δe的最優(yōu)值滿足式(21)時,制造商的利潤最大.證畢.
結合假設3可以得出,2pe(u1+u2)-k < 0是單位產(chǎn)品的碳減排量取得最優(yōu)值的必要條件,驗證了最優(yōu)值的存在性.在合理性方面,對式(21)進行分析可得,當分母小于零時,分母也要求小于零,這樣保證了(Δe)*的非負性.(Δe)*還應小于產(chǎn)品的最低碳排放量,當(Δe)* > min{e1, e2}時,?。é)* =min{e1, e2}.
將式(21)代入c(Δe) = k(Δe)2 / 2計算可得制造商最優(yōu)的減排投資c(Δe).零售商關于新產(chǎn)品和再制造品的最優(yōu)零售價也可通過將式(21)分別代入式(11)和式(12)計算可得.
5算例分析
給出算例,求解基于碳交易的制造商的最優(yōu)回收參考價格和單位產(chǎn)品碳減排量,以及零售商的最優(yōu)零售價.并分析回收產(chǎn)品的殘值和碳交易價格的變化對最優(yōu)策略的影響.取f (x) = 0.5e - 0.5 x,0.5 ≤ x ≤ 10;f1(x) = e - 0.05(10 - x),0.5 ≤ x ≤ 10,滿足f1'(x) > 0,f1''(x) > 0,0 < f1(x) < 1,f1(10) = 1;f2(x) = e 0.06(10 - x),0.5 ≤ x ≤ 10,滿足f2'(x) < 0,f2''(x) > 0,f2(x) > 1,f2(10) = 1.表1是模型中其它參數(shù)的取值.
當再制造品的基準生產(chǎn)成本為30時,由式(6)可以算出再制造品的平均生產(chǎn)成本為36.71.根據(jù)模型求解中給出的求解過程,可以得到制造商和零售商決策變量的最優(yōu)值,結果見表2.
將回收參考價格pb*的取值代入式(4)可以算出平均回收價格ps為8.62,占再制造品平均生產(chǎn)成本的23%.單位產(chǎn)品碳減排量的最優(yōu)值為4.43,制造商的減排投資為14720,減排后制造商的碳排放總量為79044.由于政府分配的免費碳排放權為80000.所以制造商可以將剩余的碳排放權出售,獲得利潤28675,占總利潤的38.56%.由此可見,通過投資減排來獲得碳交易收入是可行的,且碳交易機制下碳減排策略是制造企業(yè)生產(chǎn)決策過程中需要考慮的重要因素.
以表1中的數(shù)據(jù)為基礎,當回收產(chǎn)品的殘值v在區(qū)間[0, 20]內(nèi)變化時,可以得到圖3和圖4.圖3反映了v對回收參考價格pb的影響,為了保證pb的非負性和合理性(v < c1),v只能在一定范圍內(nèi)取值.回收產(chǎn)品的殘值越高,說明其質(zhì)量越優(yōu),則制造商提供的回收參考價格相應的越高.另一方面,當再造率保持不變,殘值增加時,回收成本增加,且成本的增加大于利潤的增加,從而導致制造商的總利潤降低,如圖4所示.一般來說,回收產(chǎn)品的殘值少于再制造帶來的利潤.所以,當質(zhì)量水平較高的回收產(chǎn)品被作為廢棄物以殘值處理時,說明制造商的研發(fā)能力不足,使得本可以用于再制造的產(chǎn)品沒有被最大程度的利用,造成了一定的“浪費”.
碳排放權的市場交易價格是影響制造企業(yè)碳減排策略的重要因素.由于該價格屬于外生變量,實際上是隨機波動的,所以令pe在區(qū)間[20, 75]上變化,得到圖5~圖7,分別反映了pe對最優(yōu)單位產(chǎn)品碳減排量、產(chǎn)品零售價和供應鏈成員利潤的影響.由圖5可知,當pe大于一定值時,單位產(chǎn)品碳減排量的最優(yōu)值為負,可由式(21)分析得出.
從圖5和圖6可以看出,隨著pe的逐漸增大,(Δe)*、p1*和p2*逐漸增多.當Δe在區(qū)間(0, min{e1, e2})內(nèi)逐漸增大時,碳交易收入減少,且減排投資增大,從而制造商的總利潤逐漸降低,如圖7所示.另外,當制造商提供的批發(fā)價格固定時,零售商的利潤由產(chǎn)品零售價和需求決定.因此,當碳交易的市場價格pe升高時,零售商的總利潤也相應的增加.
6結論
在碳交易市場機制背景下,碳排放權被賦予了價值屬性,可以在國家或企業(yè)之間進行交易,影響到企業(yè)的盈利模式.當企業(yè)的碳排放總量低于政府分配的免費碳排放權時,可將剩余部分的碳排放權出售以此獲得收益.考慮了廢舊產(chǎn)品的質(zhì)量不確定性,建立了碳交易機制作用下制造商和零售商之間的Stakelberg博弈模型,給出了最優(yōu)的碳減排和定價策略,分析了回收產(chǎn)品的殘值和碳交易價格對最優(yōu)決策和供應鏈成員利潤的影響.研究表明,在閉環(huán)供應鏈中考慮碳交易的影響時,零售商確定的最優(yōu)零售價與制造商的碳減排策略有關,且存在一個邊界條件使得單位產(chǎn)品的碳減排量取最優(yōu)值時,制造商的利潤達到最大.另外,當碳交易的市場價格升高時,為了獲得最大利潤,制造商應加大減排投資,增加單位產(chǎn)品碳減排量,且零售商采取提高產(chǎn)品零售價的策略.但本位假定不允許缺貨,且回收量和產(chǎn)品的市場需求之間是相互獨立的.因此,建立回收量和需求之間的聯(lián)系,解決在允許缺貨條件下考慮碳交易的閉環(huán)供應鏈碳減排與定價問題是進一步研究的方向.
參考文獻
[1]HIERRY M, SALOMON M, NUNEN J, WASSENHOVE L. Strategic issues in product recovery management[J]. California Management Review, 1995, 37(2): 114-135.
[2]SAVASKAN R, BHATTACHARYA S, WASSENHOVE L. Closedloop supply chain models with product remanufacturing[J]. Management Science, 2004, 50(2): 239-252.
[3]FERRER G, SWAMINATHAN J. Managing new and remanufactured products[J]. Management Science, 2006, 52(1): 15-26.
[4]YOO S, KIM D, PARK M. Pricing and return policy under various supply contracts in a closedloop supply chain[J]. International Journal of Production Research, 2015, 53(1): 106-126.
[5]張克勇, 周國華. 不確定需求下閉環(huán)供應鏈定價模型研究[J]. 管理學報, 2009, 6(1): 45-50.
[6]顏榮芳, 程永宏, 王彩霞. 再制造閉環(huán)供應鏈最優(yōu)差別定價模型[J]. 中國管理科學, 2013, 21(1): 90-97.
[7]霍艷芳, 原泉, 劉凱. 閉環(huán)供應鏈差異定價策略及協(xié)調(diào)機制[J]. 系統(tǒng)工程, 2014, 32(9): 101-107.
[8]GALBRETH M, BLACKBURN J. Optimal acquisition quantities in remanufacturing with condition uncertainty[J]. Production and Operation Management Society, 2010, 19(1): 61-69.
[9]BULMUS S, ZHU S, TEUNTER R. Optimal core acquisition and pricing strategies for hybrid manufacturing and remanufacturing systems[J]. International Journal of Production Research, 2014, 52(22): 6627-6641.
[10]陽成虎, 劉海波, 卞姍姍. 再制造系統(tǒng)中廢舊產(chǎn)品回收策略[J]. 計算機集成制造系統(tǒng), 2012, 18(4): 875-880.
[11]MORAGAGONZLEZ J, PADRNFUMERO N. Environmental policy in a green market[J]. Environmental and Resource Economics, 2002, 22(3): 419-447.
[12]SUBRAMANIAN R, GUPTA S, TALBOT B. Compliance strategies under permits for emissions[J]. Production and Operation Management, 2009, 16(6): 763-779.
[13]LIU Z, ANDERSON T, CRUZ J. Consumer environmental awareness and competition in twostage supply chains[J]. European Journal of Operational Research, 2012, 218(3): 602-613.
[14]熊中凱, 張盼, 郭年. 供應鏈中碳稅和消費者環(huán)保意識對碳排放影響[J]. 系統(tǒng)工程理論與實踐, 2014, 34(9): 2245-2252.
[15]高舉紅, 侯麗婷, 韓紅帥, 等. 考慮碳排放的閉環(huán)供應鏈收益波動分析[J]. 計算機集成制造系統(tǒng), 2014, 20(8): 2008-2018.
[16]王芹鵬, 趙道致. 消費者低碳偏好下的供應鏈收益共享契約研究[J]. 中國管理科學, 2014, 22(9): 106-113.