佘彥超,王啟遠(yuǎn),徐小鳳,鄭維仙
?
半導(dǎo)體三量子點(diǎn)分子中穩(wěn)態(tài)線性光學(xué)特性
佘彥超,王啟遠(yuǎn),徐小鳳,鄭維仙
(銅仁學(xué)院 大數(shù)據(jù)學(xué)院,貴州 銅仁 554300 )
解析地研究了由三個(gè)半導(dǎo)體量子點(diǎn)通過兩個(gè)隧穿耦合形成的半導(dǎo)體量子點(diǎn)分子材料的線性光學(xué)吸收特性。結(jié)果表明,隨著點(diǎn)間隧穿強(qiáng)度的變化,探測光吸收曲線將出現(xiàn)吸收峰,單透明窗口以及雙透明窗口之間的變換。色散曲線中正常色散和反常色散的開關(guān)效應(yīng)也能實(shí)現(xiàn)。同時(shí),隨著隧穿耦合強(qiáng)度的增大,探測光群速度將顯著變慢。
半導(dǎo)體量子點(diǎn); 隧穿誘導(dǎo)透明
半導(dǎo)體量子點(diǎn)(SQD)具有類似超冷原子的分立能級(jí)結(jié)構(gòu)、較大的電偶極矩、較長的退相干時(shí)間, 同時(shí)其相干演化可控、易于集成等優(yōu)勢(shì),在光量子信息通信中具有廣泛的應(yīng)用潛力,因而引起了研究者的極大關(guān)注。不同于傳統(tǒng)光學(xué)介質(zhì),在SQD系統(tǒng)中,只需要弱光激發(fā)能得到如光學(xué)孤子,交叉相位調(diào)制,光學(xué)雙穩(wěn)等顯著的非線性光學(xué)效應(yīng)[1-6]。Hao等[7]在環(huán)形四能級(jí)的量子點(diǎn)中,通過相位調(diào)制抑制線性吸收及雙光子吸收的同時(shí)實(shí)現(xiàn)大的交叉相位調(diào)制非線性效應(yīng)。Yang等[8]研究四能級(jí)雙激子-激子級(jí)聯(lián)型量子點(diǎn)中基于色散效應(yīng)與非線性效應(yīng)相平衡從而形成超慢光孤子對(duì)。這些研究大都只是單量子點(diǎn)體系,很少涉及其中的點(diǎn)間耦合。而將來應(yīng)用中,更可能的是多量子點(diǎn)構(gòu)成的量子點(diǎn)分子或者量子點(diǎn)陣列,其中點(diǎn)間耦合效應(yīng)將變得不可忽略?;诖?,我們?cè)诒疚闹袠?gòu)建由三個(gè)量子點(diǎn)分子通過兩隧穿效應(yīng)耦合形成三量子點(diǎn)分子,探究其中線性光學(xué)吸收特性。
圖1 三量子點(diǎn)分子的能級(jí)結(jié)構(gòu)
Fig. 1 the energy-level arrangement ofthree quantum dot molecule
系統(tǒng)地分析研究了半導(dǎo)體三量子點(diǎn)分子系統(tǒng)的線性光學(xué)吸收特性的有效調(diào)控,它是通過調(diào)控點(diǎn)間隧穿耦合強(qiáng)度而得以實(shí)現(xiàn)。當(dāng)打開單量子隧穿通道時(shí),在適當(dāng)條件下,由于點(diǎn)間隧穿耦合驅(qū)動(dòng)量子相消干涉效應(yīng),系統(tǒng)會(huì)出現(xiàn)一個(gè)單隧穿誘導(dǎo)透明窗口。透明窗口的寬度可通過改變點(diǎn)間單隧穿耦合強(qiáng)度來調(diào)控。特別地,點(diǎn)間隧穿雙通道同時(shí)打開時(shí),由于點(diǎn)間隧穿耦合強(qiáng)度的誘導(dǎo)而產(chǎn)生量子相消干涉效應(yīng),使得探測場的吸收曲線中出現(xiàn)雙隧穿誘導(dǎo)透明窗口。此外,從反常色散區(qū)域到正常色散區(qū)域的雙開關(guān)可通過改變隧穿強(qiáng)度。本文的結(jié)論可為與量子相干及干涉效應(yīng)相關(guān)的光學(xué)效應(yīng)提供一種新穎和有效的措施,這對(duì)于指導(dǎo)光電調(diào)制器件的實(shí)驗(yàn)的實(shí)現(xiàn)可能有重要作用,同時(shí)對(duì)于推動(dòng)固態(tài)量子信息及計(jì)算方面也有更為實(shí)際的應(yīng)用。
圖2 探測光線性吸收系數(shù)Im( K )和相移Re( K )在不同的隧穿耦合強(qiáng)度下隨探測光失諧量的變化關(guān)系
[1] BAYER M, HAWRYLAK P, HINZER K, et al. Coupling and entangling of quantum states in quantum dot molecules[J]. Science, 2001, 291(5503): 451-453.
[2] OHTSU M, KOBAYASHI K, KAWAZOE T, et al. Principles of Nanophotonics[M]. Taylor and Francis, 2008.
[3] TATE N, NARUSE M, NOMURA K W, et al. Demonstration of modulatable optical near-field interactions between dispersed resonant quantum dots[J]. Opt. Express., 2011, 19(19): 18260-18271.
[4] YANG W, LEE R. Controllable entanglement and polarization phase gate in coupled double quantum-wellstructures[J]. Opt. Express., 2008, 16(22): 17161-17170.
[5] KOBAYASHI K, SANGU S, KAWAZOE T, et al. Exciton dynamics and logic operations in a near-fieldoptically coupled quantum-dot system[J]. J. Lumin., 2005, 112(1): 117-121.
[6] OHTSU M, KAWAZOE T, YATSUI T, et al. Nanophotonics: application of dressed photons to novel photonic devices and systems[J]. IEEE J. Sel. Top. Quantum Electron., 2008, 14(6): 1404-1417.
[7] HANG C, HUANG G X. Faraday rotation in a resonant five-level system via electromagnetically induced transparency[J]. Chinese Optics Letters, 2007, 5(1):47.
[8] ZHU C J, DENG L, HGALEY E W. Linear and nonlinear Faraday rotations of light polarization in a four-level active-Raman-gain medium[J]. Physical Review A,2013, 88(2): 023854.
[9] SONGMUANG R, KIRABITTAYA S, SCHMIDT O G. Formation of lateral quantum dot molecules around self-assembled nanoholes[J]. Appl. Phys. Lett., 2003, 82(17): 2892-2894.
[10] KRAUSE B, METZGER T H, RASTELLI A, et al. Shape, strain, and ordering of lateral InAs quantum dot molecules[J]. Phys. Rev. B., 2005, 72(8): 085339(1-12).
Steady-state Linear Optical Properties of Three Quantum Dotmolecule
SHE Yanchao, WANG Qiyuan, XU Xiaofeng, ZHENG Weixian
( Big Date Institute, Tongren University, Tongren 554300, Guizhou, China )
The linear optical properties in a GaAs/AlGaAssemiconductor quantum dot molecule are analytically studied with the tuning effect. It is shown that the change among a single tuning induced transparency (TIT) window, a double TIT window and amplify of the probe field in the absorption curves can be controlled by varying strength of tuning effect T.Meanwhile, double switching from the anomalous dispersion regime to the normal dispersion regime can likely be achieved by increasing the strength of tuning effect. Furthermore, we demonstrate that the group velocity of probe field can be practical regulated.
semiconductor quantum dotmolecule, tuning induced transparency
R392
A
1673-9639 (2018) 09-0033-03
2018-07-29
國家自然科學(xué)基金項(xiàng)目(11747168);貴州省教育廳科研項(xiàng)目(KY[2015]384);貴州省科技廳聯(lián)合基金項(xiàng)目 (LH[2015]7228)。
佘彥超(1983-),男,湖南邵東人,博士,副教授,研究方向:半導(dǎo)體量子材料光學(xué)特性研究。
(責(zé)任編輯 謝 勇)(責(zé)任校對(duì) 楊凱旭)